
Dentability indices with respect to measures

of non compactness

M. Raja∗

April, 2007

Dedicated to the memory of my father

Abstract

We study the relationships between the ordinal indices of set derivations
associated to several measures of non compactness. We obtain applications
to the Szlenk index, improving a result of Lancien, and LUR renorming,
providing a non probabilistic proof of a result of Troyanski.

1 Introduction

There are several quantities in analysis under the name of measures of non com-
pactness which quantify how far a set is from a given class of compacta. For
instance, we may consider the diameter diam(A) as the simplest one. It measures
how far is a set of being a singleton. The classical Kuratowski measure of non
compactness α(A) is the infimum of the numbers r > 0 such that A can be covered
by finitely many sets of diameter less than r, and it measures how far is A of being
relatively metric compact. For a set A ⊂ X in a Banach space the number

w(A) = inf{r > 0 : A
w∗

⊂ X + rBX∗∗}

measures how far is A of being relatively weakly compact (the weak∗-closure is
taken in the bidual X∗∗). There are more sophisticated measures of non com-
pactness: for a convex bounded set A, we define β1(A) as the infimum of the
numbers ε > 0 such that there is N1(A, ε) ∈ N verifying that any martingale
(Mn)0≤n≤N ⊂ L1([0, 1], X) with values in A and ‖Mn −Mn−1‖1 ≥ ε must have
length N less than N1(A, ε). The measure βæ(A) and the numbers Næ(A, ε) are
defined similarly asking the martingales to satisfy ‖Mn−Mn−1‖ ≥ ε almost every-
where. It is not difficult to see that βæ(A) ≤ β1(A). These measures are related
to the notion of superreflexive Banach space, see [11]. Troyanski [13] called β1 the
index of non-superreflexivity.
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For a measure of non compactness η we define the “slice derivation” as the
following set operation

[A]′ε = {x ∈ A : ∀H w∗-open halfspace containing x, η(A ∩H) ≥ ε}

for ε > 0, that can be understand as removing the slices of A which are ε-small
with respect to η. For any ordinal γ, the sets [A]γε are defined in the natural way,
taking intersection in the case of limit ordinals. Define for any subset E ⊂ A the
ordinal index

Dη(E,A)ε = inf{γ : [A]γε ∩ E = ∅}

and take Dη(A)ε = Dη(A,A)ε. The existence of those indices is no always guar-
antied, for instance Ddiam(BX)ε exists if, and only if, X has the Radon-Nikodym
property (bounded subsets are dentable, see [2, Theorem 2.3.6]).

The norm ‖.‖ of a Banach space X is said to be locally uniformly rotund (LUR)
if for every x, xk ∈ X, such that limk ‖xk‖ = ‖x‖ and limk ‖x+ xk‖ = 2‖x‖, then
limk ‖x− xk‖ = 0. Troyanski proved this result about LUR renormings.

Theorem 1.1 (Troyanski [13]) Let X be a Banach space such that for every
x ∈ SX and every ε > 0, there is a halfspace H containing x and such that
β1(BX ∩H) < ε. Then X has an equivalent LUR norm.

As a Corollary, Troyanski showed that β1 can be replaced by the Kuratowski
measure α since β1(A) ≤ 2α(A) for every bounded convex set A [13, Corollary 2.4].
The original proof of Theorem 1.1 employs probabilistic methods and is rather
involved. We shall prove by means of geometrical arguments the following result
that implies Theorem 1.1.

Theorem 1.2 Let X be a Banach space such that for every x ∈ SX and every
ε > 0, there is a halfspace H containing x and such that βæ(BX ∩H) < ε. Then
Ddiam(SX , BX)ε ≤ ωω for any ε > 0.

The idea of obtaining a LUR equivalent norm by slice derivation of the unit
ball was first considered by Lancien [6]. The fact that it is enough to “eat” the
points of the unit sphere to get a LUR norm allows the use of this technique in
more situations, see [12, 10, 3]. In all these cases, including as well Theorem 1.1,
the LUR norm can be obtained as a convergent series of weighted square powers
of the Minkowski functionals of a suitable countable family of symmetric convex
sets obtained by slicing BX , see [12] and the last section. In [3] the authors proved
by slice derivation Theorem 1.1 for the Kuratowski measure α instead of β1, also
giving (implicitly) ωω as an estimate.

Let X be Banach space and consider its dual space X∗. For any A ⊂ X∗

bounded define the “fragment derivation”

〈A〉′ε = {x∗ ∈ A : ∀U w∗-neighbourhood of x∗, η(A ∩ U) ≥ ε}
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Define inductively for ordinals 〈A〉γε in the obvious way. Take

Sz(X)ε = inf{γ : 〈BX∗〉γε = ∅}

and Sz(X) = supε>0 Sz(X)ε and Dz(X) = supε>0 Ddiam(BX∗)ε where the in-
dex Ddiam is defined as above but using weak∗-open halfspaces. These indices
are known as the Szlenk index and the weak∗ dentability index respectively, see
the survey paper [8]. Both indices are defined if, and only if, X is an Asplund
Banach space, see [2] for definition and characterizations. In that case, the se-
quences of derived sets are strictly decreasing (bounded subsets of the dual of an
Asplund space are weak∗-dentable, see [2, Theorem 4.2.13]). Obviously we have
Sz(X) ≤ Dz(X).

Lancien proved in [7] that Sz(X) < ω1 implies Dz(X) < ω1. His proof uses a
reduction to the separable case and deep results of descriptive set theory to show
the existence of an universal function ψ : [0, ω1)→ [0, ω1) such that

Dz(X) ≤ ψ(Sz(X))

for every Asplund Banach space X with Sz(X) < ω1. We shall give a constructive
proof of Lancien’s result by means of geometrical arguments showing that the
universal function is of exponential form without restriction on the cardinality.

Theorem 1.3 Let X be an Asplund Banach space, then Dz(X) ≤ ωSz(X).

This bound can be sharpened in certain classes of spaces, see [8, 4].

Although the results showed in this introduction involves the essentially the
measure diam, the techniques are valid for many others measures of non com-
pactness, as the mentioned in the introduction, or measures derived from diam
by iteration, see Definition 2.7. For that reason, the second section of this paper
is developed with the full generality for an abstract measure of non compactness.
The last section contains applications to several ordinal indices in Banach space
and LUR renormings.

2 Slicing and eating

To get a suitable level of generality, along this section X will denote a locally
convex space with topology V. For x ∈ X a given point Vx denotes the neigh-
bourhoods of x and Hx the family of open halfspaces containing x.

Definition 2.1 A measure of non compactness is a non negative function η de-
fined on some class of the bounded subsets of X satisfying the following properties
whenever all the sets considered lies in that class:

1. If A ⊂ B, then η(A) ≤ η(B).

2. If A ⊂ X, then η(A) = η(A).
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3. There there exists κ ≥ 1 such that for every bounded symmetric convex set
B there is b > 0 verifying η(conv(A) + λB) ≤ κη(A) + λb for every A ⊂ X
and every λ ≥ 0.

The definition lists the useful properties that are common to all the considered
examples. We do not give details about the class where η is defined, obviously
it should be stable by a certain number of set operations used in the proofs, but
in applications we shall consider just two: the bounded sets, and the sets such
that its closed convex hull is compact. Property 3 combines two facts that are
more easy to understand separately, as the existence of an universal bound for
convex hulls, and a “Lipschitz” property with respect to perturbations by sums
of balls. We put both properties together in one formula to simplify some ar-
guments below. For the diameter and the Kuratowski measure κ = 1. For the
measure of non weak compactness w mentioned in the introduction κ = 2, see [5].
Another example of measure of non compactness in the sense of Definition 2.1 is
oscf (A) = diam(f(A)) defined for the bounded subsets of a normed space if f is
a Lipschitz map with values into a metric space.

We recall the derivations defined in the introduction in this more general set-
ting. For any A ⊂ X bounded consider the following sets

[A]′ε = {x ∈ A : ∀H ∈ Hx, η(A ∩H) ≥ ε}

〈A〉′ε = {x ∈ A : ∀U ∈ Vx, η(A ∩ U) ≥ ε}

For any ordinal γ, the sets 〈A〉γε and [A]γε are defined in the obvious way. Define
for any subset E ⊂ A the ordinal indices

Dη(E,A)ε = inf{γ : [A]γε ∩ E = ∅}

Fη(E,A)ε = inf{γ : 〈A〉γε ∩ E = ∅}

if such ordinals exists, if not the index is ∞. Finally take Dη(A)ε = Dη(A,A)ε,
and Fη(A)ε = Fη(A,A)ε. Along this section the brackets [ ] and 〈 〉 are reserved
for the derivations with respect to η, but the indices may be referred to other
measures. The constant κ is fixed for η from now on.

The following result is based on the so called Bourgain-Namioka Lemma, see
[2, Theorem 3.4.1]. The iteration argument was provided kindly by J. Orihuela
for our paper [12] and it was also used in [3] dealing with the Kuratowski index
of non compactness.

Lemma 2.2 Let A ⊂ X be a bounded set, let H be an open half space and take
ε > κ η(H ∩A). Then the sequence (An) defined recursively by A1 = conv(A) and
An+1 = conv((A \H) ∪ (A ∩ [An]′ε)) verifies (H ∩A) ⊂

⋃∞
n=1(An \ [An]′ε) and

H ∩
∞⋂
n=1

An = ∅
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Proof. We may assume that H = {x ∈ X : f(x) > a} with f ∈ X∗. Take
the symmetric convex set B = conv(A) − conv(A). Fix r ∈ (0, 1) such that
η(conv(H ∩A) + rB) < ε. For any subset E ⊂ A we claim that

sup{f(x) : x ∈ [conv(E)]′ε} ≤ ra+ (1− r) sup{f(x) : x ∈ E}

if [conv(E)]′ε 6= ∅. Indeed, discard the “extreme” cases: if E ∩ H = ∅ then the
inequality is obvious, and E \ H = ∅ implies [conv(E)]′ε = ∅. Otherwise, take
E1 = conv(E ∩H), E2 = conv(E \H). Define

D = {(1− λ)x1 + λx2 : x1 ∈ E1, x2 ∈ E2, λ ∈ [r, 1]}

If x ∈ conv(E) \D then x = (1−λ)x1 +λx2 with x1 ∈ E1, x2 ∈ E2 and λ ∈ [0, r].
Since x− x1 = λ(x2 − x1), we have

conv(E) \D ⊂ E1 + λB ⊂ conv(H ∩A) + rB

and thus η(conv(E) \D) < ε. If G is an open halfspace such that G∩D = ∅ then

conv(E) ∩G ⊂ conv(E) ∩G ⊂ conv(E) \D

We deduce η(conv(E) ∩G) < ε, therefore [conv(E)]′ε ⊂ D and

sup{f(x) : x ∈ [conv(E)]′ε} ≤ sup{f(x) : x ∈ D}

and an easy estimation of sup{f(x) : x ∈ D} finishes the proof of the claim.
Now, we shall consider the sequence (An). If A \ H = ∅, then [A1]′ε = ∅. Thus
An = ∅ for n ≥ 2 and we are done. If A \H 6= ∅, then for every n ∈ N is defined

sn = sup{f(x) : x ∈ An}

We have sn ≥ a and the sequence (sn) is decreasing. If sn = a for some n, we
are done because An ∩H = ∅. If sn > a for every n ∈ N, then the hypothesis to
apply the former claim holds. Taking E = (A \H) ∪ (A ∩ [An−1]′ε) we get

a ≤ sn+1 ≤ ra+ (1− r)sn

and thus 0 ≤ sn+1 − a ≤ (1 − r)(sn − a), implying the convergence of (sn) to a.
Therefore

sup{f(x) : x ∈
∞⋂
n=1

An} ≤ a

implying that H ∩
⋂∞
n=1An = ∅. Now, if x ∈ H ∩ A there is n ∈ N such that

x ∈ An and x 6∈ An+1. Thus x 6∈ [An]′ε, and therefore x ∈ An \ [An]′ε.

Proposition 2.3 Let A ⊂ X be a bounded set and δ > 0. Take ε > κδ. Then the
sequence (An) defined recursively by A1 = conv(A) and An+1 = conv(A ∩ [An]′ε)
verifies (A \ [A]′δ) ⊂

⋃∞
n=1(An \ [An]′ε).
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Proof. If x ∈ A \ [A]′δ, there is a half space H ∈ Hx such that η(H ∩A) < δ. Let
(En) the sequence given by Lemma 2.2. It is easy to see that An ⊂ En. It follows
H ∩

⋂∞
n=1An = ∅. Consequently, there is n ∈ N such that x ∈ An and x 6∈ An+1.

Thus x 6∈ [An]′ε, and therefore x ∈ An \ [An]′ε.

The following notion is one of the two technical hypothesis that we shall need
to prove the main results of this section about relationships between different
ordinal indices.

Definition 2.4 We say that a measure of non compactness η is regular if there
exists ς ≥ 1 such that η(A) < ες for every closed convex set A such that [A]′ε = ∅.

It is easy to see that diam and oscf are regular with ς = 2. The Kuratowski
measure α is not regular in general (for instance, `1 is a counterexample), but in
a dual Banach space endowed with the weak∗ topology it is regular with ς = 1.
There are other examples of measures which become regular when their use is
restricted to compact convex sets. The constant ς is fixed when is η assumed to
be regular.

The proof of the next result uses a recursive argument similar to [3, Lemma 3.3].

Lemma 2.5 Assume η is regular, δ > 0 and ε > κςδ. Let C ⊂ X be bounded
closed convex, H open halfspace such that [H ∩ C]nδ = ∅. Then H ∩ [C]ω

n−1

ε = ∅.

Proof. The proof will be by induction on n for every bounded closed convex
and every open halfspace satisfying the hypothesis with given δ and ε. If n = 1,
then it is obvious. Suppose it is true for n (main induction hypothesis) and we
want to prove it for n+ 1. So we may assume [H ∩ C]n+1

δ = ∅ and [H ∩ C]nδ 6= ∅.
By the regularity we have η([H ∩ C]nδ ) < δς. Let (Ak) the sequence given by
Lemma 2.2 for A = [H ∩ C]nδ ∪ (C \H). Notice that [Ak]′ε ∩ [H ∩ C]nδ ⊂ Ak+1 by

the definition of the sequence (Ak). We claim that [C]ω
n−1·k
ε ⊂ Ak for every k ∈ N.

Proof by induction on k. If k = 1, then any open halfspace G with G ∩ A1 = ∅
verifies G ∩ [H ∩ C]nδ = ∅. As G ∩ C ⊂ H ∩ C, we have [G ∩ C]nδ = ∅. So by the

main induction hypothesis G ∩ [C]ω
n−1

ε = ∅. As G was arbitrary, we deduce that

[C]ω
n−1

ε ⊂ A1. Assume that the claim is proven for k, then [C]ω
n−1·k+1
ε ⊂ [Ak]′ε.

If G is an open halfspace with G ∩ Ak+1 = ∅, then G ∩ [Ak]′ε ∩ [H ∩ C]nδ = ∅. As

G ∩ [Ak]′ε ⊂ H ∩ C, we have [G ∩ [Ak]′ε]
n
δ = ∅. By the main induction hypothesis

G ∩ [[Ak]′ε]
ωn−1

ε = ∅. As G was arbitrary, [[Ak]′ε]
ωn−1

ε ⊂ Ak+1. Then we have

[C]ω
n−1·(k+1)
ε = [[C]ω

n−1·k+1
ε ]ω

n−1

ε ⊂ Ak+1

which finishes the proof of the claim. Using other property of the sequence (Ak),
we have

H ∩
∞⋂
k=1

[C]ω
n−1·k
ε ⊂ H ∩

∞⋂
k=1

Ak = ∅

obtaining that H ∩ [C]ω
n

ε = ∅ as we wanted.
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Lemma 2.6 Assume that η is regular. Let A be bounded closed convex, let B be
bounded convex symmetric and b its associated constant. Then

η((A+ λB) ∩H) < εκς + λb

for every λ > 0 and every open halfspace H = {x ∈ X : f(x) > a} such that
a > sup{f(x) : x ∈ [A]′ε + λB}.

Proof. First notice that η(A ∩ G) < ες for any open halfspace G such that
G ∩ [A]′ε = ∅ by the regularity of η. We may assume λ = 1 without loss of
generality. Take s = sup{f(z) : z ∈ B} and consider G = {y ∈ A : f(y) > a− s}.
Clearly, we have (A+B) ∩H ⊂ A ∩G+B. Take a1 such that

a > a1 > sup{f(x) : x ∈ [A]′ε +B}

and define G1 = {y ∈ A : f(y) > a1 − s}. We claim that [A]′ε ∩G1 = ∅. Indeed,
if not take y ∈ [A]′ε ∩ G1 and v ∈ B such that f(v) > s − (f(y) − (a1 − s)), so
f(y+v) > a1 and y+v ∈ [A]′ε+B which is a contradiction. Clearly G∩A ⊂ G1∩A
and so η(G ∩A) < ςε since G ∩ [A]′ε = ∅. Therefore

η((A+B) ∩H) ≤ η((A+B) ∩H) ≤ η(A ∩G+B) ≤ εκς + b

finishing the proof.

Definition 2.7 For a measure of non compactness and an ordinal γ we define

ηγ(A) = inf{ε > 0 : Dη(conv(A))ε < γ}

Proposition 2.8 If η is a regular measure of non compactness, then ηω(A) is a
measure of non compactness. Moreover, ηω1(A) is a measure of non compactness
provided that its use is restricted to sets whose closed convex hulls are compact.

Proof. Clearly, it is enough to verify property 3 of Definition 2.1. Since ηω(A) =
ηω(conv(A)) we may assume that A is bounded convex. Given B symmetric
bounded convex and using Lemma 2.6, for any ordinal γ we have

[[A]γε + λB]′εκς+λb ⊂ [A]γ+1
ε + λB

implying by finite induction ηω(A + λB) ≤ κς ηω(A) + λb which proves the first
part of the proposition. The second part follows by transfinite induction using
that ⋂

ξ<γ

([A]ξε + λB) = [A]γε + λB

if γ is a limit ordinal, and besides A is compact and B is closed.

We arrive to one of the main results of the section.

Theorem 2.9 Assume that η is regular, δ > 0 and ε > κςδ. Then

Dη(E,C)ε ≤ ωω ·Dηω (E,C)δ

for every bounded closed convex set C and every subset E ⊂ C.
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Proof. By Lemma 2.5 we have

[C]ω
ω

ε ⊂ {x ∈ C : ∀H ∈ Hx, ηω(C ∩H) ≥ δ}

being the last set the first step of the slice derivation with respect to ηω. The
result follows by transfinite iteration.

Until the end of the section we shall take advantage of the compactness to
relate the indices Dη and Fη. A main tool will be the next result inspired in ideas
from [10].

Lemma 2.10 If C ⊂ X is convex and compact then ext([C]ωε ) ⊂ 〈C〉′ε.

Proof. Suppose it is not the case. If x ∈ ext([C]ωε ) \ 〈C〉′ε, there is U ∈ Vx such
that η(C ∩ U) < ε. As x is extreme, by Choquet’s Lemma, there is H ∈ Hx
such that H ∩ [C]ωε ⊂ U . Since [C]ωε =

⋂∞
n=1[C]nε , by compactness there is n ∈ N

such that H ∩ [C]nε ⊂ U . We have η(H ∩ [C]nε ) < ε, thus x 6∈ [C]n+1
ε which is a

contradiction.

The second technical hypothesis of the section is the following.

Definition 2.11 We say that a measure of non compactness η is normal if the
set function η

N
is a measure of non compactness, where

η
N

(A) = inf{ε > 0 : ∃Ui ∈ V, A ⊂
n⋃
i=1

Ui, η(Ui ∩A) < ε}

The associated constant to η
N

will be denoted κ
N

.

We see that diam
N

is close to the Kuratowski measure α, implying that diam
is normal, see Lemma 3.2 (stated for the weak∗ topology) for more details. The
measures α and w are normal since α

N
= α and w

N
= w.

Lemma 2.12 Assume that η is normal, δ > 0 and ε > κ
N
δ. Let C ⊂ X be

convex compact, H open halfspace such that 〈H ∩ C〉γδ = ∅. Then H ∩ [C]ω
γ

ε = ∅.

Proof. We shall use induction on γ for every compact convex and every open
halfspace satisfying the hypothesis with given δ and ε. For γ = 1 we have
〈H ∩ C〉′δ = ∅, and so H ∩〈C〉′δ = ∅. Applying Lemma 2.10 we have H ∩ [C]ωε = ∅.
Now suppose 〈H ∩ C〉γδ = ∅. By compactness γ cannot be a limit ordinal, so

assume γ = ξ + 1 with 〈H ∩ C〉ξδ 6= ∅ and that the statement is proven for every

ϑ ≤ ξ. By compactness η
N

(〈H ∩ C〉ξδ) < δ. Since η
N

is measure we may apply

Lemma 2.2 for it with δ, ε and A = 〈H ∩ C〉ξδ ∪ (C \H). The given sequence (An)
verifies that

〈H ∩ C〉ξδ ∩ [An]ωε ⊂ An+1

Indeed, suppose not. If x ∈ 〈H ∩ C〉ξδ ∩ [An]ωε \ An+1, then there is G ∈ Hx such
that G ∩ An+1 = ∅ and η

N
(G ∩ An) < ε. That implies G ∩ 〈An〉′ε = ∅, and by

Lemma 2.10, G ∩ [An]ωε = ∅ which is a contradiction. We claim that

[C]ω
ξ·n
ε ⊂ An
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for every n ∈ N. Proof by induction on n. If n = 1, then any open halfspaceG with
G∩A1 = ∅ verifies G∩ 〈H ∩ C〉ξδ = ∅. As G∩C ⊂ H ∩C, we have 〈G ∩ C〉ξδ = ∅.
So by the transfinite induction hypothesis then G ∩ [C]ω

ξ

ε = ∅ and so [C]ω
ξ

ε ⊂ A1

since G was arbitrary. Assume it is proven for n, then [C]ω
ξ·n+ω
ε ⊂ [An]ωε . If G

is an open halfspace with G ∩ An+1 = ∅, then G ∩ [An]ωε ∩ 〈H ∩ C〉
ξ
δ = ∅. Since

G ∩ [An]ωε ⊂ H ∩ C, we have 〈G ∩ [An]ωε 〉
ξ
δ = ∅. By the transfinite induction

hypothesis

G ∩ [[An]ωε ]ω
ξ

ε = ∅

Since G was arbitrary [[An]ωε ]ω
ξ

ε ⊂ An+1. Therefore we have

[C]ω
ξ·(n+1)
ε = [[C]ω

ξ·n+ω
ε ]ω

ξ

ε ⊂ An+1

This finish the proof of the claim. Using other property of the sequence (An), we
have

H ∩
∞⋂
n=1

[C]ω
ξ·n
ε ⊂ H ∩

∞⋂
n=1

An = ∅

obtaining that H ∩ [C]ω
γ

ε = ∅ as we wanted.

The second main result of the section is the following.

Theorem 2.13 Assume that η is normal. Define ψ(γ) = ωγ . Let C be convex
compact and δ > 0. If ε > κ

N
δ, then

Dη(C)ε ≤ ψ(Fη(C)δ)

Proof. Follows easily from the previous Lemma.

Theorem 2.14 Assume that η is regular. Let C ⊂ X be a convex compact set
and take ε > κςδ. Then for any subset E ⊂ C, if Dηω1 (E,C)δ < ω1, then
Dη(E,C)ε < ω1.

Proof (Sketch). Just mimic the proof of Lemma 2.5 using transfinite induction
like in the proof of Lemma 2.12. In this case, the bound for the countable ordinal
is not very nice, so we omitted it in the statement.

3 Banach spaces and renorming

This section is devoted to apply the general results of the former section to the
measure diam, other related measures of non compactness and several ordinal
indices appearing in Banach spaces. These results are applied to LUR renorming.

Lemma 3.1 For every bounded closed convex subset A of a Banach space

βæ(A) ≤ diamω(A) ≤ 2βæ(A)
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Proof. Let A be convex bounded. Take ε > diamω(A). Then no ε-separated
(almost everywhere) martingale has length greater than Ddiam(A)ε, because it is
easy to see inductively that the values of Mn−k lies essentially in [A]kε . Therefore
βæ(A) < ε. On the other hand, if βæ(A) < ε, we shall show that Ddiam(A)δ ≤
Næ(A, ε)+1 for any δ > 2ε. This will imply diamω(A) ≤ 2ε. Indeed, assume that
Ddiam(A)δ > N(A, ε)+1 and take N = Ddiam(A)δ−1. We shall build functions
gn for 0 ≤ n ≤ N defined on [0, 1] and valued in X, which are constant on a finite
partition of [0, 1] into intervals, gn take values in [A]N−nδ , gn+1 is measurable with
respect to the algebra An generated by gn,

‖gn+1 − gn‖ > δ/2 a.e. , and

‖E(gn+1|An)− gn‖∞ < 2−n−3(δ − 2ε)

Take any x0 ∈ [A]Nδ and define g0(t) = x0. Assume gn with n < N is built, and
take x any of the value of gn, and let I ∈ An an interval such that gn|I = x. Since

x ∈ conv([A]N−n−1
δ \B(x, δ/2))

there are points (xi)
k
i=1 ⊂ [A]N−n−1

δ \B(x, δ/2) and λi > 0 with
∑k
i=1 λi = 1 and

‖
k∑
i=1

λixi − x‖ < 2−n−3(δ − 2ε)

Take a partition I =
⋃k
i=1 Ii into intervals such that |Ii| = λi|I| and define

gn+1 = xi on Ii. That finish the construction of (gn). By [1, Lemma 5.10] there
exists a martingale (Mn)0≤n≤N with ‖Mn − gn‖∞ < 2−2(δ − 2ε). We get that
‖Mn+1 −Mn‖ > ε a.e. which is a contradiction since N > Næ(A, ε).

Proof of Theorem 1.2. It is a consequence of Theorem 2.9 and the previous
Lemma.

For the following results concerning dual Banach spaces, in order to apply the
results of the former section, the working topology on X∗ is the weak∗.

Lemma 3.2 For every bounded set A in a dual Banach space X∗

α(A) ≤ diam
N

(A) ≤ 2α(A)

As a consequence, diam
N

is a measure of non compactness on dual Banach spaces
when restricted to bounded sets with associate constant κ

N
= 2.

Proof. Take ε > diam
N

(A). Then A is covered by finitely many open sets Ui
with diam(A ∩ Ui) < ε. We deduce that α(A) ≤ ε. Suppose now that α(A) ≤ ε.
Then A =

⋃n
i=1Ai with diam(Ai) < ε. Define for every I ⊂ {1, 2, . . . , n} the

weak∗ open UI = X∗ \
⋃
i∈I Ai

w∗

. We claim that for every x∗ ∈ A, there is I(x∗)
such that x∗ ∈ UI(x∗) and diam(UI(x∗) ∩ A) < 2ε. Indeed, it is enough to take

I(x∗) = {i : x∗ 6∈ Ai
w∗

}. We have x∗ ∈ A ∩ U ⊂
⋃
i 6∈I(x∗)Ai

w∗

⊂ B(x∗, ε). The
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weak∗ open sets of the form UI , where I = I(x∗) for some x∗ ∈ A provide a finite
cover of A verifying that diam(UI ∩ A) < 2ε, therefore diam

N
(A) < 2ε. Finally,

given A ⊂ X∗ weak∗ compact

diam
N

(convw
∗
(A) + λBX∗)

≤ 2α(convw
∗
(A) + λBX∗) ≤ 2α(A) + 4λ ≤ 2 diam

N
(A) + 4λ

which proves that diam
N

is a measure of non compactness.

Theorem 3.3 Define ψ(γ) = ωγ . Let C be convex weak∗ compact If ε > 0, then

Ddiam(A)3ε ≤ ψ(Fdiam(A)ε)

Proof. It follows from Theorem 2.13 having in mind that κ
N

= 2 in this case.

Proof of Theorem 1.3. We have Ddiam(BX∗)ε ≤ ψ(Sz(X)) for every ε > 0 by
the previous result.

Consider the slice derivation with respect to the Kuratowski measure in the
dual of X and the associate index Cz(X) = supε>0 Dα(BX∗)ε. It is clear that
Sz(X) ≤ Cz(X) ≤ Dz(X). We shall denote

(A)′ε = {x∗ ∈ A : ∀H ∈ Hx∗ ,diam
N

(A ∩H) ≥ ε}

Lemma 3.4 Let C ⊂ X∗ be weak∗ compact convex. Then [C]ωε ⊂ (C)′ε.

Proof. Notice that (C)′ε = convw
∗
(〈C〉′ε) and apply Lemma 2.10.

The next result shows that, a priori, the indices Dz(X) are Cz(X) more closer
between them than to the index Sz(X).

Theorem 3.5 Let X be an Asplund Banach space. Then Dz(X) = Cz(X) · ω
whenever Cz(X) < ωω. In other case we have Dz(X) = Cz(X).

Proof. We have by the preceding Lemma we have Ddiam(BX∗)ε ≤ ω ·Dα(BX∗)ε.
Therefore Dz(X) ≤ ω · Cz(X) and, obviously, Cz(X) ≤ Dz(X). The result fol-
lows from the fact that Cz(X) and Dz(X) are of the form ω% [8, Proposition 2].

In the remaining part of the section we shall apply the results to renormings of
Banach spaces. We shall use the following criterion of [9] for LUR renormability,
although for the formulation here we follow [12].

Theorem 3.6 (Moltó, Orihuela, Troyanski) X has an equivalent LUR norm
if, and only if, there is a sequence (An) of subsets of X such that for any point
x ∈ X (equivalently x ∈ SX) and ε > 0, there is n ∈ N and H ∈ Hx such that
diam(An ∩H) < ε.

11



Let us remark that the construction of the norm is particularly simple when
the sets (An) are convex, symmetric and contains 0 as interior point. In that
case, the norm is any series of weighted square powers of the Minkowski function-
als converging uniformly on bounded sets, see [12].

We obtain the following improvement of Theorem 3.6.

Corollary 3.7 X has an equivalent LUR norm if, and only if, there is a sequence
(An) of subsets of X such that for any point x ∈ X (equivalently x ∈ SX) and
ε > 0, there is n ∈ N and H ∈ Hx such that diamω(An ∩H) < ε.

Proof. Without loss of generality we may assume that the sets (An) are bounded.
We also may assume that the sets (An) are also closed and convex, replacing each
set by the sequence of sets given by Proposition 2.3 for ε = m−1 for every m ∈ N
using derivation with respect to diamω. Finally, using Theorem 2.9, the countable
family [conv(An)]γ1/m, where the derivation is with respect to diam and γ < ωω

verifies the hypothesis of Theorem 3.6.

To get a LUR norm lower semicontinuous with respect to the topology σ(X,F )
where F ⊂ X∗ is norming it is enough to ask the halfspaces in Theorem 3.6, as
well as Corollary 3.7, to be σ(X,F )-open [12]. With this remark Corollary 3.7
extends to the measure diamω Theorem 1.3 of [3] proved for the Kuratowski mea-
sure. It is easy to see that diamω(A) ≤ α(A) for every bounded convex set (A).

We shall finish with a result showing the spirit of covering characterization of
renormings which is to concentrate on the unit sphere “ε-properties” spread on
the space. We shall need the technical requirement of η to be homogeneous, that
is, η(λA) = λη(A) for λ > 0.

Theorem 3.8 Let X be a Banach space and let η be an homogeneous regular
measure of non compactness. The following properties are equivalent:

i) There is an equivalent norm such that after endowing X with it, then for
every x ∈ SX and every ε > 0, there is δ > 0 such that η(BX ∩H) < ε for
any H ∈ Hx disjoint with (1− δ)BX .

ii) There is a sequence of subsets (An) of X such that for any point x ∈ X and
ε > 0, there is n ∈ N and H ∈ Hx such that η(An ∩H) < ε.

iii) There is a sequence of subsets (An) of X such that for any point x ∈ X and
ε > 0, there is n ∈ N and H ∈ Hx such that ηω(An ∩H) < ε.

Proof (Sketch). We shall follow the main steps for the LUR renorming result
of [12]. The technical details missing here can be found there.
i) ⇒ ii) Assume X endowed with such a norm and take An = anBX where (an)
is a enumeration of the positive rational numbers and use homogeneity.
ii)⇒ iii) It is obvious.
iii)⇒ ii) Proceed like in the proof of Corollary 3.7.

12



ii)⇒ i) Without loss of generality we may assume that the sets (An) are bounded,
closed and convex as in the proof of Corollary 3.7. Let B denote the “old” unit
ball of X. By considering the sets An + m−1B and Lemma 2.6 we may assume
without loss of generality that the sets (An) verifies the property of the hypothesis
with x interior to An. Take an ∈ An an interior point and let fn be the Minkowski
functional of An − an. Let fn,m,p be the Minkowski functional of An,m,p − an,m,p
where An,m,p = [An]′1/m + p−1B with an,m,p ∈ An,m.p an interior point. Define a
convex continuous function F on X by

F (x)2 =
∑
n

λn fn(x)2 +
∑
n,m,p

λn,m,p fn,m,p(x)2

where the positive coefficients are taken to guarantee the uniform convergence on
bounded sets. Define the a new equivalent norm |||.||| as the Minkowski functional
of the set

BX = {x ∈ X : F (x) + F (−x) ≤ 3F (0)}

Given x ∈ X with |||x||| = 1 and ε > 0, fix n,m, p ∈ N such that x ∈ An is interior,
m−1ς < ε and x 6∈ An,m,p. Therefore fn(x) < 1 and fn,m,p(x) > 1. By usual
convexity arguments, we fix δ > 0 such that y ∈ BX with |||x + y||| > 2(1 − δ)
forces fn(y) < 1 and fn,m,p(y) > 1, obtaining that y ∈ An \An,m,p. Take H ∈ Hx
disjoint with (1− δ)BX . We have BX ∩H ⊂ An \An,m,p. Since BX ∩H is convex
and disjoint with the interior of An,m,p, using the regularity of η, we deduce that
η(BX ∩H) < ε as we wanted.

It is possible to give several variations on the last theorem, for instance, to
get the norm lower semicontinuous with respect to σ(X,F ) or to restrict the
properties for some subset of X, instead of the whole space. Moreover, if we
are dealing with a homogeneous measure η, which is regular with the help of the
compactness, we may place X into its bidual X∗∗ and prove i)⇔ ii). This is the
case, for instance, of the measure of non weak compactness w.
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