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Abstract

We prove that a bounded convex lower semicontinuous function defined
on a convex compact set K is continuous at a dense subset of extreme
points. If there is a bounded strictly convex lower semicontinuous function
on K, then the set of extreme points contains a dense completely metrizable
subset.

1 Introduction

The celebrated Krein-Milman theorem, see [2, 25.12] for instance, establishes the
existence of extreme points in convex compact sets. On the other hand, it is well
known that some kinds of functions on a compact space have points of continuity,
such as the semicontinuous or the Baire-one functions. It is known that an affine
Baire-one function defined on a convex compact set K of a locally convex space
is continuous at a dense set of ext K, see [5, Lemma II.2] where a more general
result is proved. Here we shall prove a similar result for convex functions under
usual hypothesis.

Theorem 1.1 Let K be a convex compact subset of a locally convex space and
let f : K → R be a bounded convex lower semicontinuous function. Then extK
contains a dense subset of continuity points of f .

The proof of this theorem depends on the result of Choquet establishing that
ext K is a Baire space, see [2, 27.9]. Hervé proved in [7] that the existence of
a continuous strictly convex function on K implies its metrizability, giving as a
consequence that ext K is a Polish space. We apply Theorem 1.1 to prove the
following related result.

Theorem 1.2 Let K be a convex compact subset of a locally convex space. If
there exists a bounded strictly convex lower semicontinuous function f : K → R,
then extK contains a dense subset which is Gδ in K and completely metrizable.

These hypotheses also imply that K contains a dense Gδ set which is completely
metrizable, by results of Ribarska using the notion of fragmentability, see [10, 11].
Theorem 1.2 extends a result from [6]. It is clear that Theorems 1.1 and 1.2 remain
true changing convex lower semicontinuous to concave upper semicontinuous.
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2 Proofs and comments

The geometrical arguments used to prove Theorem 1.1 come from Namioka’s study
[8] of topological properties of the set of extreme points. Later, Bourgain applied
these ideas to dentability and the Radon-Nikodým property in Banach spaces, see
chapter 3 of [1]. A slice of a given set K is the intersection of K with an open half
space. We shall use continuously the so called Choquet’s Lemma, see for instance
[2, 25.13] or [4, p. 77]: if K is convex compact any x ∈ ext K has a neighbourhood
basis made up of slices.

Proof of Theorem 1.1. First recall that a l.s.c. function on a Baire space has
a dense set of continuity points. Since extK is a Baire space [2, 27.9], it contains
a dense subset of continuity points of f |extK . We shall prove that actually that
set is made of continuity points of f .

Adding a constant we may assume that f is non negative. Let M > 0 be an
upper bound for f . Take any x ∈ extK where f |extK is continuous. To show that
f is continuous at x it is enough to check upper semicontinuity. Fix 0 < ε < M−1

and take an open half space H such that

x ∈ H ∩ ext K ⊂ {y ∈ K : f(y) ≤ f(x) + ε}
which is possible by continuity. Define

C1 = {y ∈ K : f(y) ≤ f(x) + ε} ∩H

C2 = K \H

which are closed convex subsets of K with ext K ⊂ C1 ∪ C2 by construction.
Therefore, the convex hull of C1 ∪ C2 is K. Consider the set

C = {(1− λ)x1 + λx2 : x1 ∈ C1; x2 ∈ C2; λ ∈ [
ε

M
, 1]}

which is closed and convex and x 6∈ C by extremality. Then K \ C is an open
neighbourhood of x. If y ∈ K \ C, then y = (1 − λ)x1 + λx2 where x1 ∈ C1,
x2 ∈ C2 and 0 < λ < ε

M . By convexity, we have

f(y) ≤ (1− λ)f(x1) + λf(x2) < f(x) + ε +
ε

M
M = f(x) + 2ε

which completes the proof of the upper semicontinuity of f at x.

Notice that the isolated extreme points must be continuity points of f .

Proof of Theorem 1.2. It is convenient to introduce the “symmetric”

ρ(x, y) =
f(x) + f(y)

2
− f(

x + y

2
)

which has the property that ρ(x, y) = 0 implies x = y by strict convexity.
Claim: Let U ⊂ K be an open set which is dense in the relative topology of ext K
and ε > 0. Then there exists a family S of open slices of K with the following
properties:
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a) For every S ∈ S, S ⊂ U and x, y ∈ S implies ρ(x, y) < ε.

b) The closures of the members of S are disjoint on ext K.

c) The union V of the members of S is dense in the relative topology of ext K.

To prove the claim just take a maximal family with properties a) and b). We shall
prove that condition c) is fulfilled. Indeed, if it is not the case, by Theorem 1.1
we may find x ∈ U ∩ ext K where f is continuous such that x 6∈ V ∩ extK. Take
S a slice containing x, with S ⊂ U disjoint from V ∩ ext K and such that the
oscillation of f on S is less than ε/2. An easy computation gives that ρ(y, z) < ε
for any y, z ∈ S. Then S ∪ {S} violates the maximality.

Starting with S0 = {K} define inductively families Sn satisfying the claim
with U the union of Sn−1 and ε = 1/n. Let Un be the union of Sn and take
Z =

⋂∞
n=1 Un. We claim that Z ⊂ ext K. Indeed, if x ∈ Z then there are slices

Sn ∈ Sn containing x. If x is not extreme, put x = y+z
2 nontrivially. Then

Sn∩{y, z} 6= ∅, and therefore we have either ρ(x, y) < 1/n or ρ(x, z) < 1/n giving
a contradiction. Notice that the sequence (Sn) for x is unique and Sn ⊂ Sn+1.
By compactness, (Sn) is a local base at x for the topology. The metrizability of Z
follows from Bing’s theorem [3, 4.4.8], since every family Sn is discrete relatively
on Z. The metric can be chosen complete because Z is Čech-complete as a Gδ

subset of a compact space [3, 4.3.26]. The density of Z in extK is clear from the
construction.

To finish we shall consider an application to Banach spaces. Let X be a normed
space and τ a locally convex topology on X. A point x ∈ K is said to be τ -denting
if it is contained in τ -open slices of K of arbitrarily small norm diameter. The
norm of X is said to be τ -Kadec if on the unit sphere the norm topology and τ
coincide. The following result is a version of [4, Exercise 8.88] which was a main
motivation for this paper.

Example 2.1 Let X have a τ -Kadec norm and let K ⊂ X be convex and τ -
compact. Then the x ∈ K is τ -denting if, and only if, x ∈ extK and the restriction
of the norm to K is τ -continuous at x.

Proof. One of the implications is obvious. Given ε > 0, the Kadec property
implies that there is a τ -open neighbourhood U of x and δ > 0 such that if
|‖y‖ − ‖x‖| < δ then ‖y − x‖ < ε/2. If the norm is τ -continuous at x, then
it is possible to find a τ -open neighbourhood V of x, such that y ∈ V implies
|‖y‖ − ‖x‖| < δ. Therefore the norm diameter of U ∩ V is less than ε. If x is
extreme, just take a slice S such that x ∈ S ⊂ U ∩ V .

Since a τ -Kadec norm is τ -l.s.c. see [4, Exercise 8.86], from the above and
Theorem 1.1 one obtains the weak∗-dentability of bounded subsets in dual spaces
with a weak∗-Kadec norm [9] and the dentability of weakly compact sets, via
the renorming theorem of Troyanski [12]. In all these cases, the set given by
Theorem 1.2 can be replaced by the set of τ -denting points which is metrized by
the norm.
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