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Abstract
We prove that a bounded convex lower semicontinuous function defined
on a convex compact set K is continuous at a dense subset of extreme
points. If there is a bounded strictly convex lower semicontinuous function
on K, then the set of extreme points contains a dense completely metrizable
subset.

1 Introduction

The celebrated Krein-Milman theorem, see [2, 25.12] for instance, establishes the
existence of extreme points in convex compact sets. On the other hand, it is well
known that some kinds of functions on a compact space have points of continuity,
such as the semicontinuous or the Baire-one functions. It is known that an affine
Baire-one function defined on a convex compact set K of a locally convex space
is continuous at a dense set of ext K, see [5, Lemma I1.2] where a more general
result is proved. Here we shall prove a similar result for convex functions under
usual hypothesis.

Theorem 1.1 Let K be a convexr compact subset of a locally convexr space and
let f: K — R be a bounded convex lower semicontinuous function. Then ext K
contains a dense subset of continuity points of f.

The proof of this theorem depends on the result of Choquet establishing that
ext K is a Baire space, see [2, 27.9]. Hervé proved in [7] that the existence of
a continuous strictly convex function on K implies its metrizability, giving as a
consequence that ext K is a Polish space. We apply Theorem 1.1 to prove the
following related result.

Theorem 1.2 Let K be a convex compact subset of a locally convex space. If
there exists a bounded strictly convex lower semicontinuous function f : K — R,
then ext K contains a dense subset which is Gs in K and completely metrizable.

These hypotheses also imply that K contains a dense Gs set which is completely
metrizable, by results of Ribarska using the notion of fragmentability, see [10, 11].
Theorem 1.2 extends a result from [6]. It is clear that Theorems 1.1 and 1.2 remain
true changing convex lower semicontinuous to concave upper semicontinuous.



2 Proofs and comments

The geometrical arguments used to prove Theorem 1.1 come from Namioka’s study
[8] of topological properties of the set of extreme points. Later, Bourgain applied
these ideas to dentability and the Radon-Nikodym property in Banach spaces, see
chapter 3 of [1]. A slice of a given set K is the intersection of K with an open half
space. We shall use continuously the so called Choquet’s Lemma, see for instance
[2,25.13] or [4, p. 77]: if K is convex compact any x € ext K has a neighbourhood
basis made up of slices.

Proof of Theorem 1.1. First recall that a l.s.c. function on a Baire space has
a dense set of continuity points. Since ext K is a Baire space [2, 27.9], it contains
a dense subset of continuity points of flext - We shall prove that actually that
set is made of continuity points of f.

Adding a constant we may assume that f is non negative. Let M > 0 be an
upper bound for f. Take any = € ext K where f|oxt  is continuous. To show that
f is continuous at z it is enough to check upper semicontinuity. Fix 0 < ¢ < M !
and take an open half space H such that

reHNext K C{ye K: f(y) < f(z) +¢}
which is possible by continuity. Define
Cr={yeK: f(y) < fl@)+e}nH
Cy=K\H

which are closed convex subsets of K with ext K C C7 U Cs by construction.
Therefore, the convex hull of Cy U Cs is K. Consider the set

C={(1 =Nz +Ava: 21 € Ch; 79 € Ca; A € [%,1]}

which is closed and convex and = ¢ C by extremality. Then K \ C is an open
neighbourhood of z. If y € K\ C, then y = (1 — A\)x1 + A\xy where 21 € CY,
x2 € Oz and 0 < A < 5. By convexity, we have

F©) < (L= N (@) + Af(we) < f(@) +e+ 5 M = f(@) +2

which completes the proof of the upper semicontinuity of f at x. [ |
Notice that the isolated extreme points must be continuity points of f.

Proof of Theorem 1.2. It is convenient to introduce the “symmetric”
r+y

f@)+ 1) )
2

p(z,y) = 5 = f(
which has the property that p(z,y) = 0 implies = y by strict convexity.
Claim: Let U C K be an open set which is dense in the relative topology of ext K
and € > 0. Then there exists a family & of open slices of K with the following
properties:




a) For every S € 6, S C U and z,y € S implies p(z,y) < €.
b) The closures of the members of & are disjoint on ext K.
¢) The union V of the members of & is dense in the relative topology of ext K.

To prove the claim just take a maximal family with properties a) and b). We shall
prove that condition ¢) is fulfilled. Indeed, if it is not the case, by Theorem 1.1
we may find x € U Next K where f is continuous such that x ¢ V Next K. Take
S a slice containing x, with S C U disjoint from V Next K and such that the
oscillation of f on S is less than £/2. An easy computation gives that p(y, z) < €
for any y,z € S. Then & U {S} violates the maximality.

Starting with &9 = {K} define inductively families &,, satisfying the claim
with U the union of &,,_1 and € = 1/n. Let U, be the union of &,, and take
Z =y Uy. We claim that Z C ext K. Indeed, if 2 € Z then there are slices
Sn, € 6,, containing z. If x is not extreme, put z = % nontrivially. Then
SnN{y, z} # 0, and therefore we have either p(z,y) < 1/n or p(z,z) < 1/n giving
a contradiction. Notice that the sequence (S,) for z is unique and S,, C S, 41.
By compactness, (S,) is a local base at x for the topology. The metrizability of Z
follows from Bing’s theorem [3, 4.4.8], since every family &,, is discrete relatively
on Z. The metric can be chosen complete because Z is Cech-complete as a Gs
subset of a compact space [3, 4.3.26]. The density of Z in ext K is clear from the
construction. [ ]

To finish we shall consider an application to Banach spaces. Let X be a normed
space and 7 a locally convex topology on X. A point x € K is said to be T-denting
if it is contained in 7-open slices of K of arbitrarily small norm diameter. The
norm of X is said to be 7-Kadec if on the unit sphere the norm topology and 7
coincide. The following result is a version of [4, Exercise 8.88] which was a main
motivation for this paper.

Example 2.1 Let X have a T7-Kadec norm and let K C X be convex and -
compact. Then the x € K is T-denting if, and only if, v € ext K and the restriction
of the norm to K is T-continuous at x.

Proof. One of the implications is obvious. Given ¢ > 0, the Kadec property
implies that there is a 7-open neighbourhood U of x and § > 0 such that if
Nyl = llz]l| < & then |ly — x| < /2. If the norm is 7-continuous at z, then
it is possible to find a 7-open neighbourhood V of x, such that y € V implies
llyll = llz|l| < é. Therefore the norm diameter of U NV is less than e. If z is
extreme, just take a slice S such that t € SCUNV. [ |

Since a 7-Kadec norm is 7-l.s.c. see [4, Exercise 8.86], from the above and
Theorem 1.1 one obtains the weak*-dentability of bounded subsets in dual spaces
with a weak*-Kadec norm [9] and the dentability of weakly compact sets, via
the renorming theorem of Troyanski [12]. In all these cases, the set given by
Theorem 1.2 can be replaced by the set of 7-denting points which is metrized by
the norm.
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