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Abstract

We state several conditions equivalent to the weak∗-dentability for
certain subsets of a dual Banach space which includes both the compact
case and a result of Ghoussoub and Maurey.
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1 Introduction

It is well known that the Radon-Nikodým property (RNP) of convex subsets of

a Banach space is characterized by means of the geometrical notion of dentabil-

ity, see [2]. This note is concerned with weak∗-dentability in dual Banach

spaces. Recall that a subset C of a dual Banach space X∗ is weak∗-dentable

if it has weak∗-slices of arbitrarily small diameter, and a weak∗-slice of C is

the nonempty intersection of C with a weak∗-open halfspace. We say that C

is hereditarily weak∗-dentable if every nonempty subset of C is weak∗-dentable.

Convex weak∗-compact subsets of X∗ having the RNP are weak∗-dentable,

see [2]. For non compact sets the situation becomes more complicate. Bour-

gain proved in [1] that the bounded convex closed subsets with the RNP of a

dual Banach space X∗ are weak∗-dentable provided that X does not contain a

copy of �1. For a negative result see Example 2.6 below.

The search of intrinsic conditions on a subset C ⊂ X∗ for its weak∗-

dentability, or at least, in terms of what kind of subset C must be in X∗

with respect to the weak∗ topology, leads to the following notion introduced

by Ghoussoub and Maurey [4, 5]:

Definition 1.1 A bounded subset C of X∗ is said to be a weak∗-Hδ set if

C
w∗ \ C is a countable union of convex weak∗-compact sets.

The properties of Hδ sets and their application to non-compact optimiza-

tion are extensively studied in the memoir [5]. Ghoussoub and Maurey proved,

among other things, that a closed convex bounded set in the dual of a separable

Banach space is hereditarily weak∗-dentable if, and only if, it is a separable

weak∗-Hδ set. Part of the proof, as presented in [5], depends strongly on

construction of martingales and separability arguments in order to reduce the

problem to subsets of �2. Our aim is to give a more direct proof of the dentabil-

ity of the separable weak∗-Hδ sets of dual Banach space, and by the way, to
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remove separability assumptions. For this purpose, the optimal hypothesis

seems to be the fragmentability of weak∗-compact subsets. Recall that a set

A ⊂ X∗ is weak∗-fragmentable (by the norm) if every nonempty subset of it

has nonempty relatively weak∗-open subsets of arbitrarily small diameter. It

is an easy application of Baire’s theorem that norm separable weak∗-compact

subsets are weak∗-fragmentable.

In this note we shall prove the following:

Theorem 1.2 Let C ⊂ X∗ be a norm closed convex weak∗-Hδ set. Then the

following properties are equivalent:

i) C is hereditarily weak∗-dentable.

ii) Weak∗-compact subsets of C are weak∗-fragmentable.

iii) C contains no dyadic tree.

iv) C has the Radon-Nikodým property.

The former result is essentially [5, Theorem I.8] without separability as-

sumptions. Recall that a dyadic tree is a set {zs : s ∈ {0, 1}<N}, where {0, 1}<N

denotes all the finite sequences of 0’s and 1’s, satisfying zs = 1
2
(zs�0 + zs�1)

and ‖zs�0−zs�1‖ > ε for some ε > 0 and for every s ∈ {0, 1}<N. The presence

of a bounded dyadic tree is a strong form of failing the RNP.

Since weak∗-compact sets are trivially weak∗-Hδ, Theorem 1.2 also includes

the well known results for the compact case, see [2] and the references therein.

We also get as a consequence that the norm closed convex weak∗-Hδ set is

contained in the weak∗-closed convex hull of its weak∗-denting points in case

one of the above equivalent properties holds. Recall that a point of C is said

to be weak∗-denting, if it is contained in arbitrarily small weak∗-slices of C.
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2 Proof and auxiliary results

The first part of the following lemma can be obtained from a result of [6].

Notice that in our particular case, the proof is much more simple. The second

part of the lemma applies ideas of van Dulst and Namioka [3].

Lemma 2.1 Let C be a non-weak∗-fragmentable bounded subset of X∗ which

is weak∗-Gδ set in C
w∗

. Then C contains a non-weak∗-fragmentable weak∗-

compact subset. If C is moreover convex, then C contains a dyadic tree.

Proof. We will work with the relative topology on C
w∗

. There is a decreasing

sequence Gn of weak∗-open subsets such that C =
⋂∞

n=1 Gn. Since C is not

weak∗-fragmentable, there is ε > 0 and D ⊂ C, such that every weak∗-open

subset meeting D has diameter bigger than ε.

For any s ∈ {0, 1}<N we may define inductively weak∗-open subset Us such that

Us ∩ D �= ∅ inductively as follows. The first one U∅ is arbitrary. Suppose Us

already built for all the sequences s of length n−1. A sequence of length n is of

the form s�i with s of length |s| = n−1 and i ∈ {0, 1}. Pick two points x0, x1 ∈
Us ∩ D with ‖x0 − x1‖ > ε. By the weak∗-lower semicontinuity of the norm,

there are relatively weak∗-neighborhoods Us�0, Us�1 of x0, x1 respectively such

that d(Us�0, Us�1) > ε. Using the regularity, we may suppose that Us�i
w∗ ⊂

Us ∩Gn and d(Us�0
w∗

, Us�1
w∗

) > ε. The set H =
⋂∞

n=1

⋃
|s|=n Us

w∗
is a weak∗-

compact subset of C, and there is a surjective continuous map f : H → {0, 1}N

defined in an obvious way, namely f(x) = σ ∈ {0, 1}N where x ∈ Us for all

initial segments s of σ. Take K ⊂ H a compact subset minimal with respect

to the property that f(K) = {0, 1}N. It is not difficult to see that every

nonempty relatively weak∗-open subset of K has diameter bigger than ε, so K

is not weak∗-fragmentable.

We shall assume now that C is convex. Then C
w∗

is also convex and the sets

Us above can be taken to be convex too. In particular, we have

1

2
(Us�0

w∗
+ Us�1

w∗
) ⊂ Us
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for every s ∈ {0, 1}<N. Using the continuity of the sum, the sets Us can be

also taken to satisfy the following additional property

1

2k

∑

|s2|=k

Us1
�s2

w∗ ⊂ Gn

for every n ∈ N, 0 < k < n and s1 ∈ {0, 1}<N with |s1| = n − k. A simple

compactness argument gives that there exists points zs ∈ Us
w∗

such that

zs =
1

2
(zs�0 + zs�1)

for every s ∈ {0, 1}<N. Clearly we have ‖zs�0−zs�1‖ > ε. The property above

ensures that zs ∈ Gn for every n ≥ |s|, and thus zs ∈ C. Therefore, the set

{zs : s ∈ {0, 1}<N} is a dyadic tree contained in C.

Definition 2.2 Let C be a subset of a dual Banach space. We say that x ∈ C

is a weak∗-continuity point of C if the identity map from (C,w∗) to the norm

topology is continuous at x.

Lemma 2.3 Let C be a bounded subset of X∗ which is weak∗-Gδ set in C
w∗

.

If C is weak∗-fragmentable, then the set of weak∗-continuity points of C is

weak∗-dense.

Proof. It is not difficult to prove that a hereditarily Baire weak∗-fragmentable

subset of X∗ has a weak∗-dense set of weak∗-continuity points, see [8].

Lemma 2.4 Let C ⊂ X∗ be a norm closed and convex weak∗-Hδ set. Then

any weak∗-slice of C containing a weak∗-continuity point also contains a point

which is extreme in C
w∗

.

Proof. First we shall show that the existence of a weak∗-continuity point

implies the existence in C of an extreme point of C
w∗

. Suppose that all the

extreme points of C
w∗

belong to C
w∗ \C =

⋃∞
n=1 Kn, where each Kn is convex

and weak∗-compact. Let x ∈ C be a continuity point. By the Choquet-

Bishop-de Leeuw theorem [9], there is a Borel probability measure µ on C
w∗
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with barycenter x such that µ(D) = 1 for every Fσ subset D containing the

extreme points. In particular, we have µ(
⋃∞

n=1 Kn) = 1. For every n ∈ N, if

the number

λn = µ(Kn \
n−1⋃

j=1

Kj)

is not zero, let xn ∈ Kn be the barycenter of µn where

µn(A) = λ−1
n µ(A ∩ (Kn \

n−1⋃

j=1

Kj))

for every A ⊂ C
w∗

Borel. Take xn = 0 if λn = 0. We have the convex

combination

x =
∞∑

n=1

λnxn

Now we shall apply an idea of Lin, Lin and Troyanski [7]. Fix ε > 0 and let

U be a weak∗-open neighbourhood of x such that diam(C
w∗ ∩ U) < ε. Take

n ∈ N with λn �= 0. By continuity of the sum, we can find a weak∗-open

neighbourhood V of xn such that

λnV +
∑

m�=n

λmxm ⊂ U

An easy computation gives that diam(C
w∗ ∩V ) is at most λ−1

n ε. Since ε > 0 is

arbitrary, that would imply that xn ∈ C, which is impossible because xn ∈ Kn.

We shall show now how to localize the extreme point in a given weak∗-slice

of C. Assume that the slice is given by a weak∗-open halfspace H = {y ∈
X∗ : y(t) > a} and let x ∈ C ∩ H be a weak∗-continuity point. Define weak∗-

compact convex sets Kn,m = Kn ∩ {y ∈ X∗ : y(t) ≥ a + m−1}. If there is no

extreme point of C
w∗

in C ∩H, then the extreme points of C
w∗

are covered by

(C
w∗ \ H) ∪ (

⋃

n,m

Kn,m)

Applying the Choquet-Bishop-de Leeuw theorem as above we shall obtain a

convex combination

x = λ0x0 +
∑

n,m

λn,mxn,m
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where x0 ∈ C
w∗ \ H and xn,m ∈ Kn,m. Since x ∈ H, there is some λn,m �= 0.

As above, that gives a contradiction.

Proof of Theorem 1.2. Clearly i) ⇒ ii), i) ⇒ iv) and iv) ⇒ iii). The proof

will be complete if we show that ii) ⇒ i) and iii) ⇒ i).

To prove that C is hereditarily weak∗-dentable, it is enough to find small

weak∗-open slices of nonempty relatively weak∗-closed convex subsets of C.

Since relatively weak∗-closed convex subsets of C are also weak∗-Hδ sets, we

just need to prove that C has small weak∗-open slices. If we assume either

ii) or iii), then C is weak∗-fragmentable by Lemma 2.1. Let E be the set

of extreme points of C
w∗

. Consider the set D = C ∩ C ∩ E
w∗

. We know

that C has a weak∗-dense set of weak∗-continuity points by Lemma 2.3, and

then the weak∗-closed convex hull of D is C
w∗

after Lemma 2.4 and the Hahn-

Banach theorem. By the Bourgain-Namioka geometrical lemma [2, p.52], it is

enough to show that D has weak∗-slices of arbitrarily small diameter. Clearly

D is a weak∗-fragmentable weak∗-Gδ subset of D
w∗

, so by Lemma 2.3 has a

weak∗-continuity point, namely x ∈ D. Given ε > 0, we may take a weak∗-

neighbourhood of x such that diam(D ∩ U) < ε. Take y ∈ E ∩ C ∩ U . By

Choquet’s lemma, there is a weak∗-open half space H containing y such that

C
w∗ ∩ H ⊂ C

w∗ ∩ U . Then y ∈ D ∩ H ⊂ D ∩ U and thus diam(D ∩ H) < ε.

Having in mind the ideas urderlying in the Bourgain-Namioka geometrical

lemma [2, p.52], the proof above actually gives that every weak∗-slice S of

the set C, contains another weak∗-slice of diameter less than ε. Iterating this

argument with ε = n−1, we shall obtain a nested sequence of weak∗-slices

converging to a weak∗-denting point x ∈ S. As a consequence we get that C
w∗

is the weak∗-closed convex hull of the weak∗-denting points of C.

Remark 2.5 From the proof of Lemma 2.1 we obtain that a weak∗-Hδ set C

which fails the RNP contains the weak∗-closure of a dyadic tree.
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The following example shows that, in general, the RNP does not imply the

weak∗ dentability.

Example 2.6 A non weak∗-dentable separable closed convex set with the RNP.

Proof. Consider in �∞ = �1
∗ the linear subspace L spanned by the character-

istic functions {χA(n,k) : n, k ∈ N : 1 ≤ k ≤ 2n}, where

A(n, k) = {k + 2n(i − 1) : i ∈ N} ⊂ N

Let X be the norm closure of L. It is easy to see that X is 1-norming, and

therefore the evaluation map restricted to X gives an isometric embedding of

�1 into X∗. We claim that the set C = B�1 is not weak∗-dentable as a subset

of X∗. It is enough to show that any nonempty slice of C determined by an

element of L has diameter bigger than 1. Indeed, if f ∈ L then there is n ∈ N

such that f is constant on the sets A(n, k) with 1 ≤ k ≤ 2n. Suppose that

S = {x ∈ C : f(x) > a} is a nonempty slice of C. Take x = (xi) ∈ S with

‖x‖ = 1. Since the sets A(n, k) are infinite, there is a bijection φ : N → N

such that φ(A(n, k)) = A(n, k) for every 1 ≤ k ≤ 2n and
∑∞

i=1 |xi − xφ(i)| > 1.

If y = (xφ(i)), then y ∈ C and f(y) = f(x) > a, and thus y ∈ S. On the other

hand ‖x − y‖ > 1, and thus diam(S) > 1.
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