
Acta Universitatis Carolinae. Mathematica et Physica

Ondřej F. K. Kalenda; Matias Raja
Descriptive properties of spaces of signed measures

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 44 (2003), No. 2, 79--88

Persistent URL: http://dml.cz/dmlcz/702090

Terms of use:
© Univerzita Karlova v Praze, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702090
http://project.dml.cz


2003 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 44, NO. 2 
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Praha, Murcia 

Received 11. March 2003 

Topological spaces of signed Radon measures on a Tychonoff space X inherit some 
descriptive properties of the space X. We show in particular that the space of signed 
Radon measures on an absolute Borel (Cech-analytic) space is again absolute Borel 
(Cech-analytic). Main tool in proving such results is study of measurability of evaluation 
functions. 

1. Introduction 

We study possibilities to derive descriptive properties of topological spaces of 
signed measures on a topological space X from the respective properties of X. In 
[1] such problems are investigated for spaces of non-negative measures. We show, 
in answer to questions formulated in the final section of [1], that in case of signed 
measures the situation is quite similar but not completely the same. 

Along this paper X will denote a topological space. All the measures considered 
are real valued and finite Borel measures. The main tool will be, similarly as in 
[1], measurability of evaluation mappings. Recall that for a measure \i we denote 
by \i+ (fi~, \fi\) its positive part (negative part, absolute variation, respectively). I.e., 
fi+ and fi~ are mutually singular non-negative measures satisfying \i = ju+ — JU~, 
and |/x| = fi+ + IJL~. 
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We shall consider a space 9J? of measures on X. The most interesting case of 
30? is the space 3D?,(X) of all Radon measures on X which we study in fourth 
section. However, we formulate abstract results for a general 30?. Unlike in case of 
non-negative measures there is not a unique natural topology on SO?. Before 
formulating which topologies we will study we fix the following notation for 
evaluation mappings. 

If A cz X is /^-measurable (i.e., both /x+-measurable and \T-measurable) for all 
fi e SO?, we put 

¥ » = /44), 
Vi(p) = V+(A), 
V*(li) = pr(A) 

for all n G arc. 
Along the paper we shall assume that SO? is endowed with a topology satisfying 

the following condition: 

(*) *F+ and ¥ j are lower semicontinuous on SO? for every open A cz X. 

Condition (*) holds for the topology of pointwise convergence on a subset 
5 <= C(X) in the following cases: 
(1) _Y is a subset of Tychonoff space Y, 30? is the set of Radon measures and 

g = {/1X : f e Cb(Y)}, where Cb(Y) denotes the bounded continuous functions 
on Y. In particular, in case Y = X we consider Wlt(X) naturally embedded into 
(Q(Z)*,w*). 

(2) X is locally compact, 30? is the set of Radon measures and g = C0(X). In that 
case SO? can be identified with the dual of C0(X) and the topology considered 
is the weak* topology. 

(3) X is normal, 30? the set of regular measures and g = Cb(X). 
In all these cases lower semicontinuity follows easily from the formulae 

* J M = sup I j / d j i : / e %,f(X) cz [0,1], supp(/) c ,4 j , 

^A(fi) = sup | J / dAi : / G & / ( * ) cz [ -0 , 1], supp(/) c A}9 

for every \i e 30? and for every open A cz X which expresses Y + and *Fj as 
a supremum of continuous functionals on $)?. 

2. Some abstract auxiliary results 

In this section we name some auxiliary results which are analogous to the results 
in [1, Section 2]. 
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We will deal with the sets of the form 

Wl+(B, c) = {fie SR | fi+(B) > c] and Wl~(B, c) = {fie SR | ii~(B) > c] 

where B is //-measurable for every ju e 9W, and c > 0. We formulate the results for 
the sets 501+(B, c) but it is clear that they hold for the sets 2R~(£, c), too. 

We begin by the following easy lemma (Q+ denotes the set of all positive 
rational numbers). 

Lemma 2.1. Let X be a Hausdorff topological space, 9W be a set of measures 
on X, the sets An, n e N, be \x-measurable for every \xe^Si, and c be a non-negative 
constant. Then 
(a) m+(A, c) = U ™+(An, c) if An S A, 

(b) m+(A, c) = "(J f] S«+K, c + l)ifA„\ A, 

(c) m+(A2\Ahc) = e[j (m+(A2,c + p^m^Aup)) if A , = A2. 
pe<Q + 

In the remaining results of this section we will use the following assumption (cf. 
the analogous assumption used in [1, Section 2]). 

Assumption (S). Let X be a Haussdorff topological space and SO? a set of 
measures on X. Let 2ft, be a family of subsets of X which are \i-measurable for all 
fieWl, and if be a family of subsets ofWl such that 9W+(-R, c) e Y* for every Re 0t 
and every c > 0. 

If stf is a family of subsets of a given set, we denote by s/c the family of all 
complements of elements of srf, by s/a (s/3) the familly of all countable unions 
(countable intersections, respectively) of elements of s/. The symbol a(srf) stands 
for the smallest ex-algebra containing stf, Suslin(j^) is the family of sets which 
result from a Suslin operation applied to elements of si, co-Suslin(j^) = 
(Suslin(e£/))c. If s#i and stf2 are two families of sets, we denote by s/x A S/2 the 
family of all intersections Ax n A2 with A± e s/x and A2 e srf2. The family of unions 
Ax u A2 with Ax e s/x and A2 e s/2 is then denoted by s4x v si2. 

The following two propositions are analogous of Proposition 1 and Proposition 2 
of [1]. Their proofs are exactly the same as the proofs of the named results of [1] 
and so we omit them. 

Proposition 2.2. (under Assumption (S)) Let us suppose that the system 3/t 
contains X and is closed either to finite unions or to finite intersections. Then 
Wl+(R, c) e a(r)for every R e a(0l) and c > 0. 

Proposition 2.3. (under Assumption (S)) Let 01 be closed to finite unions and 
finite intersections. Then TO+(R, c) e Suslin (Y*) for every R e Suslin ($) and every 
c > 0. 

In addition to these results we give one more result of this type. 
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Proposition 2.4. (under Assumption (S)) Let 01 be closed to finite unions and 
finite intersections. Then (3Jl+(R,c)eco-Suslin(irc) for every R e co-Suslin(^?c) 
and every c > 0. 

Proof. The proof is done using some ideas of the proof of [1, Proposition 2]. 
Let R e co-Suslin(^c). We will show that {fie SR: fi+(R) < c}e Sus l in^ ) for all 
c > 0. 

We can express X\R by a monotone Suslin operation, i.e. there are elements 
As e 01 indexed by finite sequences of positive integers such that As cz At if s is 
a beginning of t and such that 

00 

X\R= u n(*^i»)-
V G N ^ n=\ 

Then clearly 

R= n CW-
V G N N n = l 

Denote by S the set of all nonempty finite subsets of N and for any (ou ..., on) e Sn 

put 
B(*I.....*J = n{^ki.....fcn:(fci'-» fe«)Gcrix ••• X ( 7 4 ' 

Now we have (cf. [1, Proposition 2]) 

R= n u-»..«• 
( T G S N n=\ 

We claim that for any c > 0 we have 
oo 

{ne3Jl:n+(R)<c}cz \J f){fieWl:n+(Baln) < c} c {peWl:»+(R) < c}. 
( 7 6 § N n = \ 

Let us show first the second inclusion. Let \i be such that there is o e SH such 
that for all n e N we have fi+(Ba\n) < c. Hence fi+([jn=l Ba\n) < c, as the latter 
union is by our assumptions monotone. Thus n+(R) < c. 

To prove the first inclusion, we use the notation 

Rs= n LMv|n 
V G N N n=\ 
\\k = s 

for s e Nk and k e N. Moreover, we put R0 = R and we have clearly Rs = f] RsA„, 
nsN 

where sAn = (su ..., shn) is the concatenation of s and n. Since fi+(R) < c, there 
is a nonempty finite set ox of positive integers such that ji+ ({^ns^^n) < c-
Continuing by induction, we choose an infinite sequence a = (on)n=i eSN such that 

/x+(P|{^...5fcn:(ki,..., kn)eoxx ... x on}) < c 

for every n. As # s => As for every 8 G Nn
9 we have 
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П í^ь-Дn : (feЬ .-., K) Є GX X ... X Gn] => Ba\n9 

and therefore fi+(Ba\n) < c for every n. 
So, we have for all c > 0 

00 oo r J-) 

{/ieSR:/<+(R)<c}= f) (J f) /zeSK ://+(5„|„) < c + - , 
fc=l creS N n = l I K J 

which is clearly a Suslin(iTc) set (notice that Ba\n e 01). It follows that Wl+(R, c) is 
co-Suslin(l^c). This completes the proof. • 

3. Descriptive properties of evaluation functions 

In this section we present some results on evaluation functions on "nice" (Borel, 
Suslin etc.) sets. In particular we will study the behaviour of evaluation functions 
on the hierarchy of Borel sets. The starting point of this hierarchy is the algebra 
generated by the open sets of X which will be denoted 91. It is not difficult to 
prove that every set of 91 can be expressed as a finite disjoint union of intersections 
of closed an open sets. 

Lemma 3.1. For every Ae^ the evaluations *¥A, *¥A and *Fj are differences 
of two lower semicontinuous functions on SR. 

Proof. Observe that the differences of two lower semicontinuous functions form 
a vector space. It is enough to work with mA. 

If A is open, then *¥A is lower semicontinuous by hypothesis. 
If A is the intersection of a closed and an open set, then *¥+ is the difference of 

two lower semicontinuous functions. Indeed, put A = AX\A2, where A2 a Al are 
open sets. Clearly, we have *¥A = ^ — ^ ^ . 

Finally the general case, if A belongs to the algebra 91, then A is a disjoint finite 
union of differences of open sets, and thus ^ is a difference of lower 
semicontinuous functions. • 

In particular we get that the evaluation *¥A is a Borel function on 2R for every 
A e 91. We shall show that *¥A is Borel on SR for every Borel subset A a X. In 
order to give a precise estimate of measurability we shall use the following 
classification of Borel sets. 

The family of the sets of additive class a (s/a) and the family of the sets of 
multiplicative class a (Jia) are constructed for every countable ordinal a by the 
following inductive process: 
(i) s/0 = 0 (open sets) and Ji§ = 3F (closed sets). 

(ii) If a > 0 then the sets of j / a are of the form \Jn=l(An n Bn) and the sets of 
Jfa are of the form f]nssi(An u Bn), where An e Jp<ocs/p and Bn e Jp<aJ?p 
for every ne N. 
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With the former classification every Borel set has additive and multiplicative 
classes. The classification coincides with the usual one in the case of metrizable 
spaces. Notice that s/x = (3F A ^)<T. It is not difficult to show that if A e stfa and 
a > 1, then A = [jn=lAn where An e \Jp<a Jt$ for every neN. 

We can also define a hierarchy of "Borelian sets" in the following way: 
(i) % = <$ (open sets), 

(ii) If a = /? + 1 is a successor ordinal, then the sets of <§" are of the form 

U?- i Pi«-i Km, where An,m e <$$. 
(iii) If a is a limit ordinal then the sets of ^a are of the form \jn=lAn, where 

Ane\]^<a%. 
The sets from <$a are called Borelian(^) of additive class a. Complements of sets 
from <$a are called Bore l i an^) of multiplicative class a. Their collection is 
denoted by J^m. Similarly we can define Borelian(^) sets of multiplicative classes 
and Bore l i an^) sets of additive classes but we would get no interesting results on 
these classes therefore we will not consider them. For metrizable spaces we have 
^a = ^2a and J^m = Jlla for all a < a^. However, in nonmetrizable spaces there 
can be Borel sets which are neither Borelian(^) not Bore l ian^) . 

Now we are ready to state the results on the evaluation functions for these 
hierarchies of sets. 

Theorem 3.2. Let A cz X be a Borel subset of additive class a. Then the sets 
{fie TO: ^(fi) > c], {fie TO : ¥j(/j) > c] and {fie TO : \fi\(A) > c] have additive 
Borel class a in TO for every ceU. The evaluation function mA on 901 has Borel 
class a + 1. 

Theorem 3.3. 
1) Let A cz X be a Borelian(^) set of additive class a. Then for every c > 0 the 

sets {lie TO : ^(fi) > c], {fie TO : ¥ J (AI ) > c] and {fie TO : \fi\(A) > c] are 
Borelian(y) sets of additive class a in TO. 

2) There is a compact space X and a closed subset A cz X such that, for all c > 0, 
neither of the sets {fie TO,(K): ^(fi) > c], {fie TO,(X): ^/(fi) > c] and 
{fie TOr(X): \fi\(A) > c] is Borelian(3F). These sets are even not Suslin(^). 

To prove Theorem 3.2 we shall introduce a generalization of semicontinuity 
which was already considered in [4] in the frame of Polish spaces. We say that 
/ : X -> IR is a-lower semicontinuous if the set {xeX: f(x) > c] is of additive 
Borel class a for every ceU. We will need the following obvious lemma. 

Lemma 3.4. Let / and f2 be real functions defined on a space X. Then we have 

{xeX: f(x) + f2(x) > c} = [j {xe X: f(x) >c-r}n{xeX: f2(x) > r} 
reQ 

and 

rєQ 

{xєX: f(x) - f2(x) > c} = (J {xє X: f(x) >c-r}n{xєX: f2(x) < r} 
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In particular, if f and f2 are a-lower semicontinuous, then f + f2 is oc-lower 
semicontinuous and f\—f2 is (a + l)-lower semicontinuous. 

Proposition 3.5. If A has additive Borel class a in X, then ^ and ^X a™ 
oc-lower semicontinuous on SCR. In particular, these functions are Borel of class 
a + 1. 

Proof. It is enough to prove the result for *FJ\ For a = 0 the set A is open. In 
this case ^J" is lower semicontinuous by the assumption (*). 

For ordinals a > 1 we shall use induction. In case a = 1 we can write 
A = {J™=lAn where (An) is an increasing sequence of sets from 91. Every m£n is 
1-lower semicontinuous by Lemma 3.1 and Lemma 3.4, and so $Jl+(An,c) is 
(& A %)a. Then by Lemma 2.1 we get that Wl+(A, c) is (& A <S\. 

For a > 1 the result now easily follows by transfinite induction using Lemma 
2.1 and Lemma 3.4. • 

Proof of Theorem 3.2. The statement for the sets {//eStR: ̂ ( /x) > c] and 
{fie 9ft : *FJ(/J) > c] follows from Proposition 3.5. For the set {fie 9JI: \/J\(A) > c] 
just observe that ¥4" + *Fj is a-lower semicontinuous by Lemma 3.4. Finally 
notice that *¥A = *¥£ - ¥ 7 , thus (again by Lemma 3.4) *¥A and - ^ are 
(a 4- l)-lower semicontinuous, and thus *¥A is clearly Borel of class a + 1. • 

Proof of Theorem 3.3. 1) The statement for sets Wl+(A, c) and Wl~(A, c) 
follows easily from (*) using Lemma 2.1 and transfinite induction. For the 
remaining set we can use Lemma 3.4. 

2) Put X = [0, a>J and A = {ra>}. 
Let us first show that the set {fie $Jlt(X): \fi\(A) > 0} is not Suslin(:#"). Suppose, 

on the contrary it is Suslin^) in 3Rt(X). Then the set 

M = {iiemj(X): |/i|| < l , / / ({^})*0} 

is Suslin(Jr) in the compact set 

B={neMt{X):\\ti\\ < 1}. 

So there are closed sets Fs c= B indexed by finite sequences of positive integers 
such that Fs <= Ft whenever t is a beginning of s and 

00 

M= (J ( V H -
VGf^jN n = l 

Fix arbitrary veN^. Then f|?=i^|« c M- W e c l a i m t h a t Fv\n cz M for some 
n e N. Suppose not. Choose fin e Fv\n\M. Then /^({c^}) = 0 for all n. Let \i be 
a cluster point of the sequence \xn. Then it can be easily checked (using the 
uncountability of cox) that ^({coj) = 0, hence JLI e (°)^i Fv\n\M, a contradiction. It 
follows that M is an J^-set. But this contradicts [3, Example 6.5]. 
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Next suppose that {/je 9Wf(X): |A-|({OIL}) > c} is S u s l i n ^ ) for some c > 0. But 
as all these sets are homeomorphic, they are S u s l i n ^ ) for each c > 0. Hence 

{ne mt(X): IMK^}) > 0} = Q L e 2R((X): |/i|({cq}) > - 1 
v=i I n) 

is Suslin(J^) as well, a contradiction with the already proved case. 
Further, if Wl+(A,c) is S u s l i n ^ ) for some c > 0, then 9K+(^,0) is clearly 

Sus l i n^ ) , too. This set is homeomorphic to 9Jl"(^4, 0) and hence the latter set is 
S u s l i n ^ ) as well. Therefore, 

{^e Wlt(X): \n\(A) > 0} = Wl+(A, 0) u Wl~(A, 0) 

is Suslin(Jzr), a contradiction. 
Finally note that $Jl~(A, c) is homeomorphic to 9JI+(>1, c) and thus it is not 

Suslin(^). • 

Next we collect results on measurability of evaluation functions on Suslin and 
co-Suslin sets. By 2F we denote, as above, the collection of closed sets, by SB the 
(j-algebra of Borel sets. 

Theorem 3.6. Let A c: X be a co-Susl in^) (Suslin (J1), co-Suslin (SB)) set. 
Then the sets {fie 9Jt: *¥f(p) > c}, {fie 9K : ^ ( J I ) > c] and {fie 9JI: \p\(A) > c] 
are co-Suslin (#~) (Suslin(^), co-Suslin(^), respectively) for each c > 0. 

The analogous statement for S u s l i n ^ ) sets is not valid, see Theorem 3.3. 

Proof. The case of Suslin (J1) follows immediately from Theorem 3.2 and 
Proposition 2.3 applied for 0t and if being collections of Borel sets. The case of 
co-Suslin (SB) follows then from Proposition 2.4 (applied again to collections of 
Borel sets). 

The remaing case of co-Susl in^) sets follows from Proposition 2.4 applied for 
Sfc and if being collections of open sets. • 

4. P r o p e r t i e s of spaces of s igned measu re s 

In the following theorem we collect consequences of the results of the previous 
section for spaces of measures. 

Theorem 4.1. Let K be a compact space and 7 c I c X. Consider spaces 
9JJt(Y) and 9Jlf(X) as topological subspaces cf(C(K)*, w*). 

(i) If Y is Borelian(!F) of multiplicative class a in Xy then 9Jlr(Y) is Borelian(^) 
of multiplicative class a in 9Jtt(X). In particular, if Y is closed or 3Fab in X, 
then 9Jlr(Y) has the same property in 9.Jl,(Y). 
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(ii) If Y is a Borel subset of X of multiplicative class a, then 9Jif(Y) has the same 
property in S[Rt(X). In particular, if Y is (J^v &)s in X, then $Jlt(Y) is 
(& v % in mt(x). 

(iii) If Y is Suslin^) (Suslin(^) or co-Suslin(^)) in X, then 9Kt(Y) has the 
respective property in S0tt(X). 

Proof. All the statements follow from results of previous section using the equality 

Wlt(Y) = {/.e mt(X): \4X\ Y) = 0}. • 
The previous theorem is an analogue of [1, Theorem 1]. However, the analogy 

is not complete, as we have the following. 

Theorem 4.2. There is a compact space K and an open subset I c X such 
that 2Rt(K) is not co-Suslin(J^) in Wlt(K). 

Proof. This follows from the second part of Theorem 3.3. Recall that we can 
take K = [0, coj and X = [0, cox). • 

We can also study absolute descriptive properties. Recall that a space X is 
absolute Borel (of multiplicative class a) if it is of this kind in every Hausdorff 
superspace. It is proved in [5] and [2] that a Tychonoff space is absolute Borel of 
multiplicative class a if it is of this kind in some compactification. Further, 
a Tychonoff space X is Jf-analytic (Cech-analytic) if it is Suslin(Jr) (Suslin(^)) 
in some, or equivalently in any, compactification. 

Theorem 4.3. Let X be a Tychonoff space, K any compactification of X. 
Consider ̂ Rt(X) as a topological subspace of (C(K)*, w*). 
• If X is absolute Borel space of multiplicative class a for some a > 1, then so is 

Wt(X). 
• If X is C%"-analytic, then so is $Jlt(X). 
• If X is Cech-analytic, then so is yjit(X). 

This result is immediate consequence of Theorem 4.1 using the fact that $Jit(K) 
is C/fa for K compact. The case of Jf-analytic spaces was proved already in [1] by 
another method. Notice that we do not formulate such a result for Borelian(#') sets 
as these are not an absolute notion by [6] (i.e., there are Tychonoff spaces which 
are Borelian(J^) in some, but not in every, compactification). 

We could also study further descriptive properties (similarly as in [1]). If we 
denote by Jf the family of all scattered unions of {3F A %?) sets, then J^f is an 
algebra. We can define a hierarchy of additive and multiplicative classes of sets 
from o-(jf). Using the natural analogue of [1, Proposition 3] one can show that 
Wr(A,c)e J^. whenever A e J^ c > 0 and all measures from SO? are Radon. 
Again, we get that Wlt(Y) is "of multiplicative Jf-class a" (Suslin(jf), 
co-Suslin(jf)) in 9Jlt(X) whenever Y has the respective property in X. However 
we will not state these results in detail. 

87 



References 

[1] HOLICKÝ P. and KALENDA O., Descriptive properties ofspaces of measures, Bull. Polish Acad. Sci. 
Math. 47 (1999), no. 1, 37-51 . 

[2] HOLICKÝ P. and PELANT J., Internal description ofabsolute Borel classes, to аppеаr. 
[3] KALENDA O., Valdivia compact spraces in topology and Banach space theory, Extrасtа Mаth. 15 

(2000), no. 1, 1-85. 
[4] MORAYNE M. аnd RYLL-NARDZEWSKI C, Superpositions with differences of semicontinuous 

functions, Houѕton J. Mаth. 22 (1966), no. 4, 719-735. 
[5] RAJA M., On some class of Borel measurable maps and absolute Borel topological spacesy 

Topology Appl. 123 (2002), no. 2, 267-282. 
[6] TALAGRAND M., Choquet simplexes whose set of extreme points is Jť-analytic, Ann. Inѕt. Fouriеr 

Grеnoblе 35 (1985), no. 3, 195-206. 


		webmaster@dml.cz
	2012-10-06T04:06:27+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




