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To the memory of our friend Klaus Floret

ABSTRACT. In every Hausdorff locally convex space for which there exists a strictly finer
topology than its weak topology but with the same bounded sets (like for instance, all infi-
nite dimensional Banach spaces, the space of distributions D′(Ω) or the space of analytic
functions A(Ω) in an open set Ω ⊂ R

d, etc.) there is a set A such that 0 is in the weak
closure of A but 0 is not in the weak closure of any bounded subset B of A. A consequence
of this is that a Banach space X is finite dimensional if, and only if, the following property
[P] holds: for each set A ⊂ X and each x in the weak closure of A there is a bounded
set B ⊂ A such that x belongs to the weak closure of B. More generally, a complete
locally convex space X satisfies property [P] if, and only if, either X is finite dimensional
or linearly topologically isomorphic to R

N.

1. INTRODUCTION

The following exercise (attributed to von Neumann) appears in page 83 of [15]:
Exercise A. Let A ⊂ L2([−π, π]) be the set of all functions

fm,n(t) = eimt + meint,

where m, n are integers and 0 ≤ m < n. Show that 0 belongs to the weak closure of A
but there is no sequence contained in A that weakly converges to 0.

When solving the exercise one realizes that this is so because the sequence (en)n,

en(t) =
1√
2π

eint, n = 0, 1, 2 . . . ,

is an infinite orthonormal sequence in the Hilbert space L2([−π, π]). Consequently, for
every infinite dimensional separable Hilbert space H there is a set A ⊂ H such that 0 ∈ A

w

but there is no sequence contained in A that is w-convergent to 0, where w denotes the
weak topology in H . It is a well known fact that Hilbert spaces are reflexive, and therefore
bounded sets are w-relatively compact. Thus, in separable Hilbert spaces bounded sets
are w-metrizable. With all these pieces of information together we can assert by now that
every separable infinite dimensional Hilbert space H has property [Q] below:

There exists a set A ⊂ H such that 0 ∈ A
w

and there is no bounded set
B ⊂ A such that 0 ∈ B

w
.

Since infinite dimensional Hilbert spaces do contain infinite dimensional separable sub-
spaces we can be sure that all infinite dimensional Hilbert spaces enjoy property [Q].

If one tries to extend the previous construction to infinite dimensional Banach spaces
X one might be misled, at first glance, by the previous exercise and then try to perform
some tricks to get [Q], for instance, in some class of Banach spaces with nice bases. Such
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a construction in Banach spaces is a bit harder and can be performed using Dvoretzky’s
theorem as it was done in [6, Theorem 1].

The aim of this note is to show that the construction in [Q] does not requieres compli-
cated tools and it is ultimately a simple topological matter in infinite dimensional spaces,
see Lemma 1. This construction is the tool to obtain the other two results that have been
announced in the abstract, see Theorems 3.2 and 4.2. The paper is completed showing that
for spaces X in a la large class G, X with its weak topology is a Fréchet-Urysohn space if,
and only if, X is linearly topologically isomorphic to a subspace of R

N, see Theorem 4.3
and its Corollary 4.4. This class G introduced in [5] includes, amongst other, inductive
limits of metrizable spaces, the spaces of distributions D ′(Ω) and the space A(Ω) of ana-
lytic functions in an open set Ω ⊂ R

d, d ∈ N –see, respectively, [14, Page 219], [15, Part
Two] and [9] for the definitions. For this last part of the paper we use our main result in
[3]. We also refer the reader to [12] for related results: our results in this last part of the
paper sharpen the scope of some results in the last section of [12].

Our notation and terminology are standard. We take the books by Engelking, Kelley,
Diestel and Köthe, [10, 13, 8] and [14], as our references for topology, Banach spaces and
topological vector spaces. All our vector spaces X are real vector spaces —our results
here are true for complex spaces too, as the reader will convince himself easily. All our
topological spaces are Hausdorff topological spaces. If X is a Banach space, BX denotes
its closed unit ball, and X ∗ its (topological) dual space. For X locally convex space the
(topological) dual is denoted, as usual, by X ′. For both Banach and locally convex spaces
the weak topology is denoted by w and the weak∗ topology is denoted by w∗.

2. [Q] AS A TOPOLOGICAL MATTER IN INFINITE DIMENSIONAL SPACES

If p is a seminorm in a vector space X we write

Bp = {x ∈ X : p(x) ≤ 1} and Sp = {x ∈ X : p(x) = 1}.
Lemma 1. Let X be vector space and let δ and τ be two Hausdorff locally convex topolo-
gies with τ strictly coarser than δ.

(i) Let p be a δ-continuous seminorm on X which is not τ -continuous. Then we have
Bp ⊂ Sp

τ
;

(ii) If Y is a τ -closed linear subspace of finite co-dimension in X then, the topology
τ restricted to Y , τ |Y , is strictly coarser than the topology δ restricted to Y , δ|Y ;

(iii) There exists a set A ⊂ X such that 0 ∈ A
τ

and there is no δ-bounded set B ⊂ A
such that 0 ∈ B

τ
.

Proof. To establish (i) we do the following. We get started by observing that every τ -
neighbourhood of 0 in X must be p-unbounded: indeed, the existence of a p-bounded
τ -neighbourhood of 0 would imply that p is τ -continuous. Take U any convex τ -
neighbourhood of 0, and fix x0 ∈ X with p(x0) < 1. The set x0 + U is convex and
p-unbounded and therefore we can take x1 ∈ x0 + U with p(x1) > 1. The segment
[x0, x1] is contained in x0 + U and meets both

{x ∈ X : p(x) < 1} and {x ∈ X : p(x) > 1}.
Therefore [x0, x1] ∩ Sp �= ∅. This implies that (x0 + U) ∩ Sp �= ∅ and thus we have
Bp ⊂ Sp

τ
as we wanted.
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Let us establish (ii). Assume that Y ⊂ X is a τ -closed subspace of co-dimension m.
The subspace Y is also δ-closed and then we have that for the direct topological sums

(Y, τ |Y ) ⊕ R
m ∼= (X, τ)

(Y, δ|Y ) ⊕ R
m ∼= (X, δ)

(1)

after [14, §15.8.(2)] and because in R
m there is a unique Hausdorff locally convex topology

[14, §15.5.(1)]. The equalities (1) imply that τ |Y has to be strictly coarser than δ|Y because
the same happens in X by hypothesis.

Let us finish by constructing a set A matching the requirements stated in (iii). Fix a ∈ X
and f : X → R a τ -continuous linear form such that f(a) = 1 (in particular, a and f are
both not null). Define Y = {x ∈ X : f(x) = 0} and apply (ii) to obtain a δ-continuous
seminorm p on X such that q := p|Y is not τ |Y -continuous. For every n ∈ N we consider
the set

Sn = {x ∈ Y : q(x) = n}.
We claim that 0 ∈ Sn

τ
for every n ∈ N: we simply observe that we can apply (i) to obtain

0 ∈ Y ∩ Sq
τ

and that Sn = n(Y ∩ Sq). Now we define

An := a/n + Sn for each n ∈ N, and A :=
∞⋃

n=1

An.

a1

2

3

a/2

a/3

A1 = a + S1

A2 = a/2 + S2

A3 = a/3 + S3

O

A translation argument implies that a/n ∈ A
τ

n, for each n ∈ N, that finally leads to
0 ∈ A

τ
. For no δ-bounded set B ⊂ A we have 0 ∈ B

τ
. Indeed, for every n ∈ N one

easily estimates

p(x) ≥ n − p(a)
n

for each x ∈ An.

This implies that if B ⊂ A is δ-bounded then it meets just finitely many An’s. Conse-
quently there is N ∈ N such that B ⊂ ⋃N

n=1 An. A direct computation shows now that

f(x) ≥ 1
N

for each x ∈
N⋃

n=1

An.

The inequality above remains true for each x ∈ ⋃N
n=1 An

τ

by the τ -continuity of f . There-

fore we deduce that 0 �∈ B
τ ⊂ ⋃N

n=1 An

τ

because f(0) = 0 < 1/N . �



4

3. CHARACTERIZATION OF FINITE DIMENSIONAL BANACH SPACES

As a straightforward consequence of Lemma 1 we have the following:

Corollary 3.1. Let X be a normed space and let τ be a Hausdorff locally convex topology
which is coarser than the norm topology. The following statements are equivalent:

(i) The topology τ coincides with the norm topology;
(ii) For each set A ⊂ X and each point x ∈ A

τ
there is a norm bounded set B ⊂ A

such that x ∈ B
τ
.

As we already know that (i) and (ii) are equivalent in Corollary 3.1, if moreover τ -
bounded sets are norm bounded, it is readily seen that both conditions are also equivalent
to the following ones below:

(iii) For each set A ⊂ X and each point x ∈ A
τ

there is a sequence (xn)n in A such
that x = τ − limnxn;

(iv) For each set A ⊂ X and each point x ∈ A
τ

there is a bounded and countable set
B ⊂ A such that x ∈ B

τ
.

Condition (iii) above is usually referred in topology by saying that (X, τ) is a Fréchet-
Urysohn space, see [1, page 7].

It is a well known fact that a Banach space X is finite dimensional if, and only if,
the weak topology coincides with the norm topology. The same characterization holds
replacing weak topology by the weak∗ topology and norm topology by dual norm topology.

Theorem 3.2. For a Banach space X the following statements are equivalent:

(i) X is finite dimensional;
(ii) For each set A ⊂ X and each point x ∈ A

w
there is a bounded set B ⊂ A such

that x ∈ B
w

;

(iii) For each set A ⊂ X∗ and each point x ∈ A
w∗

there is a bounded set B ⊂ A

such that x ∈ B
w∗

.

Proof. To establish the equivalence (i)⇔(ii) apply Corollary 3.1 to τ = w in X . To
establish the equivalence (i)⇔(iii) apply Corollary 3.1 to X ∗ and to τ = w∗ in X∗. �

The equivalente (i)⇔(ii) can be also obtained using [6, Theorem 1]: let us stress that
Theorem 1 in [6] requires beside of a specific construction the concourse of Dvoretzky’s
theorem —every infinite dimensional Banach space contains almost Euclidean subspaces
of large dimensions.

Let us reflect a bit upon Theorem 3.2. If A ⊂ X is assumed to be convex then, Hahn-
Banach theorem says that for every x ∈ A

w
= A

norm
there is a sequence (xn)n in A such

that x = limn xn in the norm topology. Our statement in (ii) is, of course and luckily, for
each set A ⊂ X . However statement (iii) in Theorem 3.2 does not hold for convex sets
(even subspaces) in an arbitrary dual Banach space.

Example 3.3. There is a Banach space X and a w∗-dense subspace Y ⊂ X ∗ such that

for some x∗ ∈ X∗ \ Y there is no bounded set B ⊂ Y such that x∗ ∈ B
w∗

.

Proof. Take X a Banach space such that X ∗∗/X is infinite dimensional. Then there is a
w∗-dense subspace Y of X ∗ such that BX∗ ∩ Y is not norming, that is, such that

(2) |x| := sup{x∗(x) : x∗ ∈ Y ∩ BX∗}, for each x ∈ X,

is not an equivalent norm in X , [7]. We claim that there is a point x∗ ∈ X∗ \ Y with the

property that for no bounded set B ⊂ X ∗ we have x∗ ∈ B
w∗

. Otherwise, we would have
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that X∗ =
⋃∞

n=1 Y ∩ nBX∗
w∗

. But in this case Baire’s Category theorem would imply
that for some ε > 0 we have to have

εBX∗ ⊂ Y ∩ BX∗
w∗

,

that contradicts the fact that | · | given by the formula (2) is not an equivalent norm in the
space X . �

Using the comments that follows Corollary 3.1 we know that statements (i), (ii) and (iii)
in Theorem 3.2 are equivalent to:

(iv) For each set A ⊂ X and each point x ∈ A
w

there is a bounded and countable
set B ⊂ A such that x ∈ B

w
.

(v) For each set A ⊂ X∗ and each point x ∈ A
w∗

there is a bounded and countable

set B ⊂ A such that x ∈ B
w∗

.

With the terms bounded and countable in statements (iv) and (v) we characterize then finite
dimensional Banach spaces. If we simply write countable (and forget about bounded) in
(iv) then the new statement (iv’) holds for every Banach space: this property is the so-called
Kaplansky property for the weak topology of a Banach space, see [14, §24.1.(2)] and [11,
Corollary in page 38]. This property is named differently in topology. Topologists refer to
(iv’) by saying: for any Banach space X , the space (X, w) has countable tightness.

Recall that a topological space Z is said to have countable tightness if for each set
A ⊂ Z and each point x ∈ A there is countable set B ⊂ A such that x ∈ B, see [1, page
5]. The following theorem of Arkhangel’skii, see [1, Theorem II.1.1], is a nice tool both in
topology and analysis. We quote a special case below.

Theorem B. Let T be a topological space such that T n is Lindelöf for each n ∈ N.
Then, the space (C(T ), τp(T )) of continuous functions on T endowed with the topology of
pointwise convergence has countable tightness.

It is easy to prove, using Theorem B, that for any Banach space X the space (X, w) has
countable tightness. Moreover, using again Theorem B it can be shown that the dual space
(X∗, w∗) has countable tightness when (X, w)n is Lindelöf for every n ∈ N: indeed,
simply bear in mind that (X ∗, w∗) embeds as a subspace of (C(X, w), τp(X)). The class
of Banach spaces for which (X, w)n is Lindelöf is a wide class that contains, for instance,
the Banach spaces which are K-analytic for their weak topologies: we refer the interested
reader to [4] where several connections between the Lindelöf property and some other
classical properties in Banach spaces are established. On the other hand, not for every
Banach space X the dual (X ∗, w∗) has countable tightness. Indeed, �1(R) provides us
with such an example: (�∞(R), w∗) has not countable tightness as the reader can easily
check.

Our Theorem 3.2 imposes a pretty serious limitation to the widely enjoyed countable
tightness of the weak and weak∗ topologies in Banach spaces when countable tightness is
combined with boundedness. For C(K) spaces Theorem 3.2 reads as follows.

Corollary 3.4. Let K be a compact Hausdorff space. The following statement are equiv-
alent.

(i) K is finite;

(ii) For each set A ⊂ C(K) and each point x ∈ A
τp(K)

there is a uniformly bounded

set B ⊂ A such that x ∈ B
τp(K)

.
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4. CHARACTERIZATION OF LINEAR TOPOLOGICAL SUBSPACES OF R
N

Also as a straightforward consequence of Lemma 1 we have the following locally con-
vex counterpart to Corollary 3.1.

Corollary 4.1. Let X be vector space and let δ and τ be Hausdorff locally convex topolo-
gies with τ coarser than δ. Assume that for each set A ⊂ X and each point x ∈ A

τ
there

is δ-bounded set B ⊂ A such that x ∈ B
τ
. Then τ = δ.

Of course we could write and prove the counterpart to Corollary 3.1 for metrizable
locally convex spaces but we are rather interested in classifying via Corollary 4.1, that is
via Lemma 1, the complete locally convex spaces as was announced in the abstract. To
do that we will need an extra topological tool. We shall use the concept of k-space. A
topological space Z is said to be a k-space when the following property holds: if a subset
A of Z intersects each compact subset of Z in a closed set, then A is closed, see [13, page
230] and [10, Theorem 3.3.18].

We began our paper referring to an exercise in Rudin’s book and now we have to solve
the following exercise in Kelley’s book [13, page 240] to finally prove the last result an-
nounced in our abstract.

Exercise C. The product of uncountable many copies R
I of the real line is not a k-space.

Solution after Kelley’s hint. Consider the subset A ⊂ R
I made up of the members x such

that for some n ∈ N each coordinate of x is equal to n except for a set of at most n indices,
and on this set x is zero. Denote by 0 the element of R

I with each coordinate equal to zero.
Then the following holds:

(i) A = A ∪ {0}, thus A is not closed.
(ii) 0 �∈ A ∩ K for any compact subset K ⊂ R

I , thus A ∩ K is closed.

Proof. Statement (i) is easy to prove. Let us prove (ii). If K ⊂ R
I is compact, then its

projection on each coordinate is bounded, so we may assume without loss of generality
that K =

∏
i∈I [−Ni, Ni], where Ni ∈ N. As I is uncountable, there exists N ∈ N such

that Ni = N for infinitely many indices i ∈ I . Pick any x ∈ A ∩ K . Since x ∈ A,
the coordinates of x take some value n ∈ N except for finitely many indices. Using that
x ∈ K , we deduce that n ≤ N and therefore 0 cannot be a cluster point of A ∩ K .
Statement (ii) has been proved. �

A good account of properties for R
I as topological vector space can be found in [2, 2.6].

Theorem 4.2. Let (X, δ) be a complete locally convex space. The following statements
are equivalent:

(i) Either X is finite dimensional or X is linearly and topologically isomorphic to
R

N with its product topology;
(ii) For each set A ⊂ X and each point x ∈ A

w
there is a bounded set B ⊂ A such

that x ∈ B
w

.

Proof. The implication (i)⇒(ii) is easy. When X is finite dimensional then (ii) holds.
In the worst case when X = R

N the topology δ is metrizable and w = δ. Therefore
the statament (ii) also holds, because the w-closure of any set is attained trough limits of
sequences from the set, and convergent sequences are bounded. The other way around,
let us prove (ii)⇒(i). If (ii) holds then Corollary 4.1 applies to tell us that w = δ. Take
{fi : i ∈ I} an algebraic basis of X ′ and consider (RI , τp) with its product topology τp.
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The map ϕ : X → R
I given by,

ϕ(x) = (fi(x))i∈I , x ∈ X,

is a linear topological isomorphism from (X, w) onto its image. Moreover ϕ(X) ⊂ R
I

is dense. Therefore, as (X, w) is complete, we get that ϕ(X) = R
I and so ϕ is a linear

topological isomorphism from (X, w) onto (RI , τp). Tychonoff’s theorem allows us to
re-read (ii) in the space (RI , τp) as follows:

For each set A ⊂ R
I and each point x ∈ A

τp there is a τp-relatively
compact set B ⊂ A such that x ∈ B

τp .

A moment of reflection is now enough to realize that if A ⊂ R
I intersects each τp-compact

subset of R
I in a τp-closed set, then A is τp-closed. We have proved then that R

I is a k-
space and Exercise C applies to say that I is at most countable and we are done. �

Observe that we can re-phrase Theorem 4.2 to obtain that for every complete non metriz-
able locally convex space (X, δ) –for D ′(Ω), A(Ω), etc.– there is a set A ⊂ X such that
0 ∈ A

w
and there is no bounded set B ⊂ A such that 0 ∈ B

w
.

If we replace the completeness assumption about δ by metrizability in the theorem
above, then we can characterize all subspaces of R

N.

Theorem 4.3. Let (X, δ) be a metrizable locally convex space. The following statements
are equivalent:

(i) (X, δ) is linearly and topologically isomorphic to a subspace of R
N;

(ii) For each set A ⊂ X and each point x ∈ A
w

there is a bounded set B ⊂ A such
that x ∈ B

w
.

Proof. The implication (i)⇒(ii) goes as the proof of (i)⇒(ii) in Theorem 4.2 using that
weak topologies induce weak topologies in subspaces, after Hahn-Banach theorem. Let
us prove (ii)⇒(i). If (ii) is satisfied then Corollary 4.1 applies to obtain that w = δ is
metrizable and, from here, the reader familiar with these kind of arguments might know
already that (X, δ) is linearly and topologically isomorphic to a subspace of R

N. To keep
selfcontained the paper we provide a proof of this simple fact. If (X, w) is metrizable
then the topological dual X ′ is at most of countable algebraic dimension. Indeed, for
given finitely many vector y∗

1 , y∗
2 , . . . , y∗

m ∈ X ′ and ε > 0 let us write a generic w-
neighbourhood of the origin in X as

V (0, y∗
1 , ..., y

∗
m, ε) := {x ∈ X : |y∗

i (x)| ≤ ε, j = 1, 2, . . . , m}.
If (X, w) is metrizable then there are sequences (x∗

n)n in X ′ and (εn)n of positive real
numbers such that {V (0, x∗

1, ..., x
∗
n, εn) : n ∈ N} a basis of w-neighborhoods of the origin

in X . Given any x∗ ∈ X ′ there is some N ∈ N such that

(3) V (0, x∗
1, ..., x

∗
N , εN ) ⊂ V (0, x∗, 1).

We have ∩N
i=1ker x∗

i ⊂ V (0, x∗
1, ..., x

∗
N , εN ). This inclusion together with the one in (3)

imply that ∩N
i=1ker x∗

i ⊂ ker x∗. The last implies that x∗ is a linear combination of the
x∗

i ’s, see [8, Lemma in page 10], and consequently X ′ is at most of countable algebraic
dimension. Take {fi : i ∈ I}, I at most countable, an algebraic basis of X ′. The map
ϕ : X → R

I given by,

ϕ(x) = (fi(x))i∈I , x ∈ X,

is a linear topological isomorphism from (X, w) onto its image. The proof is over. �
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Quite briefly let us comment that again (i) and (ii) in Theorem 4.3 are also equivalent to
the condition:

(iii) For each set A ⊂ X and each point x ∈ A
w

there is a bounded and countable
set B ⊂ A such that x ∈ B

w
.

It also happens to be true that for any metrizable locally convex space (X, δ) the space
(X, w) has countable tightness –play a bit with Theorem B and prove it or see [11, Corol-
lary in page 38] or [14, §24.1.6]–. In the metrizable case the combination bounded and
countable tighness for the weak topology is comparative as strong as it was for normed
spaces.

It is not possible however, for metrizable (even complete) non normable locally convex
spaces, to add to Theorem 4.2 a third condition analogous to (iii) in Theorem 3.2. Indeed,
for ω = R

N we have that ω′ =
⊕∞

n=1 R = ϕ and it is not true that:

For each set A ⊂ ϕ and each point x ∈ A
w∗

there is a bounded set

B ⊂ A such that x ∈ B
w∗

.

If the last statement were true then Corollary 4.1 would imply that w ∗ has to coincide with
the topology β(ϕ, ω) on ϕ of uniform convergence on bounded sets of ω. But this is not
the case because ω has bounded sets which are not finite dimensional.

Let us finish the paper with another consequence of our results here, to be more specific,
a consequence of Theorem 4.3. In the paper [5] one of us, with J. Orihuela, introduced a
large class G of locally convex spaces that is stable by the usual operations of countable
type and that contains many important spaces –it contains, as said in the introduction, the
inductive limits of metrizable spaces, the dual of metrizable spaces, the spaces of distri-
butions D′(Ω) and spaces of analytic functions A(Ω) in an open Ω of R

d, etc–. A locally
convex space (X, δ) is in the class G if there is a family {Aα : α ∈ N

N} of subsets in the
topological dual X ′ such that:

(a) X ′ =
⋃

{Aα : α ∈ N
N};

(b) Aα ⊂ Aβ when α ≤ β in N
N (α ≤ β coordinatewise);

(c) in each Aα, sequences are δ − equicontinuous.

This class G is made up of spaces whose compact sets are metrizable and whose w-
compact sets behave likewise to the w-compact sets of Banach spaces. The class G has
gotten the attention of several different authors and pretty recently in the paper [3] it has
been proved that for a space (X, δ) in G, (X, δ) is Fréchet-Urysohn if, and only if, (X, δ)
is metrizable. Fréchet-Uryshon property for the weak topology of spaces in G is quite
restrictive.

Corollary 4.4. Let (X, δ) be a space in G. The following statements are equivalent:

(i) (X, δ) is linearly and topologically isomorphic to a subspace of R
N;

(ii) (X, w) is a Fréchet-Urysohn space.

Proof. The implication (i)⇒(ii) is exactly what we wrote for the same implication in The-
orems 4.2 and 4.3. The proof for implication (ii)⇒(i) almost matches word by word the
proof the correspondent implication in Theorem 4.3, but we need some extra input first. As-
sume that statement (ii) here is true. Then Corollary 4.1 applies to tell us (X, w) = (X, δ).
But, now read what this information means in this way:

G � (X, δ) = (X, w) is Fréchet Urysohn.
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We use that in class G the Fréchet-Urysohn property is equivalent to metrizability, see [3,
Theorem 2.2], and so (X, τ) = (X, w) is metrizable. Theorem 4.3 says that (X, δ) is
linearly and topologically isomorphic to a subspace of R

N, and the proof finishes. �
ACKNOWLEDGEMENTS: While preparing this paper we had very nice and fruitful dis-
cussions with J. Bonet about some aspects of locally convex spaces used in section 4 here:
thanks Pepe.
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