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Abstract

In this paper we study the class of descriptive compact spaces, the
Banach spaces generated by descriptive compact subsets and their
relation with renorming problems.

1 Introduction

Compact Hausdorff spaces which are fragmentable by a finer metric have
been studied by many authors, see the book [7] for an account of this class
of compacta. In this paper we shall consider a subclass of fragmentable
compact spaces [26], namely D, that will allow us to construct an equivalent
dual strictly convex norm on a dual Banach space X∗ if the dual unit ball lies
in D. We have to introduce some terminology. Let {Hi : i ∈ I} be a family
of subsets of a topological space (X, τ). The family is said to be isolated if
it is discrete in its union endowed with the relative topology, that is, if for
every i ∈ I and every x ∈ Hi, there is a τ -neighbourhood U of x such that
Hj ∩ U = ∅ for every j ∈ I, j 6= i. If it is possible to pick U from some
prefixed family S ⊂ τ , we say that the family is isolated with respect to S.
If there is a decomposition I =

⋃∞
n=1 In such that every family {Hi : i ∈ In}

is isolated (with respect to S), then the family {Hi : i ∈ I} is said to be
σ-isolated (with respect to S). Finally a family N of subsets of X is said to
be a network for the topology of X if every open set is a union of members
of N.
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Definition 1.1 A compact Hausdorff space K is said to be a descriptive
compact space if its topology has a σ-isolated network.

The class of topological spaces having a σ-isolated network generalizes
in a natural way metrizable spaces (Bing-Nagata-Smirnov Theorem, see e.g.
[16]). These spaces were first studied by Hansell in its pioneering work [10]
recently published in [12]. He proved there, among other results, that if a
topological space is fragmented by a finer metric, then it has σ-isolated net-
work if, and only if, it has a certain covering property, namely, the space is
hereditarily weakly θ-refinable. Descriptive Banach spaces have been studied
in [12, 21] and also in the context of renorming theory in [18, 19, 23, 24, 25].

The first and more clear example of a descriptive compact space one may
come across is any metrizable compact. Embeddings into c0(Γ) of Eber-
lein compacta show that they are descriptive, since (c0(Γ), pointwise) has
a σ-isolated network, [12, 21]. More generally, Gul’ko compact spaces are
shown to be descriptive too, see for instance [26]. Scattered compacta K
with K(ω1) = ∅ are also descriptive: just consider as singletons the points of
each relatively discrete set {K(α) \K(α+1) : 0 ≤ α < γ} where γ < ω1 is such
that K(γ) = ∅. Corson compact spaces defined by “almost disjoint families of
sets” are also descriptive, see Remark 4.6, which includes an interesting com-
pactum, Example 4.5, built by Argyros and Mercourakis [1]. On the other
hand, the compactum [0, ω1] is not descriptive [12], see also Example 4.4.

Let us turn now our attention to renorming problems. Some results have
been obtained recently showing that geometrical properties such as the ex-
istence of equivalent Kadec or locally uniformly rotund (LUR) norms in a
Banach space X can be characterized by the existence of certain types of
networks of the norm topology which are σ-isolated for the weak topology of
X (LUR norms [18, 19, 24], dual LUR norms [24, 25] and Kadec norms [23]).
Recently, in [8], it has been proved that the dual unit ball (with its weak∗

topology) is uniformly Eberlein if, and only if, the dual space has a w∗-UR
equivalent norm, which is equivalent to X have a uniformly Gateaux smooth
equivalent norm. We shall introduce in general the concept of τ -LUR norm,
for τ a locally convex topology.

Definition 1.2 A norm ‖.‖ on X is said to be τ -locally uniformly rotund
at some point x ∈ X if for every (xn) ⊂ X with limn ‖xn‖ = ‖x‖ and
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limn ‖x + xn‖ = 2‖x‖, then τ -limn xn = x.
A norm ‖.‖ on X is said to be τ -locally uniformly rotund (τ -LUR) if it is
τ -lower semi-continuous and τ -locally uniformly rotund at x for every x ∈ X.

For the case of the weak topology, Moltó, Orihuela, Troyanski and Val-
divia [19] proved that a w-LUR Banach space has an equivalent LUR norm.
Mercourakis showed that the space c1(Σ

′ × Γ) has a pointwise-LUR equiva-
lent norm. He used that fact to build an equivalent w∗-LUR norm in a dual
of a WCD Banach space, see also [6]. The main result in [26] shows that a
dual Banach space X∗ admits an equivalent w∗-LUR norm if, and only if,
(BX∗ , w∗) is a descriptive compact space.

In this paper we give sufficient and necessary conditions on a Banach space
X and a locally convex topology τ to obtain a τ -LUR norm (equivalent or
coarser) on X. For F ⊂ X∗ a total subspace we shall consider its associated
norm pF (x) = sup{x∗(x) : x∗ ∈ BX∗ ∩ F}. Recall that F is said norming
if pF is an equivalent norm on X. Our main result is about “descriptively
generated spaces”:

Theorem 1.3 Let X be a Banach space, F ⊂ X∗ a total subspace and K ⊂
X a descriptive σ(X,F )-compact subset such that X = span‖.‖(K). Then
the following affirmations hold:

(1) X admits a coarser σ(X,F )-LUR norm and the topology σ(X, F ) on
X has a σ-isolated network.

(2) Moreover, if K is fragmented by pF , then X admits a coarser norm
which is pF -LUR and σ(X, F )-lower semi-continuous.

(3) The norms given in (1) and (2) can be taken equivalent to the original
norm of X if, and only if, F is norming.

This theorem covers both the cases of weakly compactly generated Ba-
nach spaces and dual Banach spaces such that (BX∗ , w∗) is a descriptive com-
pactum. Since a weakly compact subset of a Banach space is descriptive and
norm fragmented, we get Troyanski’s result: a WCG Banach space is LUR
renormable, see [6]. The theorem also applies to Banach spaces with a Marku-
sevich basis. Indeed, if {xα, fα} is a M-basis on X, and F = span‖.‖{fα},
then ({xα}∪{0}) is a descriptive σ(X,F )-compact that generates X. Let us
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say that statement (2) above also can be deduced using results from [25]. The
topological properties of Banach spaces generated by a norm fragmentable
compact space has been recently studied in [5].

Recall that descriptive compact spaces are fragmentable [26], see Corol-
lary 2.6 for a self-contained proof. In section 2 we study the structure of
a descriptive compactum with respect to a finer fragmenting metric. Sec-
tion 3 is devoted to renorming, including the proof of Theorem 1.3. In the
last section we show that the class of descriptive compacta has a behaviour
similar to the class of fragmentable compacta, studied by Ribarska [27], see
also [7]. Moreover, descriptive compact spaces have nicer properties than
fragmentable ones, see Proposition 4.2. We also discuss some examples to
give an account of how wide is the class of descriptive compacta.

2 Spaces with σ-isolated network

Hansell’s definition of descriptive topological spaces [12], later called isolated-
analytic spaces in [11], is quite technical. In the case of a compact topological
space, being descriptive in the sense of Hansell is equivalent to say that it
satisfies Definition 1.1.

The following definition has been used in [23, 24, 25].

Definition 2.1 Let S1 and S2 be families of subsets of a given set X. We
say that X has P (S1,S2) with a sequence (An) of subsets of X if for every
x ∈ X and every V ∈ S1 with x ∈ V , there is n ∈ N and U ∈ S2 such that
x ∈ An ∩ U ⊂ V .

One can easily realize that this generalized property P is also transitive,
that is, if X has P (S1,S2) and P (S2,S3) then X has P (S1,S3).

The following result links our property P with the existence of σ-isolated
networks. Implication i) ⇔ iii) appears in [10] for topologies.

Theorem 2.2 Let (X, τ) be a regular topological space and let S a subfamily
of τ . The following statements are equivalent:

i) τ has a network which is σ-isolated with respect to S.

ii) There is a finer metric d such that X has P (d,S).
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iii) There is a finer metric d such that X has P (d,S) with τ -closed sets.

iv) There exists a finer metric d, τ -closed sets An and families {Ui : i ∈ In}
of τ -open sets which are union of sets from S, such that the families
{An ∩ Ui : i ∈ In} are disjoint and {An ∩ Ui : n ∈ N, i ∈ In} is a
network for d.

Proof. i) ⇒ iii) The first step will be to show that there is a metric d such
that X has P (d, τ) with τ -closed sets, so it is enough to assume that the
network is simply σ-isolated. Let {Hi : i ∈ I} be a network and I =

⋃∞
n=1 In

where each family {Hi : i ∈ In} is isolated. Since X is regular, the family
{Hi

τ
: i ∈ I} is also a network for τ . Take now τ -open sets Ui for i ∈ In such

that
Hi ⊂ Ui and Ui ∩

⋃
{Hj : j ∈ In, j 6= i} = ∅.

Set A1
n =

⋃
i∈In

Hi

τ
. Since Ui is open, we have Hi ⊂ A1

n ∩Ui ⊂ Hi
τ
. This

implies that {A1
n ∩ Ui : n ∈ N, i ∈ In} is a network for τ .

Put A2
n = A1

n \
⋃

i∈In
Ui. For every n ∈ N, the family

Bn = {A2
n, X \ A1

n, A1
n ∩ Ui : i ∈ In}

is a partition of X. It easy to see that
⋃∞

n=1 Bn is a subbasis for a metrizable
topology. Let d be a compatible metric with that topology. It is clear that d
is finer than τ because

⋃∞
n=1 Bn contains a network of τ . On the other hand,

every basic d-open set is a finite intersection of a τ -open set with, eventually,
sets of type A1

n and A2
n. This shows that X has P (d, τ) with the countable

collection of the finite intersections of A1
n’s and A2

n’s.
Assume now that the network is σ-isolated with respect to S. We claim

that X has P (τ,S) with τ -closed sets. As above consider A1
n =

⋃
i∈In

Hi

τ
.

Take x ∈ X and U some τ -neighbourhood of it. Take a τ -neighbourhood of
x such that V

τ ⊂ U . For some n ∈ N, there is i ∈ In such that x ∈ Hi ⊂ V .
Take S ∈ S such that x ∈ S and Hi ∩ S ⊂ V . Then

A1
n ∩ S ⊂ Hi ∩ S

τ ⊂ U

which proves the claim. Transitivity of P gives that X has P (d,S) with
τ -closed sets.

iii) ⇒ iv) Assume that X has P (d,S) with a sequence (An) of τ -closed
sets. Let {Bj : j ∈ J} be a basis of the d-topology, J =

⋃∞
n=1 Jn where every
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family {Bj : j ∈ Jn} is discrete. This is possible by the Bing-Nagata-Smirnov
Theorem [16]. Put

I = J × N , In,m = Jn × {m} and An,m = Am.

For i = (j, m) ∈ In,m let Ui the biggest union of sets from S (may be empty)
such that Am ∩ Ui ⊂ Bj. Then {An,m ∩ Ui : i ∈ In,m} is disjoint and
{An,m ∩ Ui : (n, m) ∈ N× N, i ∈ In,m} is a network for d. Finally enumerate
N× N.

iii) ⇒ ii) It is trivial.
ii) ⇒ i) The same proof that in iii) ⇒ iv) gives a network for d which is

σ-isolated with respect to S. A network for d is also a network for τ because
the d-topology is finer that τ .

Recall the definition of fragmentability, due to Jayne and Rogers [14].

Definition 2.3 Let (X, τ) be a topological space and d a metric on X. It
is said that X is fragmentable by d if for every ε > 0 and every nonempty
A ⊂ X there is U ∈ τ such that A ∩ U 6= ∅ and diam (A ∩ U) < ε.

The following notion has been considered in topology, among the so called
“covering properties”, see [3].

Definition 2.4 A topological space X is said to be weakly θ-refinable (also
called weakly submeta compact) if every open cover of X has a σ-isolated (non
necessary open) refinement. If every subspace of X is weakly θ-refinable, then
it is said that X is hereditarily weakly θ-refinable.

The interest of the notion of hereditarily weakly θ-refinable space is that
it seems to be the most general and reasonable “ingredient” that allows to
pass from “scattered” properties to “isolated” ones. Compare this result with
Theorem 2.2.

Theorem 2.5 Let X be an hereditarily Baire space and let d be a finer metric
on X. Then the following statements are equivalent:

i) X is hereditarily weakly θ-refinable and fragmented by d.

ii) X has P (d, τ) with τ -closed sets.
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Proof. i) ⇒ ii) Is done in [26].
ii) ⇒ i) By Theorem 2.2, X has a σ-isolated network. It is easy to check
that a topological space having a σ-isolated network is hereditarily weakly
θ-refinable. Let X have P (d, τ) with a sequence of τ -closed sets (An). Fix
ε > 0 and let C ⊂ X be a nonempty τ -closed set. Define the sets

Cn = {x ∈ C ∩ An : ∃U ∈ τ, x ∈ U, diam(An ∩ U) < ε}

Since C =
⋃∞

n=1 Cn, by the Baire property we have that for some n ∈ N,
there exists V ∈ τ such that ∅ 6= C ∩ V ⊂ Cn

τ
. In particular we can take

x ∈ Cn ∩ V . Let U ∈ τ such that x ∈ U and diam(An ∩ U) < ε. We have

x ∈ C ∩ V ∩ U ⊂ Cn
τ ∩ U ⊂ An ∩ U

and therefore diam(C ∩ V ∩ U) < ε.

Corollary 2.6 Let X be a hereditarily Baire space with a σ-isolated network.
Then the finer metric d given by iii) of Theorem 2.2 is a fragmenting metric.

Corollary 2.7 If (X, τ) is a regular hereditarily weakly θ-refinable topologi-
cal space fragmented by a finer metric d, then the τ -Borel sets coincide with
the d-Borel sets in X.

Proof. Property P (d, τ) with τ -Borel sets easily implies that every d-Borel
set is a τ -Borel set, see [23] for details.

3 Banach spaces and renorming

The first basic relation between τ -LUR renormability and the existence of σ-
isolated networks for some vector topology τ is given by the following result.

Proposition 3.1 Let (X, τ) be a locally convex space. If X admits a τ -LUR
norm, then (X, τ) has a network which is σ-isolated with respect to τ -open
halfspaces.

Proof. In [19] it is proved that the weak topology of a w-LUR Banach space
has a σ-isolated network. For the weak∗ topology of a w∗-LUR Banach space
it is done in [26] using a different approach. Both methods can be easily
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addapted to prove that if X has a τ -LUR norm, then (X, τ) has a σ-isolated
network.

By Theorem 2.2 we may consider a finer metric d defined on X such that
X has P (d, τ). In order to prove the proposition, we need to show that X has
P (d,S) where S denotes the family of τ -open halfspaces. The transitivity of
P implies that it is enough to prove that X has P (τ,S).

Fix x ∈ X and a τ -neighbourhood U of x. We claim that there exist two
rational numbers 0 < s < r with s < ‖x‖ < r and such that the inequalities

s < ‖y‖ < r and 2s < ‖x + y‖ < 2r

imply that y ∈ U . If not, then we could obtain a sequence yn ∈ X \ U such
that

lim
n
‖yn‖ = ‖x‖ and lim

n
‖x + yn‖ = 2‖x‖,

which would contradict the fact that ‖.‖ is τ -LUR. By the Hahn-Banach The-
orem, we can find a τ -open halfspace H such that x ∈ H and B[0, s]∩H = ∅.
Now, if y ∈ B[0, r] ∩H, then s < ‖x+y

2
‖ < r, so y ∈ U . This proves that X

has P (τ,S).

The following result is in [26].

Theorem 3.2 Let K be a descriptive compact space and let d be a finer
metric fragmenting K. Then there is an equivalent dual norm ‖|.‖| on C(K)∗

such that for every bounded d-continuous function f : K → X with values
into a normed space

lim
ω
‖

∫
f dµn −

∫
f dµ‖ = 0

whenever the measures µ, µn ∈ C(K)∗ are such that limn ‖|µn‖| = ‖|µ‖| and
limn ‖|µ + µn‖| = 2‖|µ‖|. In particular, ‖|.‖| is a w∗-LUR norm.

It follows from the previous result that a compact Hausdorff space is de-
scriptive if, and only if, it embeds as a weak∗-compact subset of a w∗-LUR
dual Banach space.

The following is a version for w∗-LUR norms of the transfer technique of
Godefroy, Troyanski, Whitfield and Zizler [6, Theorem II.2.1] developed for
LUR norms.
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Proposition 3.3 Let T : Y ∗ → X∗ be a w∗-w∗-continuous linear operator
between dual Banach spaces. If the norm of Y ∗ is w∗-LUR, then X∗ has an

equivalent dual norm which is w∗-LUR at the points of T (Y ∗)
‖.‖

.

Proof. If T were surjective, it is not difficult to prove that an equivalent
w∗-LUR norm ‖|.‖| on X∗ would be defined by the formula

‖|x∗‖| = inf{‖y∗‖ : T (y∗) = x∗}
In the general case, the construction can be done as follows. For every

k ∈ N define an equivalent dual norm ‖.‖k on X∗ by the formula

‖x∗‖2
k = inf{‖x∗ − T (y∗)‖2 + k−1‖y∗‖2 : y∗ ∈ Y ∗}

Notice that due to the weak∗-continuity of the map and the lower semi-
continuity of the norms, the infimum is attained. Define

‖|x∗‖|2 =
∞∑

k=1

2−k‖x∗‖2
k.

It is not difficult to show that ‖|.‖| is an equivalent norm. In order to show
that it is w∗-LUR we shall follow the proof of [6, Theorem II.2.1]. So assume

x∗ ∈ T (Y ∗)
‖·‖

and (x∗n) ⊂ X∗ such that

lim
n

(2‖|x∗‖|+ 2‖|x∗n‖| − ‖|x∗ + x∗n‖|) = 0

Given ε > 0 and x ∈ BX , let y∗ ∈ Y ∗ such that for k large enough,

‖x∗‖2
k = ‖x∗ − T (y∗)‖2 + k−1‖y∗‖2 ≤ ε

4
,

in particular ‖x∗ − T (y∗)‖ ≤ ε
4
. For this fixed k, let y∗n ∈ Y ∗ such that

‖x∗n‖2
k = ‖x∗n − T (y∗n)‖2 + k−1‖y∗n‖2.

Following a standard convexity argument we obtain

lim
n
‖x∗n − T (y∗n)‖ = ‖x∗ − T (y∗)‖ (1)

and
lim

n
(2‖y∗‖2 + 2‖y∗n‖ − ‖y∗ + y∗n‖) = 0 (2).

Now since ‖.‖ on Y ∗ is w∗-LUR, (2) implies y∗n → y∗ in the weak∗ topology.
Also, for n ≥ n0, |(T (y∗n− y∗))(x)| ≤ ε

4
, and by (1) |(T (y∗n)−x∗n)(x)| ≤ ε

2
. So

|(x∗ − x∗n)(x)| ≤ ε as we wanted.
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Corollary 3.4 Continuous images of descriptive compacta are descriptive.

Proof. Let T : K1 → K2 be a continuous surjection and suppose that K1

is descriptive. The map T can be extended to a linear w∗-w∗-continuous
surjective operator T̃ : C(K1)

∗ → C(K2)
∗. Since C(K1)

∗ has an equivalent
w∗-LUR norm, by the former proposition C(K2)

∗ is w∗-LUR renormable too,
and this implies that K2 is descriptive.

Remark 3.5 More generally, it is proved that the properties of having a σ-
isolated network and being hereditarily weakly θ-refinable are preserved under
perfect maps [4].

Corollary 3.6 Let X and Y be Banach spaces and let F ⊂ X∗ be a total
subspace. Assume that Y ∗ is w∗-LUR and there is a bounded linear operator
T : Y ∗ → X with dense range which is also w∗-to-σ(X, F ) continuous. Then
there exists a coarser norm on X which is σ(X, F )-LUR (the norm can be
taken equivalent if and only if F is norming).

Proof. We may consider (X, σ(X, F )) as a topological subspace of (F ∗, w∗).
We shall regard T as an operator into F ∗. Clearly T is bounded and w∗-
to-w∗ continuous. Let ‖.‖∗ be the dual norm on F ∗. Since the restriction
to X of ‖.‖∗ is ‖.‖F and this norm is coarser than the norm of X we get
X ⊂ span‖.‖

∗
(TY ∗). The application of Proposition 3.3 will give a dual

norm on F ∗ (so equivalent to ‖.‖∗) which is w∗-LUR at the points of X and
the restriction to X of this norm is the desired σ(X, F )-LUR norm.

Let us denote by acow∗(K) the w∗-closed absolutely convex hull of a subset
K ⊂ X∗. The following is an easy consequence of Corollary 3.4.

Corollary 3.7 Let K be a w∗-compact subset of a dual Banach space X∗.
If K is descriptive, then acow∗(K) is also descriptive.

Proof. After [26], the unit ball of C(K)∗ is a descriptive compact. Each
point of acow∗(K) is the baricenter of some measure from BC(K)∗ and the
map is continuous, thus acow∗(K) is the continuous image of a descriptive
compactum.

We are now able to prove our Main Theorem from the introduction.
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Proof of Theorem 1.3. Like the proof of Corollary 3.6 we may embed
X into the dual space F ∗. Thus, without loss of generality we shall assume
that K ⊂ X∗ is a descriptive w∗-compact subset. We have to prove that X∗

admits an equivalent dual norm which is w∗-LUR at the points of span‖.‖(K).
Consider the operator T : C(K)∗ → F ∗ defined by T (µ) =

∫
I dµ.

Statement (1) follows from direct application of Proposition 3.3.
If K is fragmented by pF , that is, the norm of F ∗, then we shall use

Theorem 3.2 in its full generality. In that case, the w∗-LUR norm ‖.‖ on
C(K)∗ given by the theorem has the following property: if

lim
n
‖µn‖ = ‖µ‖ and lim

n
‖µn + µ‖ = 2‖µ‖ for µ, µn ∈ C(K)∗

then
lim

n
‖T (µn − µ)‖ = 0.

Minor changes in the proof of Proposition 3.3 give that the norm ‖|.‖| on F ∗

is LUR.
To prove (3) observe that the norms obtained in X are equivalent to pF ,

and that norm is equivalent to the norm of X if, and only if, F is norming.
On the other hand, if X has an equivalent σ(X, F )-LUR norm, then F should
be a norming subspace.

Corollary 3.8 Let X be a Banach space, F ⊂ X∗ a total subspace and
K ⊂ X a descriptive σ(X,F )-compact subset such that X = span‖.‖(K).
Then X admits an equivalent rotund norm.

Proof. Let ‖.‖1 the coarser σ(X,F )-LUR norm given by Theorem 1.3. It is
easy to verify that the norm ‖.‖2 = ‖.‖ + ‖.‖1 is an equivalent rotund norm
on X.

The proof of Theorem 1.3 actually gives the following.

Corollary 3.9 If X∗ is a dual Banach space and K ⊂ X∗ is descriptive
w∗-compact subset, then X∗ has an equivalent dual norm which is w∗-LUR
at the points of span‖.‖(K). Moreover, if span‖.‖(K) = X∗ then (BX∗ , w∗) is
also a descriptive compact space.

We also write together the stability properties of the class of Banach
spaces with descriptive dual ball.
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Proposition 3.10 The class of Banach spaces with descriptive dual unit
ball, that we shall denote by D∗, has the following properties:

i) If X ∈ D∗ and T : X → Y is a bounded linear operator such that T (X)
is dense in Y , then Y ∈ D∗. In particular D∗ is stable by quotiens.

ii) If Y ∈ D∗ and T : X → Y is a bounded linear operator such that
T ∗(Y ∗) is dense in X∗, then X ∈ D∗. In particular D∗ is stable by
closed subspaces.

iii) If Xi ∈ D∗ for i ∈ I then
⊕

i∈I Xi ∈ D∗ for c0 and lp sums where
1 < p < ∞. If I is countable, the result also holds for p = 1.

Proof. i) T ∗ is one-to-one and therefore T ∗((BY ∗ , w
∗)) is homeomorfic to a

w∗-compact subset of X∗, hence descriptive.
ii) It follows from Proposition 3.3.
iii) Fix on each space Xi a norm such that the dual norms on X∗

i is
w∗-LUR. For the c0-sum we may define an equivalent norm ‖|.‖| on

(
c0⊕
i∈I

Xi

)∗

=

`1⊕
i∈I

X∗
i

by the formula

‖|(x∗i )i∈I‖|2 = (
∑
i∈I

‖x∗i ‖)2 +
∑
i∈I

‖x∗i ‖2

It is not difficult to check that the norm ‖|.‖| is an equivalent w∗-LUR norm.
For the `p sum with p ∈ (1,∞), the `q sum of the dual spaces, where q is
the conjugate exponent, is w∗-LUR. For I countable, it is easy to verify that
the unit ball of (

⊕`1
i∈I Xi)

∗ =
⊕`∞

i∈I X∗
i is homeomorphic to the descriptive

compact space
∏

i∈I BX∗
i
, see Proposition 4.1.

Remark 3.11 The class D∗ fails to have the three space property. In [7,
Theorem 2.3.1] it is given an example of a Banach space X which is not
weak Asplund having a separable subspace Y such that X/Y is Asplund and
WCG.
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4 Topological properties of descriptive com-

pact spaces

In this section we study “how nice” is the topology of a descriptive com-
pactum and the behaviour under topological operations of the class of de-
scriptive compacta. We shall also discuss some examples.

The following proposition puts together some stability properties of the
class of descriptive compact spaces. Notice that fragmentable compacta have
the same properties [7].

Proposition 4.1 Let us denote by D the class of descriptive compact spaces.
The class D is stable by closed subspaces, countable products, one-point com-
pactifications of discrete collections and continuous images. If K ∈ D, then
BC(K)∗ ∈ D. Finally, if K is compact, d a lower semi-continuous met-
ric on K and there are closed subsets Kn ⊂ K such that Kn ∈ D and

K =
⋃∞

n=1 Kn

d
, then K ∈ D.

Proof. The non trivial properties follow from Corollary 3.4 and Theorem 3.2.
Only the last one needs a proof. Assume that d is a lower semicontinuous
metric on K. By a result in [13] we may assume that K is a w∗-compact
subset of a dual X∗ and d is induced by the norm metric. Take

K0 =
∞⋃

n=1

n−1Kn ∪ {0},

which is a descriptive w∗-compact subset of X∗. Corollary 3.9 implies that
there is a dual norm on X∗ which is w∗-LUR at the points of Y = span‖.‖(K0).
Proposition 3.1 shows that (Y, σ(Y, X)) has a σ-isolated network. The hy-
pothesis implies that K is a subset of Y , therefore it is a descriptive com-
pactum.

A topological space X is said to be Fréchet-Uryshon if every cluster point
of some subset A ⊂ X is the limit of a sequence in A. The following result
shows that descriptive compacta are close to Fréchet-Uryshon spaces.

Proposition 4.2 If K is a descriptive compact space, then the following
properties hold:

i) K is sequentially compact.
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ii) Countably compact subsets of K are closed.

iii) Hereditarily separable closed subsets of K are metrizable.

Proof. i) Any fragmentable compact space is sequentially compact [7, 20].
ii) In [3, Theorem 9.2] it is proved that any weakly θ-refinable countably

compact space is compact.
iii) It follows from a much more general result [15, Corollary 9].

Corollary 4.3 A descriptive compact space has countable tightness and its
sequentially closed subsets are closed.

The former corollary has as a straightforward consequence the following
example of non descriptive compactum, see also [12].

Example 4.4 The interval [0, ω1] is not descriptive.

Alternative ways to obtain the same conclusion is to prove that the Borel
sets in [0, ω1] do not coincide with the Borel sets for the discrete topology
[29] and to apply Corollary 2.7; or to prove that [0, ω1] is not a Gruenhage
space [28]. The “long James space” J(ω1), see [2], is a bidual Banach space
having the Radon-Nikodym property which contains a weak∗ compact subset
homeomorphic to [0, ω1], so its unit ball cannot be descriptive.

The unit ball of a dual space having a strictly convex dual norm is weak∗-
fragmentable. Neither fragmentable nor Radon-Nikodym compacta [20] can
be characterized by embeddings into dual Banach spaces with a strictly con-
vex dual norm. Indeed, small changes in the proof of [6, Theorem VII.5.2]
give that the compact space [0, ω1] does not embed into a dual Banach space
with an equivalent strictly convex dual norm. We do not know if C(K)∗

can be renormed with a strictly convex dual norm when K is a fragmentable
compact space not containing a copy of [0, ω1].

There are separable, non-metrizable and scattered compacta K such that
K(3) = ∅, see e.g. [6, Example VI.8.7]. In consequence, there exist descrip-
tive compact spaces which are no Gul’ko, even no Corson. Recall that a
compact space is called Corson if it is homeomorphic to a subset of [0, 1]Γ

made up of elements with countable support, and it is called Rosenthal if it is
homeomorphic to a subset of functions of first Baire class on a Polish space.
Since Gul’ko compacta are Corson, see e.g. [6, 7], the following example is
interesting to distinguish between the classes.
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Example 4.5 There exists a compact Hausdorff space K which is Corson,
Rosenthal, no-Gul’ko and descriptive.

Proof. That compact was built by Argyros and Mercourakis [1] and we
only have to prove its descriptiveness. To do so we use the construction
of the compactum as presented in [7, section 7.3]. Consider the sets Dn of
continuous functions on K defined for n ≥ 2, and take D =

⋃
n≥2 Dn (the set

D in [7] also contains the constant function 1, but for our argument is better
to avoid it). A linear bounded operator T : C(K)∗ → c0(D) is defined. In
the following, consider C(K)∗ with the weak∗ and c0(D) with the pointwise
topologies, which also make T continuous. In particular, T (K) is Eberlein.
From the definitions of K and T it follows easily that L = {x ∈ K : T (x) = 0}
is the one-point compactification of a discrete set and T is an homeomorphism
from K \ L onto T (K) \ {0}. We deduce that the relative topologies on the
sets L and K \L have a σ-isolated network, and therefore K is descriptive.

Remark 4.6 Using a similar argument, it is not difficult to show that any
Corson compact defined by an almost disjoint family of subsets of N (for the
definition see [1, 17]) is descriptive.

We finish with an approximation to [6, Problem VII.2] where topological
conditions on the bidual ball BX∗∗ are suggested to guarantee that X has an
equivalent LUR norm.

Proposition 4.7 Let X be a Banach space such that (BX∗∗ , w∗) is descrip-
tive. Then (BX∗∗ , w∗) is a Fréchet-Uryshon compact and X has an equivalent
LUR norm.

Proof. The restriction of a w∗-LUR norm on X∗∗ to X is a w-LUR norm,
thus X has an equivalent LUR norm by [19]. Since BX∗∗ is sequentially
compact, X cannot contain an isomorphic copy of l1(N). If A ⊂ BX∗∗ and

x∗ ∈ A
w∗

, since BX∗∗ has countable tightness, there is A0 ⊂ A countable

such that x∗ ∈ A0
w∗

. Using again the countable tightness, take X0 ⊂ X a

separable subspace such that A0 ⊂ X0
w∗

. This implies that we can work
inside X∗∗

0 . By a well known result of Rosenthal, BX∗∗
0

is Fréchet-Uryshon,
thus we can find a sequence in A0 weak∗ convergent to x∗.

The following example shows that not much more can be expected. The
James Tree Space JT , see e.g. [9], is a separable space such that JT ∗ is not
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separable and JT ∗∗ is isomorphic to JT ⊕ l2(Γ) with Γ uncountable, so JT ∗∗

is WCG and thus BJT ∗∗ endowed with the weak∗ topology is a descriptive,
Radon-Nikodym, Rosenthal, separable and non metrizable compact.

Now [6, Problem VII.2] can be rewritten as follows: If a compact space
is fragmentable and Corson, will it be descriptive? If the fragmenting metric
is lower semi-continuous the answer is yes as a consequence of a result by
Orihuela, Schachermayer and Valdivia [22], because in this case the compact
is Eberlein.
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