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Abstract

Let K be a compact Hausdorff space and d a lower semicontinuous
metric on it. We prove that if K is fragmented by d if, and only if, C(K)
contains no copy of `1 made up of Lipschitz functions with respect to d.
As applications we obtain characterizations of Asplund Banach spaces
and Radon-Nikodým compacta.

1 Introduction

R. C. James [5] and independently J. Lindenstrauss and C. Stegall [7] solved

negatively a classical problem of S. Banach: Let X be a Banach space such that

its dual X∗ is separable, does X contain a subspace isomorphic to `1? These

counterexamples seems to be the split between two branches of Banach space

theory that have had a great development in the last decades: Asplund spaces

and Banach spaces not containing copy of `1.

Our aim is to present a link between the Asplund property and the existence

of subspaces isomorphic to `1. We shall show that if X is separable and X∗

is not, then it is possible to find a copy of `1 in certain linear space where X
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imbeds in a very natural way. Consider the unit ball of the dual BX∗ endowed

with the weak∗ topology. Then X embeds isometrically into C(BX∗) as a

subset of norm Lipschitz functions. Of course, C(BX∗) always contains copies

of `1, but there is one made up of norm Lipschitz functions if, and only if, X∗

is not separable. More generally we have the following:

Theorem 1.1 For a Banach space X the following are equivalent:

i) X is not Asplund.

ii) C(BX∗) contains a copy of `1 made up of norm Lipschitz functions.

The linear subspace L of the norm Lipschitz functions of C(BX∗) become

a Banach space when endowed with the norm |||.||| = ‖.‖∞ + ‖.‖Lip where ‖.‖∞
is the supremum norm and ‖f‖Lip = sup{ |f(x)−f(y)|

‖x−y‖ : x, y ∈ BX∗ , x 6= y}, but

we do not use in Theorem 1.1 this norm. Indeed, it is easy to see that `1

embeds isomorphically into (L, |||.|||) for every non trivial X. The embedding

in Theorem 1.1 ii) is with respect to the norm ‖.‖∞ in C(BX∗).

Theorem 1.1 will be a consequence of a more general result, Theorem 2.1,

which is formulated in terms of a C(K) space and fragmentability. In the last

section of the paper we shall study the subsets of C(K) which are made up of

all the Lipschitz functions with respect to some metric on K. We shall give a

characterization for this sets without explicit mention of the metric, obtaining

as an application, a new characterization of Radon-Nikodým compacta.

2 Fragmentability and copies of `1

We shall deal with continuous functions on a compact space in order to describe

a more general result. Recall that a topological space K is fragmentable by a

metric defined on it if every nonempty subset of K has a nonempty relatively

open subset of arbitrarily small diameter with respect to d. Our main result

is the following:
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Theorem 2.1 Let K be a compact Hausdorff space and let d be a lower semi-

continuous metric defined on it. Then the following are equivalent:

i) K is not fragmentable by d.

ii) C(K) contains an isomorphic copy of `1 made up of functions which are

Lipschitz with respect to d.

iii) There is a bounded sequence (fn) ⊂ C(K) equivalent to the canonical

basis of `1 which is equicontinuous with respect to d.

Proof. Lipschitz property is understood referred to the metric d, thus

η-Lipschitz for η ∈ R will mean that |f(x)− f(y)| ≤ η d(x, y) for all x, y ∈ K.

i) ⇒ ii) If K is not d-fragmentable, a Cantor-type construction [6] yields

an ε > 0, a closed subset H ⊂ K and a surjective map h : H → {−1, 1}N
such that d(h−1(r), h−1(s)) ≥ ε for every r, s ∈ {−1, 1}N with r 6= s. Let pn

the projection on the n’th coordinate of {−1, 1}N and consider the function

pn ◦ h defined on H which is continuous and ε−1-Lipschitz. By a result of [8],

see also [1], there is a continuous extension fn of pn ◦ h to K with the same

Lipschitz bound ε−1. The sequence (fn) is equivalent to the canonical basis of

`1. Indeed, given numbers real numbers (an) for i = 1, . . . , m there is x ∈ H

such that fn(x) = sign(an) and thus

‖
m∑

n=1

anfn‖ =
m∑

n=1

|an|

which means that E = span‖.‖∞{fn : n ∈ N} is even isometric to `1. An easy

computation shows that if f ∈ E, then f is ε−1‖f‖-Lipschitz.

ii) ⇒ iii) Let E ⊂ C(K) be an isomorphic copy of `1 made up of Lipschitz

functions with respect to d and take En ⊂ E the subset of n-Lipschitz func-

tions. Clearly En is norm closed, thus by Baire’s category theorem some En has

nonempty interior. By translation we deduce that the functions of the unit ball

of E have a common Lipschitz bound, and thus there is a bounded sequence
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of C(K) which is equivalent to the canonical basis of `1 and equicontinuous

with respect to d.

iii) ⇒ i) Let (fn) be a bounded `1-sequence of C(K) which is equicontin-

uous with respect to d. By a standar reduction argument, there is a metriz-

able compact L, a continuous surjection q : K → L and functions gn de-

fined on L such that fn = gn ◦ q for every n ∈ N. The sequence (gn) is

equivalent in C(L) to the basis of `1, and thus (gn) contains not pointwise

convergent subsequence. By a result of Rosenthal [11], see also [12, p.20],

there is a subsequence of (gn), denoted again (gn) without loss of general-

ity, and there are real numbers a < b, such that
⋂m

n=1 An 6= ∅ for every

m ∈ N and every choice of An ∈ {g−1
n (−∞, a], g−1

n [b, +∞)}. Using compact-

ness and composition with q−1 we get that
⋂∞

n=1 An 6= ∅ for every every choice

of An ∈ {f−1
n (−∞, a], f−1

n [b, +∞)}. In fact, we have used the reduction to

the separable case just to apply Rosenthal’s theorem as appearing in quoted

references. Consider the closed subset of K given by

H =
∞⋂

n=1

(
f−1

n (−∞, a] ∪ f−1
n [b, +∞)

)

and define a map h : H → {−1, 1}N such that n’th coordinate of h(x) is −1 if

fn(x) ≤ a, and 1 if fn(x) ≥ b. The construction ensures that h is continuous

and surjective. Take a closed subset C ⊂ H minimal with respect to the prop-

erty that h(C) = {−1, 1}N. It is easy to see that any relatively open subset

of C contains two points x, y such that fn(x) ≤ a and fn(y) ≥ b for some n.

We claim that C is not d-fragmentable. Suppose that C is d-fragmentable,

then there is point z ∈ C of continuity from the inherited topology of C

to the metric d [10]. Take r > 0 such that the oscilation of fn in B(z, r)

is less than b − a for all n ∈ N. Take U a neighbourhood of z such that

diam(C ∩U) < r. There are points x, y ∈ C ∩U , so x, y ∈ B(z, r), and n ∈ N
such that fn(y)−fn(x) ≥ b−a which is a contradiction. That proves the claim

and thus K is not d-fragmentable.
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Recall that a Banach space X is said to be Asplund if every separable sub-

space has separable dual.

Proof of Theorem 1.1. A Banach space X is Asplund if, and only if, the

dual ball BX∗ is norm fragmentable, see [3], then apply Theorem 2.1.

Remark 2.2 The behaviour of Banach spaces is different with respect of Lip-

schitz copies of c0. Indeed, if H is an infinite dimensional Hilbert space it is

not difficult to find an isometric copy of c0 inside C(BH) made up of norm

Lipschitz functions.

Statement iii) of Theorem 2.1 suggest to study the sequential properties

of bounded subsets of C(K) which are equicontinuous with respect to a frag-

menting metric. However, it is shown in [2] that certain subsets of functions

on a fragmentable compact space verifies stronger sequential properties than

the given by Rosenthal’s `1-theorem (see in particular [2, Corollary 3.5]). We

shall include the following result which is relevant to Theorem 2.1.

Proposition 2.3 Let (fn) ⊂ C(K) be a sequence of functions which are

equicontinuous with respect to a metric d fragmenting K. Then the pointwise

closure of (fn) in RK
is a metrizable compact subset.

Proof. Notice that we do not ask the metric d be lower semicontinuous.

Without loss of generality, the sequence (fn) may be supposed bounded. In-

deed, compose with a homeomorfism from R to [−1, 1] and both continuity

and equicontinuty with respect to d are preserved. Consider the pseudometric

ρ(x, y) = sup{|fn(x) − fn(y)| : n ∈ N} which is continuous with respect to d

by the equicontinuity of (fn). As a consequece, K is fragmented by ρ. Passing

to a quotient, we may assume that K is a metrizable compactum, and thus we

get that K is ρ-separable using the fragmentability property. Let H ⊂ [−1, 1]K

the pointwise closure of (fn). Clearly, H is a pointwise compact set made up

of ρ-continuous functions. Since a ρ-dense countable subset of K separates
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points of H, we deduce that H is metrizable.

We shall finish the section applying the results to scattered compact spaces.

Notice that a compact space K is scattered if, and only if, it is fragmentable

by the discrete metric. Since the discrete metric make Lipschitz any bounded

function and it is lower semicontinuous with respect to any topology on K we

get the following well known result.

Corollary 2.4 A compact Hausdorff space K is scattered if, and only if, C(K)

does not contain copy of `1.

Proposition 2.3 implies the following result of Meyer [9].

Corollary 2.5 Let K be a scattered compact Hausdorff space. Then any Baire

function on K is of the first Baire class.

3 The lattice of Lipschitz functions

It is easy to see that the set of η-Lipschitz functions is lattice closed, that is,

the functions max{f, g} and min{f, g} are η-Lipschitz whenever the functions

f and g are η-Lipschitz. Notice that the subset of C(K) made up of functions

which are Lipschitz with respect to some metric d on K can be given structure

of Banach lattice with the norm |||.||| defined at the introduction.

Lemma 3.1 Let K be a compact Hausdorff space and let B ⊂ C(K) be

bounded closed symmetric convex which separates points of K, is lattice closed

and contains a non trivial constant function. Define a lower semicontinuous

metric d on K by the formula

d(x, y) = sup{|f(x)− f(y)| : f ∈ B}

Then L =
⋃∞

n=1 nB is the set of continuous functions on K which are Lipschitz

with respect to d.
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Proof. We may assume without loss of generality that B ⊂ BC(K). Let δ > 0

such that t1 ∈ B for all t ∈ [−δ, δ]. It is clear that L =
⋃∞

n=1 nB is the linear

space spaned by B and L is a lattice. Given f ∈ C(K) which is Lipschitz

with respect to d we shall prove that f ∈ L. We may assume without loss of

generality that f ∈ BC(K) and f is 1-Lipschitz, thus |f(x) − f(y)| ≤ d(x, y)

for every x, y ∈ K. Fix a pair of points x, y ∈ K with x 6= y. There is

g ∈ B such that d(x, y) ≤ 2(g(x) − g(y)). We may take λ ∈ [−2, 2] such that

f(x)−f(y) = λ(g(x)−g(y)). Take η = f(x)−λg(x) = f(y)−λg(y). We have

|η| ≤ 3, and so the function p = λg + η1 belongs to D = (2 + 3δ−1)B, and

verifies that p(x) = f(x) and p(y) = f(y). Applying the method of [4, p.146]

to prove the Stone-Weierstrass theorem, for every ε > 0 there is h ∈ D such

that ‖f − h‖ < ε because D is lattice closed, and thus f ∈ D because it is

closed.

Theorem 3.2 Let L ⊂ C(K) be a dense linear lattice which contains the

constant functions. Then L is the subset of functions which are Lipschitz with

respect to some (lower semicontinuous) metric d on K if, and only if, L is an

Fσ and L is complete for a finer lattice norm. In that case, any two complete

finer lattice norms on L are equivalent.

Proof. If L is the lattice of the functions which are Lipschitz with respect to

some metric d on K, then it is complete with the lattice norm |||.||| defined at

the introduction, and L =
⋃∞

n=1 Fn where Fn = {f ∈ L : f is n-Lipschitz}.
For the converse, let |||.||| be a complete lattice norm on L finer than ‖.‖∞. Put

L ∩ BC(K) =
⋃∞

n=1 Fn where each Fn is ‖.‖∞-closed. Since |||.||| is finer that

the restriction of ‖.‖∞ to L, we get that L ∩ BC(K) is |||.|||-closed and every Fn

is |||.|||-closed. Baire’s Theorem gives that some Fn has nonempty |||.|||-interior,

say C = {f ∈ L : |||f − g||| < r} ⊂ L for some g ∈ L and r > 0. As Fn is

‖.‖∞-closed, we have C
‖.‖∞ ⊂ Fn ⊂ L. By translation we deduce that

B = {f ∈ L : |||f ||| ≤ 1}‖.‖∞

is a subset of L which also is ‖.‖∞-bounded, ‖.‖∞-closed, lattice closed, sym-

metric, convex and contains a non trivial constant function. As L =
⋃∞

n=1 nB,
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then B also separates points of K. By the previous lemma, L is a lattice of

Lipschitz functions. Observe that the norm given by the lemma and |||.||| are

comparable, thus the Open Mapping theorem gives that they are equivalent.

Recall that a compact Hausdorff space is said Radon-Nikodým if there is

a lower semicontinuous metric d which fragments K, see [10]. We have the

following characterization.

Corollary 3.3 A compact Hausdorff space K is Radon-Nikodým if, and only

if, there exists a dense Fσ lattice L ⊂ C(K) containing the constant functions

which is complete for a finer lattice norm and such that every bounded sequence

in L has a pointwise Cauchy subsequence.

Proof. A sequence in L is bounded if, and only if, it is ‖.‖∞-bounded and

equi-Lipschitz with respect to some lower semicontinuous metric d given by

the former theorem. The result follows from Theorem 2.1 and Rosenthal’s

`1-theorem.
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