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Abstract

We introduce the notion of finitely dentable map, which extends
some properties of the uniform convexifying operators of Beauzamy to
a non linear frame and provides a characterization of the functions that
can be approximated by differences of convex Lipschitz functions.

1 Introduction

Maps with the point of continuity property appear related to the classical the-
orem of Baire. Recall that a map f : X → Y between topological spaces has
the point of continuity property if the restriction of f to any nonempty closed
subset C ⊂ X has at least a point of continuity. In particular, if Y is a metric
space, then for every ε > 0 and every nonempty subset of C ⊂ X there is an
open set U such that C ∩ U is nonempty and the oscillation of f in C ∩ U is
less than ε. Modifications of the point of continuity property involving geo-
metrical notions have been used in the frame of Banach spaces. Notably, if X
is a Banach space with the Radon-Nikodým property and C ⊂ X is a bounded
closed convex set, then the identity map from (C, w) to (C, ‖.‖) has the point
of continuity property, and moreover, the set C is dentable, that is, for every
ε > 0 is possible to find an open halfspace H such that C ∩ H is nonempty
and has diameter less than ε.

Let C be a closed convex bounded set of a Banach space X and let (Y, ρ) be
a metric space. We say that a map f : C → Y is dentable if for any nonempty
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convex closed subset D ⊂ C and ε > 0 is possible to find an open halfspace H
intersecting D such that ρ-diam(f(D ∩H)) < ε. For any dentable map f we
may consider the following “derivation”

[D]′ε = {x ∈ D : ρ-diam(f(D ∩H)) > ε, ∀H ∈ H, x ∈ H}

Here H denotes the set of all the open halfspaces of X. Clearly, [D]′ε is what
remains of D after removing all the slices of ρ-diameter through f less or equal
than ε. Consider the sequence of sets defined by [C]0ε = C and, for every
n ∈ N, inductively by

[C]nε = [[C]n−1
ε ]′ε

Such a process can be extended to transfinite ordinal numbers in a quite natural
way, and for any dentable map the process finishes at the empty set. We are
interested in the maps for which this derivation process ends after finitely many
steps.

Definition 1.1 The map f : C → Y is said to be finitely dentable if for every
ε > 0 there is n ∈ N such that [C]nε = ∅.

We shall denote by η(ε) the greatest integer such that [C]nε 6= ∅. If we are
dealing with several functions we shall write [C]nf, ε and η(f, ε) for the sets and
index associated with f .

In the remaining part of this introduction we shall try to motivate the use
of the notion of finitely dentable maps by showing how they appear involved
in a few results. We hope that the unexplained notation is standard.

A linear operator T : X → Y between Banach spaces is said uniformly
convex if for every ε > 0, there is δ > 0 such that ‖T (x)−T (y)‖ < ε whenever
x, y ∈ SX and ‖x + y‖ > 2(1− δ). An operator is said uniformly convexifying
if it becomes uniformly convex for some equivalent norm on X. This class of
operators was introduced and studied by Beauzamy [1]. Our next result shows
that finitely dentable maps are a non linear version of uniformly convexifying
operators.

Theorem 1.2 A bounded linear operator T : X → Y between Banach spaces is
uniformly convexifying if, and only if, its restriction to BX is finitely dentable.
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A closed convex bounded set C ⊂ X is said finitely dentable if the inclusion
map into X is so. The unit ball of a superreflexive space is a finitely dentable
set. That is an easy consequence of the existence of an equivalent uniformly
convex norm on X, but can be also deduced from properties of X which are
closer to the definition of superreflexivity, see for instance [8, Lemma 3.1]. An-
other example is the closed convex hull of the canonical basis in c0(Γ). Indeed,
this set is contained in the image of the unit ball of `2(Γ) through the inclusion
operator. The class of finitely dentable sets of a Banach space lies between the
compact and the weakly compact and shares many good properties of those
classes. A compact space is said uniformly Eberlein if it is homeomorphic to a
weakly compact set of a Hilbert space. The next result surveys some properties
of convex bounded finitely dentable sets.

Theorem 1.3 Let C be a closed convex bounded set of a Banach space X
which is finitely dentable. Then C is weakly compact and uniformly Eberlein
in its weak topology. Moreover, there is a uniformly convex linear operator
T : E → X defined on a reflexive Banach space E, such that C ⊂ T (BE).

This last result addresses us again to the work of Beauzamy [1] obtain-
ing benefits from his results, and maybe some overlapping that we have tried
to minimize. Our main motivation for the notion of finite dentability, in-
stead of the tree properties used by Beauzamy, is that this notion seems to
be more suitable in a nonlinear frame. In particular, we shall also deal with
finitely dentable real functions. Haydon, Odell and Rosenthal characterized
the functions on a metric compact space that can be approximated uniformly
by differences of bounded lower semicontinuous functions in terms of indexes
related to the Baire derivation, see Proposition 5.4 for a version of that re-
sult. Cepedello [3], see also [2, p. 94], proved that Lipschitz functions on the
ball of a uniformly convex Banach space can be approximated by differences
of convex Lipschitz functions (“delta-convex”), and this property characterizes
superreflexivity. Finite dentability allows us to give the following characteri-
zation for a single Lipschitz function.

Theorem 1.4 A Lipschitz function f : C → R defined on a closed convex
bounded set C ⊂ X can be uniformly approximated by differences of convex
Lipschitz functions on C if, and only if, it is finitely dentable.

Cepedello’s result appears as a corollary using the fact that the unit ball
of a superreflexive Banach space is actually finitely dentable.
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The paper is organized as follows. In the second section we prove our main
result, Theorem 2.2, which characterizes Lipschitz finitely dentable maps by
a renorming, which is essential for the rest of the paper. The third section
is devoted to the general properties of finitely dentable maps. Convex sets
which are finitely dentable are studied in fourth section, in relation with the
uniformly convexifying operators of Beauzamy [1]. The result about delta-
convex approximation for finitely dentable maps is proved in the last section.

2 An adapted renorming

We shall need some arguments which are usual in renorming theory, see for
instance [4]. The reader can check easily that for any convex function f the
following inequality holds

f(x)2 + f(y)2

2
− f(

x + y

2
)2 ≥

(
f(x)− f(y)

2

)2

≥ 0

It implies the following consequence.

Lemma 2.1 Let p be a seminorm defined on X and let (xn) and (yn) be p-
bounded sequences in X. Then the two following conditions are equivalent:

i) limn(2p(xn)2 + 2p(yn)2 − p(xn + yn)2) = 0

ii) limn(p(yn)− p(xn)) = limn(p(xn+yn

2
)− p(xn)) = 0

The following is a key result for the rest of the paper.

Theorem 2.2 Let C be a closed convex bounded set of a Banach space X and
let f : C → Y be a Lipschitz map into a metric space (Y, ρ). Then the following
are equivalent:

i) The map f is finitely dentable.

ii) There is an equivalent norm |||.||| on X verifying limn ρ(f(xn), f(yn)) = 0
whenever the sequences (xn), (yn) ⊂ C are such that

lim
n

(2|||xn|||2 + 2|||yn|||2 − |||xn + yn|||2) = 0
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iii) There is a convex continuous bounded function Φ : C → R verifying that
for every ε > 0 there is δ > 0 such that ρ(f(x), f(y)) < ε whenever
x, y ∈ C are such that

Φ(x) + Φ(y)

2
− Φ(

x + y

2
) < δ

iv) There is a convex continuous bounded function Φ : C → R verifying that
for every ε > 0 there is δ > 0 such that for any H ∈ H and any r ≥ 0
such that H ∩ {Φ ≤ r} = ∅ then ρ-diam(f(H ∩ {Φ ≤ r + δ})) < ε.

Proof. i) ⇒ ii) We shall use arguments of Lancien’s proof of the Enflo-Pisier
theorem [10] as presented by Godefroy in [8, p. 801]. Without loss of generality,
we may assume that C ⊂ BX and f is 1-Lipschitz.

For k, n ∈ N, we take Nk = η(2−k) and Kn
k = [C]n

2−k . We shall show that
ρ(f(x), f(y)) < 21−k, if the points x, y ∈ Kn

k are such that the segment [x, y]
does not meet Kn+1

k (this is a non linear version of the midpoint argument of
Lancien). Indeed, consider the sets

A = {z ∈ [x, y] : ∃H ∈ H, [x, z] ⊂ H, ρ-diam(f(Kn
k ∩H)) ≤ 2−k}

B = {z ∈ [x, y] : ∃H ∈ H, [z, y] ⊂ H, ρ-diam(f(Kn
k ∩H)) ≤ 2−k}

Clearly we have A and B are nonempty relatively open subsets of [x, y] with
A ∪ B = [x, y], therefore there is z ∈ A ∩ B. By triangle inequality, we get
that ρ(f(x), f(y)) ≤ 21−k.

Consider the 2-Lipschitz (in fact
√

2-Lipschitz) symmetric convex function
F defined on X by the formula

F (x)2 =
∞∑

k=1

Nk∑
n=1

2−k

Nk

d(x,Kn
k )2 +

∞∑

k=1

Nk∑
n=1

2−k

Nk

d(x,−Kn
k )2

We claim that if x, y ∈ C and ρ(f(x), f(y)) > ε, then

F (
x + y

2
)2 ≤ F (x)2 + F (y)2

2
− ε3

2048 η3(ε/8)
(1)

Pick k such that ε/8 ≤ 2−k < ε/4, take γ = ε/4Nk and let n be the maximum
integer such that [x, y] ⊂ Kn

k . Notice that n < Nk since ρ(f(x), f(y)) > ε.
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We shall show that inequality (1) can be deduced from the following: there is
l ∈ N with 1 ≤ l ≤ Nk − n, such that

d(x,Kn+l
k )2 + d(y, Kn+l

k )2

2
− d(

x + y

2
, Kn+l

k )2 ≥ γ2

16
(2)

Indeed, by convexity we have

F (x)2 + F (y)2

2
− F (

x + y

2
)2 ≥ 2−k

Nk

γ2

16
≥ (

ε

8Nk

) (
ε

16Nk

)2 ≥ ε3

2048 η3(ε/8)

using for the last step that η(ε/8) ≥ Nk since ε/8 ≤ 2−k. Now we shall show
that inequality (2) can be deduced of the following
fact: For some l ∈ N with 1 ≤ l ≤ Nk − n, one has

max{d(x,Kn+l
k ), d(y, Kn+l

k )} − d([x, y], Kn+l
k ) ≥ γ (3)

Indeed, if |d(x,Kn+l
k )− d(y,Kn+l

k )| ≥ γ/2 inequality (2) is automatically true
since

d(x,Kn+l
k )2 + d(y, Kn+l

k )2

2
− d(

x + y

2
, Kn+l

k )2 ≥
(

d(x,Kn+l
k )− d(y, Kn+l

k )

2

)2

So we may assume |d(x,Kn+l
k )−d(y, Kn+l

k )| < γ/2. In this case, together with
inequality (3), we obtain that

d([x, y], Kn+l
k ) < min{d(x,Kn+l

k ), d(y,Kn+l
k )} − γ

2

A simple convexity argument implies the following inequality

d(x,Kn+l
k ) + d(y, Kn+l

k )

2
− d(

x + y

2
, Kn+l

k ) ≥ γ

4

Now, we have

d(x,Kn+l
k )2 + d(y,Kn+l

k )2

2
≥

(
d(x,Kn+l

k ) + d(y, Kn+l
k )

2

)2

≥

(
d(

x + y

2
, Kn+l

k ) +
γ

4

)2

≥ d(
x + y

2
, Kn+l

k )2 +
γ2

16

and therefore inequality (2) holds.
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Finally, we shall prove the fact. Assume that it is not true to get a
contradiction. First we shall show by induction on l with 1 ≤ l ≤ Nk − n that

max{d(x,Kn+l
k ), d(y, Kn+l

k )} < lγ (4)

That (4) is true for l = 1 follows from not-(3) together with [x, y]∩Kn+1
k 6= ∅. If

(4) is true for l, there are x′, y′ ∈ Kn+l
k such that ‖x−x′‖ < lγ and ‖y−y′‖ < lγ.

Since f is 1-Lipschitz, we get that ρ(f(x′), f(y′)) > ε/2, so it follows that

[x′, y′] ∩Kn+l+1
k 6= ∅

Take z′ = λx′ + (1 − λ)y′ with λ ∈ [0, 1] such that z′ ∈ Kn+l+1
k and let

z = λx + (1− λ)y. Since ‖z − z′‖ < lγ, we get that

d([x, y], Kn+l+1
k ) < lγ

This inequality together with not-(3) implies that (4) holds for l + 1, which
concludes the induction. Taking l = Nk − n in (4) we obtain

max{d(x,KNk
k ), d(y, KNk

k )} < (Nk − n)γ ≤ ε

4

Using again that f is 1-Lipschitz, we get that there exists points x′, y′ ∈ KNk
k

such that ρ(f(x′), f(y′)) > ε/2. This would imply that [x′, y′] ∩ KNk+1
k 6= ∅,

which is impossible because the last set is empty. This completes the proof of
fact above as well as claim (1).

The construction of the norm |||.||| is performed as follows. Consider an
enumeration (rn) of the rational numbers from the interval (F (0), 4] and let gk

be the Minkowski functional of the convex set {x ∈ X : F (x) ≤ rk} which has
nonempty interior, and for x ∈ X define

|||x|||2 = ‖x‖2 +
∞∑

k=1

λkgk(x)2

where the numbers λk are positive and chosen in such a way that the se-
ries converges uniformly on bounded sets. Suppose we are given sequences
(xn), (yn) ⊂ C verifying that

lim
n

(2|||xn|||2 + 2|||yn|||2 − |||xn + yn|||2) = 0

To prove that limn ρ(f(xn), f(yn)) = 0 it enough to show that any subsequence
of indexes nk has a further subsequence nkj

such that

lim
j

ρ(f(xnkj
), f(ynkj

)) = 0.
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To simplify the writing, we shall not use explicit symbols for subsequences.
By Lemma 2.1, passing to a subsequence, we may assume the existence of the
following limits and equalities

lim
n
|||xn||| = lim

n
|||yn||| = lim

n
|||xn + yn

2
|||

lim
n

gk(xn) = lim
n

gk(yn) = lim
n

gk(
xn + yn

2
) = Lk (5)

for every k ∈ N. Passing to a further subsequence we may assume the existence
of the limits

lim
n

F (xn) = α; lim
n

F (yn) = β; lim
n

F (
xn + yn

2
) = γ

We claim that α = β = γ. Indeed, we shall show that α > β leads to a
contradiction and the other inequalities are similar. Take δ = α − β and a
rational r such that α − δ/3 < r < α. Let k ∈ N such that rk = r and take
n ∈ N large enough to have F (xn) > r and F (yn) < β + δ/3. Let Sk denote
the unit sphere of gk. Since F is 2-Lipschitz, we have d(yn, Sk) > δ/6. Having
in mind that ‖yn‖ ≤ 1, we obtain the upper estimation

gk(yn) <
6

6 + δ

On the other hand, we have gk(xn) ≥ 1. Since limn gk(xn) = limn gk(yn) we
get a contradiction which finishes the proof of the claim.

Once we know that

lim
n

F (xn) = lim
n

F (yn) = lim
n

F (
xn + yn

2
)

the inequality (1) above implies that limn ρ(f(xn), f(yn)) = 0 which finishes
the proof of statement ii).
ii) ⇒ iii) Just take Φ(x) = |||x|||2.
iii) ⇒ iv) It is trivial.
iv) ⇒ i) By adding a constant, we may suppose that function Φ is positive.
Let M = sup{Φ(x) : x ∈ C}. It is easy to see that η(ε) ≤ δ−1M .

The following two corollaries are concerned with the adapted renorming for
several functions.
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Corollary 2.3 Suppose we are given a sequence of Lipschitz finitely dentable
maps fk : C → Yk, for k ∈ N, with the same closed convex bounded do-
main C ⊂ X. Then there exists an equivalent norm |||.||| on X such that
limn ρk(fk(xn), fk(yn)) = 0 for every k ∈ N whenever the sequences (xn), (yn) ⊂
C verifies

lim
n

(2|||xn|||2 + 2|||yn|||2 − |||xn + yn|||2) = 0

Proof. Let |||.|||k the equivalent norm on X for the map fk given by Theo-
rem 2.2. Define the norm |||.||| by the formula

|||x|||2 =
∞∑

k=1

λk |||x|||k2

where the numbers (λk) are positive and such that the series converges uni-
formly on bounded sets. A convexity argument implies that the norm |||.|||
verifies the desired property.

Definition 2.4 Let fi : C → Yi be a family of maps, with i ∈ I, defined on
a closed convex bounded set C with values into metric spaces (Yi, ρi). We say
that {fi : i ∈ I} is finitely equi-dentable if for every ε > 0 there exists a finite
sequence of closed convex sets

∅ = C0 ⊂ C1 ⊂ C2 ⊂ . . . ⊂ CN = C

such that if S is a slice of Ck+1 not meeting Ck, where 0 ≤ k < N , then we
have ρi-diam(fi(S)) < ε for every i ∈ I.

Clearly, if a singleton {f} is a finitely equi-dentable family, then f is finitely
dentable. To see that the converse is also true apply iv) of Theorem 2.2 or the
first argument of its proof.

Corollary 2.5 Let fi : C → Yi be an equi-Lipschitz family of maps, with
i ∈ I, defined on a closed convex bounded set C with values into metric spaces.
Then the family is finitely equi-dentable if, and only if, there exists an equiva-
lent norm |||.||| on X such that limn supi∈I ρi(fk(xn), fk(yn)) = 0 whenever the
sequences (xn), (yn) ⊂ C verifies

lim
n

(2|||xn|||2 + 2|||yn|||2 − |||xn + yn|||2) = 0

Proof. Consider the metric space Y =
∏

i∈I Yi with the metric ρ = supi∈I ρi.
The hypothesis implies that the joint map (fi)i∈I , defined on C with values
into Y , is Lipschitz and finitely dentable. It is clear that the norm |||.||| given
by Theorem 2.2 verifies the desired condition. For the converse, use a suitable
version of iv) from Theorem 2.2.
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3 Properties of finitely dentable maps

In this section we list properties of finitely dentable maps. Some of them follow
from Theorem 2.2.

Proposition 3.1 Let f : C → Y a map defined on a closed convex bounded
set which can be approximated uniformly by finitely dentable maps. Then f is
finitely dentable.

Proof. Given ε > 0, consider a finitely dentable map g such that ‖f − g‖∞ <
ε/3. Then it is easy to se that [D]′f, ε ⊂ [D]′g, ε/3 for any convex D ⊂ C. This

implies that η(f, ε) is finite.

Proposition 3.2 Suppose that the maps fk : C → Yk defined on a closed
convex bounded set are Lipschitz and finitely dentable for k = 1, . . . , n. If
h : Y1× . . .×Yn → Y is Lipschitz (with some reasonable product metric), then
the composition h(f1, . . . , fn) is finitely dentable.

Proof. It follows easily from Corollary 2.3.

Corollary 3.3 Let f1, f2 : C → Y be Lipschitz finitely dentable maps from a
closed convex bounded set of a Banach space X into a metric space (Y, ρ) and
let ∗ : Y × Y → Y be an operation which is Lipschitz on bounded sets. Then
the map f = f1 ∗ f2 is finitely dentable.

Corollary 3.4 The set of Lipschitz finitely dentable maps from a closed convex
bounded set of a Banach space X into a metric space Y inherits the structure of
Y for the following ones: complete metric space, normed linear space, normed
algebra and normed lattice.

Proof. It follows from Proposition 3.1 and Corollary 3.3.

Proposition 3.5 If a family {fi : i ∈ I} of Lipschitz finitely dentable maps is
relatively compact in C(C, Y ), then it is finitely equi-dentable.

Proof. First prove that a finite set of maps is finitely equi-dentable. To do
that use the equivalent norm on X given by Corollary 2.3 which satisfies the
condition ii) of Theorem 2.2 for the joint map to the product space endowed
with the supremum metric. Then apply iv) of Theorem 2.2 to get the sequence
of convex sets. Since {fi : i ∈ I} is totally bounded, the result follows applying
the idea from the proof of Proposition 3.1.
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Remark 3.6 It is easy to see that the finitely equi-dentability of a family is
preserved by the pointwise closure.

Some properties proved in this section allow us to produce new finitely
dentable maps from previous ones. The following result shows that to know
if a map is finitely dentable a reduction to more elementary maps is possible,
sometimes.

Proposition 3.7 Let f : K × C → Y be a Lipschitz map, where K ⊂ X1 is
compact convex and C ⊂ X2 is closed convex bounded, X1 and X2 are Banach
spaces. Suppose that for every x ∈ K, the map fx = f(x, ∗) is finitely dentable
as a map on C. Then f is finitely dentable.

Proof. Since K is separable, there is an equivalent norm ‖.‖1 on X1 which is
strictly convex on the linear space spanned by K. Using the compactness of
K, it is easy to prove that ‖.‖1 satisfies ii) of Theorem 2.2 (in particular, we
get that K is finitely dentable). The family of maps {fx : x ∈ K} defined on C
above is compact in C(C, Y ) and thus finitely equi-dentable by Proposition 3.5.
Let ‖.‖2 be the norm on X2 given by Corollary 2.5. Define an equivalent norm
|||.||| on X1 ×X2 by |||(r, x)|||2 = ‖r‖2

1 + ‖x‖2
1. We claim that this norm satisfies

condition ii) of Theorem 2.2 for f . Indeed, take sequences (rn, xn) and (sn, yn)
such that

lim
n

2|||(rn, xn)|||2 + 2|||(sn, yn)|||2 − |||(rn + sn, xn + yn)|||2 = 0

By convexity, we have

lim
n

2‖rn‖2
1 + 2‖sn‖2

1 − ‖rn + sn‖2
1 = 0

lim
n

2‖xn‖2
2 + 2‖yn‖2

2 − ‖xn + yn‖2
2 = 0

We deduce that limn ‖rn − sn‖ = 0 and limn ρ(f(p, xn), f(p, yn)) = 0 for ev-
ery p ∈ K. We want to prove that lim ρ(f(rn, xn), f(sn, yn)) = 0. Assume
that this is false, so passing to a subsequence ρ(f(rn, xn), f(sn, yn)) > ε. By
compactness, we may assume also that there exists

lim
n

rn = lim
n

sn = p ∈ K

Since f is Lipschitz, we have ρ(f(p, xn), f(p, yn)) > ε for n large enough, but
this is a contradiction with a former equality.
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4 Convex finitely dentable sets

In this section we study the properties of the finitely dentable closed convex
bounded subsets of Banach spaces. It can be show that finite dentability
for symmetric convex sets is equivalent to the finite tree property used by
Beauzamy in [1], that we shall not consider here.

Lemma 4.1 Let C,D ⊂ X be convex weakly compact sets with C ⊂ D such
that every open slice of D which is disjoint with C has diameter less than
s > 0. Then every open slice of D + B[0, r] which is disjoint with C + B[0, r]
has diameter less than s + 2r > 0 for any r > 0.

Proof. Put Cr = C + B[0, r] and Dr = D + B[0, r]. Take a slice of the form
S1 = {x ∈ Dr : x∗(x) > a}, where ‖x∗‖ = 1, which does not meet Cr. The
slice S2 = {x ∈ D : x∗(x) > a − r} does not meet C because if it is the
case then S1 meets Cr. Take points x, y ∈ S1 and find points x′, y′ ∈ D such
that ‖x − x′‖ ≤ r and ‖y − y′‖ ≤ r. We claim that x′, y′ ∈ S2. Indeed, if
x∗(x′) ≤ a− r, then ‖x− x′‖ > r since x∗(x) > a. As ‖x′− y′‖ < s, we deduce
that ‖x− y‖ < s + 2r.

Lemma 4.2 Let C ⊂ X a convex subset such that for every ε > 0 there is
finitely dentable closed convex bounded set D such that C ⊂ D + B[0, ε]. Then
C is finitely dentable.

Proof. Lemma 4.1 implies that every open slice of [D]nε/6 + B[0, ε/3] which

does not meet [D]n+1
ε/6 + B[0, ε/3] has diameter less than ε. We deduce that

η(C, ε) ≤ η(D, ε/6) and therefore C is finitely dentable.

Proposition 4.3 a) Every compact convex set is finitely dentable.

b) Every finitely dentable closed convex bounded set is weakly compact.

Proof. a) Assume that C is compact. Any equivalent strictly convex norm on
the closed span of C satisfies ii) of Theorem 2.2 (this was used in the proof of
Proposition 3.7). We shall provide a direct proof. For every ε > 0 we may take
a finite dimensional compact convex subset D ⊂ C such that C ⊂ D +B[0, ε].
Then C is finitely dentable by Lemma 4.2.
b) Let C ⊂ X be a finitely dentable closed convex bounded set. Regarding C

as a subset of the bidual X∗∗, we shall show that C
w∗

= C. Take x ∈ C
w∗
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and ε > 0. Let n be such that x ∈ [C]nε
w∗

but x 6∈ [C]n+1
ε

w∗
. There is a weak∗

open half space H such that x ∈ H and [C]n+1
ε

w∗ ∩H = ∅. By the midpoint
argument of Lancien, the diameter of [C]nε ∩H does not exceed 2ε. We have

diam([C]nε
w∗ ∩H) = diam([C]nε ∩H

w∗
) = diam([C]nε ∩H) ≤ 2ε

and thus d(x,C) ≤ 2ε. Since ε was arbitrary x ∈ C.

The following list several facts about finite dentability for sets.

Proposition 4.4 a) The image of a finitely dentable closed convex bounded
set through a bounded linear operator is finitely dentable.

b) The product of finitely dentable closed convex bounded sets in a finite
direct sum of Banach spaces is finitely dentable.

c) The sum and the convex hull of two finitely dentable closed convex bounded
sets is finitely dentable. The absolutely convex hull of a finitely dentable
closed convex bounded set is also finitely dentable.

Proof. a) Let T : X → Y be a bounded linear operator and C ⊂ X a finitely
dentable convex set. Any slice of T ([C]nε ) not meeting the closed convex set
T ([C]n+1

ε ) has diameter less than 2ε‖T‖.
b) Let Ci ⊂ Xi be finitely dentable closed convex bounded sets for 1 ≤ i ≤ n.
Consider on

⊕n
i=1 Xi the equivalent norm |||.||| defined by

|||(x1, . . . , xn)|||2 =
n∑

i=1

|||xi|||2i

where |||.|||i is norm on Xi satisfying condition ii) of Theorem 2.2 for the set
Ci. It is not difficult to show using Lemma 2.1 and Theorem 2.2 again that
Πn

i=1Ci is finitely dentable.
c) The result for the sum C1 +C2 follows from parts a) and b). For the convex
hull of C1 and C2, take points xi ∈ Ci and consider the segments [0,−xi] join-
ing 0 and −xi. Then apply the previous case to the sums Di = Ci + [0,−xi]
and D1+D2 to obtain a finitely dentable closed convex bounded set containing
both C1 and C2.

The interpolation of uniformly convexifying operators was already consid-
ered by Beauzamy in [1]. We shall proof the following interpolation result for
the sake of completeness.
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Theorem 4.5 Let C ⊂ X be a finitely dentable closed convex bounded set.
Then there exists a reflexive Banach space E and an injective bounded linear
operator T : E → X such that T (BE) is finitely dentable and contains C.

Proof. By Proposition 4.4 c) there is an absolutely convex weakly compact
K ⊂ X which is finitely dentable and contains C. The interpolation method
of Davis-Figiel-Johnson-Pelzynski, see [7, p. 366] provides a reflexive Banach
space E and a bounded linear injective operator such that

T (BE) ⊂ 2nK + B[0, 2−n]

for every n ∈ N. Lemma 4.2 implies that T (BE) is finitely dentable.

Theorem 1.2 is a consequence of the following.

Proposition 4.6 For a bounded linear operator T : X → Y between Banach
spaces the following conditions are equivalent:

i) T is uniformly convexifying.

ii) T restricted to BX is finitely dentable.

iii) T (BX) is finitely dentable.

Proof. i) ⇔ ii) Follows from Theorem 2.2.
i) ⇒ iii) Without loss of generality we may assume that the norm of X makes
T uniformly convex and T has norm one. Given ε > 0, take δ > 0 such that the
images by T of the open slices of BX not meeting (1−δ)BX have diameter less
than ε. It is easy to see that any open slice of T (BX) not meeting (1−δ)T (BX)
has diameter less than ε. By iteration we can deduce that T (BX) is finitely
dentable.
iii) ⇒ i) Let ‖.‖u an equivalent norm on Y verifying ii) of Theorem 2.2 for
the inclusion of T (BX) into Y . Define an equivalent norm |||.||| on X by the
formula

|||x|||2 = ‖x‖2 + ‖T (x)‖u
2

A simple convexity argument shows that |||.||| verifies ii) of Theorem 2.2 for the
map T on BX .

We shall need these notions. The norm ‖.‖ of a Banach space is said weak
uniformly rotund (WUR) if w-limn(xn − yn) = 0 (limit in the weak topology)
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provided that ‖xn‖ = ‖yn‖ = 1 and limn ‖xn + yn‖ = 2. Weak∗ uniformly
rotund norms (W∗UR) are defined analogously for dual Banach spaces.

Proof of Theorem 1.3. We already have that C is weakly compact by
Proposition 4.3 and the operator T : E → X is given by Theorem 4.5, which
is uniformly convex after a suitable renorming of E by Proposition 4.6. To
show that C is uniformly Eberlein , is enough to prove that for BE since C
embeds homeomorphically into BE. Since T is uniformly convex, we have w-
limn(T (xn) − T (yn)) = 0 whenever ‖xn‖ = ‖yn‖ = 1 and limn ‖xn + yn‖ = 2.
This implies w-limn(xn − yn) = 0 since T restricted to the unit ball is a weak
homeomorphism. Therefore the norm on E is WUR, and thus W∗UR because
E is reflexive. A result of Fabian-Godefroy-Zizler [6] states that a dual Banach
space with a W∗UR norm has weak∗ uniformly Eberlein dual unit ball. This
finishes the proof.

A uniformly convex operator may not factor through a superreflexive Ba-
nach space [1], but we at least we have the following.

Corollary 4.7 A uniformly convex operator factors through a reflexive Ba-
nach space with uniformly Eberlein unit ball.

Considering finite dentability with respect to topologies weaker than the
weak topology has no interest since finitely dentable closed convex bounded
set are weakly compact. The situation changes if we measure diameters with
respect to a metric coarser than the norm. For instance we may consider weak∗

dentability of subsets in a dual X∗ with respect to the uniform convergence on
a bounded total subset of X.

Corollary 4.8 Let X be a Banach space containing a total finitely dentable
closed convex bounded set C. Then (BX∗ , w∗) is uniformly Eberlein and finitely
weak∗-dentable for the norm of uniform convergence on C.

Proof. There is a uniformly convex operator T : E → X from a reflexive
space with dense range. The adjoint operator T ∗ : X∗ → E∗ is injective
and uniformly convexifying by a result of Beauzamy [1]. We may construct
an equivalent W∗UR norm on X∗ as in the proof of Theorem 1.3, therefore
(BX∗ , w∗) is uniformly Eberlein by [6]. Observe BX∗ is finitely weak∗-dentable
for the norm of uniform convergence on T (BE∗) which is stronger than the
uniform convergence on C.
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We shall finish the section explaining the lack of interest of finitely dentable
closed non-convex bounded sets.

Example 4.9 There exists a reflexive Banach space X and a finitely dentable
weakly compact subset K ⊂ X such that the closed convex hull of K is not
finitely dentable.

Proof. Take a reflexive space X such that BX∗ is not uniformly Eberlein.
Let {xi, x

∗
i }i∈I ⊂ X × X∗ a Markushevich basis of X with ‖xi‖ = 1. Then

K = {xi : i ∈ I} ∪ {0} is weakly compact and finitely dentable. Indeed,
[K]′ε = {0} for any 0 < ε < 1, since {xi} = K ∩ Hi where Hi = {x ∈ X :
x∗i (x) > 1/2}, therefore [K]2ε = ∅. The closed convex hull of K is not finitely
dentable because if it is not the case, then the previous corollary would imply
that BX∗ is uniformly Eberlein.

5 Differences of convex functions

In this section we shall apply the notion of finite dentability to know when
a function defined on a closed convex bounded set can be approximated by
differences of Lipschitz convex functions. Criterions to know if a given function
is actually a difference of two good convex functions can be found in [5].

Proposition 5.1 The difference of two bounded convex lower semicontinuous
functions defined on a closed convex set is finitely dentable.

Proof. Firstly we shall assume that f is convex lower semicontinuous. Take
m = infC f , M = supC f and fix ε > 0. It is easy to prove that the following
inclusion holds

[C]nε ⊂ f−1([m, M − nε])

which implies the finite dentability of f .
Suppose now that f = f1 − f2 where f1 and f2 are bounded convex lower

semicontinuous functions. Without loss of generality we may assume that they
are also positive. Consider the bounded convex lower semicontinuous function
g(x) = f1(x)2 + f2(x)2. By convexity we have the following inequalities

|f(x)− f(y)|2 ≤ (|f1(x)− f1(y)|+ |f2(x)− f2(y)|)2

≤ 2
(
(f1(x)− f1(y))2 + (f2(x)− f2(y))2

)
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≤ 8

(
f1(x)2 + f1(y)2

2
− f1(

x + y

2
)2

)
+ 8

(
f2(x)2 + f2(y)2

2
− f2(

x + y

2
)2

)

= 8

(
g(x) + g(y)

2
− g(

x + y

2
)

)

The finite dentability of g and this relation imply that f is finitely dentable.

Proof of Theorem 1.4. Differences of Lipschitz convex functions are finitely
dentable by Proposition 5.1, and by Proposition 3.1 we can pass to the uniform
closure.

Assume that f is Lipschitz and finitely dentable. Let |||.||| the norm given
by ii) of Theorem 2.2. We will follow Cepedello’s construction [3], but the fact
that f is bounded will simplify the proof. Define a sequence of functions

fn(x) = inf
y∈C
{f(y) + n(2|||x|||2 + 2|||y|||2 − |||x + y|||2)}

Notice that fn can be decomposed as a difference of convex Lipschitz functions

fn(x) = 2n|||x|||2 − sup
y∈C

{n|||x + y|||2 − 2n|||y|||2 − f(y)}

We also have that the sequence (fn) is increasing and fn(x) ≤ f(x). If y ∈ C
is such that

f(y) + n(2|||x|||2 + 2|||y|||2 − |||x + y|||2) ≤ f(x) (6)

we can deduce

0 ≤ 2|||x|||2 + 2|||y|||2 − |||x + y|||2 ≤ n−1(f(x)− f(y)) ≤ n−1diam(f(C))

Given ε > 0, if n ∈ N is large enough we have |f(x)− f(y)| < ε for any y ∈ C
satisfying (6). Thus fn(x) ≥ f(x) − ε, which shows that (fn) converges to f
uniformly on C.

Remark 5.2 Notice that Proposition 5.1 and Proposition 3.1 do not use the
Lipschitz property. Therefore we actually get that a Lipschitz function f which
can be uniformly approximated by differences of bounded convex lower semicon-
tinuous functions is finitely dentable, and thus f can be uniformly approximated
by differences of Lipschitz convex functions.

The next corollary extends Cepedello’s result [3]
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Corollary 5.3 Let C be a finitely dentable closed convex bounded set. Then
any uniformly continuous function defined on C can be approximated uniformly
by differences of convex Lipschitz functions.

Proof. The result is a direct consequence of Theorem 1.4 for Lipschitz func-
tions. If f is uniformly continuous, then the problem can be reduced to the
Lipschitz case using, for instance, the sequence

fn(x) = inf{f(y) + n‖x− y‖ : y ∈ C}

of Moreau-Yoshida which converges uniformly to f .

We shall briefly sketch the argument to obtain Cepedello’s converse result
within the frame of finitely dentable functions, that is, if X is not superreflexive
there exists a function defined on BX that cannot be approximated uniformly
by differences of bounded convex continuous functions. Indeed, if X is not su-
perreflexive, then there is ε > 0 such that for every n ∈ N there is a dyadic tree
{xs : s ∈ {0, 1}≤n} of height n inside BX . This tree can be taken ε-discrete,
see [2, p. 412] for instance. Let fn be the distance to the union of the even
levels {xs : |s| ∈ 2N}. It is easy to see that η(f, ε) ≥ n − 1. Consider now
a 1/3-discrete sequence (Bn) of balls of radius 1/3 inside BX . By similarity,
we may take a ε/3-discrete dyadic tree of height n inside Bn. The same con-
struction that before will provide a non finitely dentable function f , which
is not uniformly approximated by differences of bounded convex continuous
functions by Theorem 1.4 and Remark 5.2.

To finish we shall give the topological counterpart of Theorem 1.4. Let Z
be a topological space and Y a metric space. Given a map f : Z → Y , for any
closed subset D ⊂ Z and ε > 0 we shall consider the following derivation

(D)′ε = {x ∈ D : ρ-diam(f(D ∩ U)) > ε, ∀U ∈ V(x)}

Consider the sequence starting by (Z)0
ε = Z and, inductively, (Z)n

ε = ((Z)n−1
ε )′ε

for every n ∈ N. We say that the map f is finitely fragmentable if for every
ε > 0 there is n ∈ N such that (Z)n

ε = ∅.

The following is a reformulation of a result due to Haydon, Odell and
Rosenthal [9].
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Theorem 5.4 A bounded function f : Z → R can be approximated uniformly
by differences of bounded lower semicontinuous functions if, and only if, it is
finitely fragmentable.

Proof (Sketch). It is not difficult to see that a bounded lower semicontinuous
function is finitely fragmentable and that property is stable by differences and
uniform limits.
Let f be bounded and finitely fragmentable. Let ε > 0 and Fε a finite subset
of reals such that d(f(x), Fε) < ε for every x ∈ Z. It is easy to find a finite
cover (Uk,j) of (Z)k

ε \ (Z)k+1
ε made up of relatively open subsets (and there-

fore they belong to the algebra A of differences of open subsets of Z) such
that d(f(Uk,j), λk,j) < ε for some λk,j ∈ Fε. The sets Ak,j = Uk,j \

⋃
i<j Uk,i

belong to A, and thus its characteristic function χAk,j
is a difference of lower

semicontinuous functions. The construction above allows us to build a linear
combination g =

∑
λk,jχAk,j

with λk,j ∈ Fε such that ‖f − g‖∞ < ε. We
get that g can be expressed as a difference of bounded lower semicontinuous
functions.

I want to thank the Referee for the valuable help during the preparation
of the definitive version of this paper.
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[1] B. Beauzamy, Opérateurs uniformément convexifiants, Studia Math. 57 (1976), no.
2, 103–139.

[2] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1,
American Mathematical Society Colloquium Publications 48, 2000.

[3] M. Cepedello-Boiso, Approximation of Lipschitz functions by ∆-convex functions
in Banach spaces, Israel J. Math. 106 (1998), 269–284.

[4] R. Deville, G. Godefroy, V. Zizler, Smoothness and Renorming in Banach
Spaces, Pitman Monog. and Surveys 64, 1993.
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