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Abstract

Let X be a Banach space with Szlenk index w, then its dual space X™
has an equivalent weak™ uniformly Kadec-Klee norm with modulus of power
type. That extends results of Knaust, Odell and Schlumprecht [8] and solves
a problem of Huff [6].

1 Introduction

The norm of a Banach space X is said to be uniformly Kadec-Klee (UKK) if for
every € > 0 there is §(g) € (0, 1) such that every x € Bx with ||z|| > 1—0(¢) has a
weak open neighborhood U with diam(Bx NU) < . The function 6 is called mod-
ulus. Dealing with dual Banach spaces, we say that the norm is weak* uniformly
Kadec-Klee (UKK*) if the weak topology is replaced by the weak* above. These
notions were originally introduced by Huff [6] using sequences, but we are using
a more restrictive version due to Lancien [10]. Our choice has some advantages.
For instance, the UKK* property, as defined above, is dual to the asymptotically
uniformly smoothness, studied in [7] in relation with the differentiability of Lips-
chitz mappings. In the case of reflexive Banach spaces, Lancien’s UKK property
coincides with Huff’s definition and also with the notion of nearly uniformly con-
vex norm [6, Theorem 1], which has applications in fixed point theory [1]. Finally,
with the above definition, our main result provides a characterization of the UKK*
renormability in dual Banach spaces.

Let X be an Asplund Banach space, see [2], and X* its dual. For any bounded
subset A C X™* we define a set derivation
(A). = {z* € A: VU w*-neighbourhood of z*,diam(ANU) > ¢}

which is a proper subset of A if it is nonempty. By iteration, the sets (A)Y are
defined for any ordinal ~y, taking intersection in the case of limit ordinals. The
Szlenk indices are ordinal numbers defined by

S2(X)e = inf{y: (Bx+)? =0}

and Sz(X) = sup.oS2(X).. It is not difficult to see that Sz(X) is an isomorphic
invariant of X. See [9] for an account of properties of the Szlenk indices.



Notice that the norm of a dual Banach space X* is UKK* if for every € > 0
there is () € (0, 1) such that

(Bx+). C (1—0(c))Bx-

By iteration of that set inclusion it is easy to deduce that Sz(X). is finite for
every € > 0. Therefore, if X* has an equivalent UKK* norm, then Sz(X) <w. A
natural question is to know if the converse is true [6]. An affirmative answer was
obtained by Knaust, Odell and Schlumprecht [8] in the case of separable Banach
spaces. Moreover, their renorming verifies 6(¢) = ce? for some ¢,p > 0, analo-
gously to Pisier results about superreflexive spaces [11]. Godefroy, Kalton and
Lancien gave in [5] optimal results linking the exponent of the modulus and the
growth of the Szlenk indices and proved that the condition Sz(X) < w is invariant
by uniform homeomorphisms. Let us also mention that [12, 3, 10] contain results
about UKK* renorming in certain classes of Banach spaces.

Our main result links the Szlenk index of a Banach space and the UKK*
renormability of its dual in the general case.

Theorem 1.1 Let X be a Banach space with Sz(X) < w. Then there is an
equivalent norm on X such that the dual norm on X* is UKK* with modulus of
power type 0(g) = ce?.

This answers a question of Huff [6] about nearly uniformly convex renorming of
reflexive spaces. In particular, using duality [12, Theorem 2.4] a reflexive Banach
space X is nearly uniformly smooth renormable if, and only if, Sz(X) < w. For a
general Banach space, the condition Sz(X) < w implies that X is asymptotically
uniformly smoothable, see [7] for the definition and properties.

The arguments to prove Theorem 1.1 are very different of the proofs in the
separable case [8, 5]. Here the UKK* norm is obtained as a sum of Minkowski
functionals of equivalent balls obtained by a suitable slicing of the original unit
ball. The process of the proof can be easily understood with pictures if the
Kuratowski measure of non compactness is replaced by the diameter.

2 Slow slicing in finitely many steps

In order to simplify the reading, along this section X will be a dual Banach
space and the predual will be denoted F' and identified as a subspace of X*.
Topological notions (open, closed, closure, compact, limit) are always referred
to the weak* topology. The family of open halfspaces, {x € X : f(z) > a}
with f € F, is denoted H. A slice of A C X is a subset of the form AN H.
Dealing with a bounded set A and f € F, the following notation will be useful:

sup{f, A} = sup{f(x): 2z € A} and

S(A,f,g)Z{JJEAf(l‘) >sup{f,A}—£}



Kuratowski’s measure of non-compactness is denoted a. Recall that a(A4) < e
means that A is covered by finitely many sets of diameter less than e. Fixing
a closed convex set B C X, the “slow slicing” set derivation is defined for any
bounded subset A C X as

BIAL={x e A:VS(A f,6)22&S(A, £,20)NB =0 = a(S(A, f,26)) > ¢}

For any ordinal n € N, the sets #[A]" are defined in the obvious way. If B = ()

€
we simply write [A]Z. Using compactness, it is easy to see that a(AN H) < ¢ for

any H € H with [A].N H = (). Notice that a(A) < € whenever A is compact and
(A)L = (. The falsity of the last two facts for the weak topology are the main
handicaps to extend our results to non dual Banach spaces.

Lemma 2.1 Suppose that [C|. C D, then [C + Q]/t"‘ra(Q) cD+Q.

Proof. The reader can easily check that if S(C + Q, f,€) N (D + Q) = () then
S(C, f, )N D =10, and

S(C+Q, f,26) € S(C, f,2) +Q

implying the statement. [ |
The following technical lemma use ideas from [4], where the authors gave a

version of the so called Bourgain-Namioka Lemma, see [2, Theorem 3.4.1], for the
Kuratowski measure of non compactness.

Lemma 2.2 Given A,B C X closed conver with a(A) < e <1 and a(B) <1,
f € F with sup{f, A} > sup{f, B} and § € (0,2). Then the sequence (A,,) defined
by Ay = conv(AU B) and A1 = conv((P[A,]L s N A) U B) verifies

sup{f, A} —sup{f, B} < (1-— g)"‘l(sup{f, A} —sup{f, B})

Proof. It is enough to prove

sup{f, A2} ~ sup{f, B} < (1= $)(sup{f, 41} - sup(f, BY)

Take 5

D:{(l—)\)y+)\z:y€A,z€B7)\€[5,1]}
Ifzx € A\ D thenz = (1 - Ny + Az withy € E, z € B and X € [0, 2]. Since
x—y =Mz —1y), we have

A\DCA+XNB-A)
and so
a(A1\ D) <a(A)+2X<e+d

We have 5 5

suplf, D} < (1 9)sup{f, A} + 3 sup(f, B)



If ¢ = 27 (sup{f, A} — sup{f, D}) then
S(A1, £,26)N B =10 and a(S(A1, f,2£)) <e+4.
Therefore B[A1]L, s N S(A1, f,£) =0, that is

sup{f, " [A1]L; 5} < sup{f, A1} — ¢

< 5 upLf, A} + 3 suplf, D} < +(1 - ) sup{f, A} + ] sup{f, B)

N

and thus

0
sup{f, *[A]Ly5} = sup{f, B} < (1= 7)(sup{f, A} — sup{f, B})
and the proof is finished. [ ]

We say that a pair D C C of closed convex subsets of X is (n, e)-admissible if
(DN H)! = for every H € H with DN H = (). In all that follows 0 < & < 1.

Lemma 2.3 There ezists N(n,d) € N forn € N and 6 € (0,1) such that

. 1
sup{f. P[C125""} = sup{ /. D} < 5 (sup{f.C} — sup{f. D})
whenever D C C' is an (n,e)-admissible pair with o(C) < 1 and every f € F with

sup{f,C} > sup{f, B}.

Proof. We shall need the following fact: the inequality in the thesis implies that
Do) « Dy 27mQ

for every m € Nif C C D+ Q. It is enough to check it for m = 1. Indeed, assume
it is not true and find f € F' such that

sup{ f, D[C]i\;(g’&)} > sup{f,D + 2_1Q} =sup{f,D} + 21 sup{f,Q}

on the other hand
sup{ f, D[C’]é\;(g’é)} < sup{f, D} + 27 (sup{f,C} — sup{f, D})

=27 (sup{f,C} +sup{f, D}) < 27! (sup{/, D} + sup{f, Q} + sup{f, D})
=sup{f, D} + 27 sup{f,Q}

which is a contradiction.

The proof will be by induction on n for all the (n,e)-admissible pairs of closed
convex sets D C C with o(C) < 1 and every § € (0,1). For n = 1 we may take
N(1,6) = 2 for any 6. Assume that the result is true for n and let D C C an
(n + 1,¢)-admissible pair and f € F with sup{f,C} > sup{f, D}.

Fix p € N such that (1 — %)p_l < % and ¢ € N such that 277 < %.



Given f € F such that sup{f,C} > sup{f, D}, take Q = C — {x¢} where 2y € D
and f(zg) = sup{f, B}. That implies C C B + Q and sup{f,Q} = sup{f,C} —
sup{f, B}. Take a € R such that

sup{f, D} < a < sup{f, D} + 8 'sup{f,Q}

and H = {x : f(x) > a}. We may assume without loss of generality that
(CNH)™ # 0. Since (CN H)" ! =, by compactness we have a(C' N H) < .
Let (Ag)h_; the sets given by Lemma 2.2 for A = conv((C N H)?), B=C\ H
and eating with a-size € 4 g. We have

sup{f, Ap} < sup{f, B} +8 ' sup{f,Q} <sup{f, D} +4 " sup{f,Q}

The pair of sets Ap11 C B[Ak];+5/2 is (n,e)-admissible. Indeed, if H N Ag11 =0
then
(H NP [AR) 5202 =0

since H N B[Ak];M/Q N A = () by definition of the sets Ax. Using the induction

hypothesis and the fact above we have

gN(n,5/2

n ) _
D[Ak]HqN( 212 Ar {B [Ak}feﬂ—é/Q} C Apy1+279Q

=+4/2 c15/2

Put Cy = C and C} = A + k279Q. Then

N(n,6/2 14+gN(n,6/2
D[Ck]iig ( /2 C D[Ck}sig/2(+k;2/*q) C Ck;+1

We have

D[C]Si(qu]\[(n’é/z) C Ap+4_1Q

If we take N(n+1,0) = p+ pgN(n,d/2) then

sup{f : P[C1NTH) < sup{f, D} + 2 sup{f, Q}

which finishes the proof of the lemma. [ |

The Szlenk index is submultiplicative [10]. The next result shows that is
possible to define a submultiplicative dentability index.

Proposition 2.4 Suppose that Sz(F) < w, then for every e € (0,1) there is a
least N(e) € N with the property

S(C, f,&) NE[CINE = ¢

whenever B C C are closed convex subsets of X, f € F, BN S(C, f,2¢) = 0
and a(S(C, f,2¢)) < 1. Moreover, N(g) is a submultiplicative function, that is,
N(€1€2) S N(El)N(Eg).



Proof. Fix e; € (0,1). First we shall show the existence of N(e1). Indeed, if
n = Sz(F)z, then (A)%., = () whenever A is closed with a(A4) < 1. Taking
3

D = {z € C : f(z) = 1} we have that the pair D C S(C, f,2€) is (n, %)-

admissible. Putting ¢ = 2% and 0 = & in Lemma 2.3 we have

D[S(C,f,Qf)]?; OS(Cafvf) =10
if m = N(n, 2%) since a(S(C, f,2¢)) < 1. Notice that
Fle1E N S(C £,26) € PIS(C, £, 297

implying Z[C]m N S(C, f,€) = 0 and so the existence of N(e1).

Take g5 € (0,1). In order to show that N(e1e3) < N(g1)N(e2) it is enough to
prove that Z[C]NS) ¢ B[C]L,. If z € C\B[C].,, then for some slice z € S(C, f, )
and a(S(C, f,2€)) < e1. By scaling, it is clear that B[C)Y &Y n S(C, f,¢) = 0.
Therefore z ¢ B [C}?{&i’-’) and the proof is complete. ]

3 Construction of the UKK™* norm

We say that a net () is e-separated if ||, — Tw,|| > € for @y < wa. The next
result applied to the unit ball of a dual Banach space provides a characterization
of the UKK* property using nets. Huff’s definition [6] of the UKK* property
consists in replacing nets by sequences.

Lemma 3.1 Given A C X and § > 2¢ > 0 then
(AYs c {r € A: I(xy) C A, e-separated, x = liz;nxw} C (A)L

Proof. The second inclusion is easy, so we shall give the arguments for the second
one. Fix z € (A)}, and B a local basis at = of the topology. The set Q2 will be
the finite subsets of B directed by inclusion. For w € Q2 take U, = V1 N...NV,
if w={V1,...,V,,}. It is obvious that the net (x) converges to z for any choice
2w € Ug. We shall build by induction on #(w) an e-separated net (r) with the
property ||z —z| > €. If #(w) = 1, as diam(ANUg) > J, we may find x, € Uy
with |2 — z|| > . Assume now that x4 is built if #(w’) < #(w) and consider

U=Uss\ |J Blow €

w! <w

which is a neighborhood of z. Since diam(A N U) > 4, it is possible to find
T € ANU with ||z — || > e. That finishes the proof of the first set inclusion.m

Consider the following set derivation

(A ={zcA:VHeH,z€ H ao(ANH) > ¢}



The reader can check without difficulty that
(Bx ). C (Bx). C conv({Bx)¢)

As a consequence, the norm of X is UKK* if, and only if, (Bx). C (1 —6(¢))Bx
with some (g) > 0. The convex Szlenk indices are introduced in [5] by

Cz(F)e = inf{y: (Bx)Y =0}
and Cz(F) = sup,( Cz(F)., where F is the predual of X.

Proposition 3.2 Assume that Sz(F') < w. Then Cz(F). < ce™? for some posi-
tive constants ¢,p > 0, in particular Cz(F) < w.

Proof. For every convex set C we have (C). C [C].. Since a(Bx) = 2, we
obtain that (B X)i-v(e/ 2 — (). Tt is well know that the submultiplicativity implies

N(e) < ke™P for some p > 0 and k > 0, following the power bound for Cz(F)..H

For a Banach space with Sz(F') < w, Lancien deduced in [10] from the submul-
tiplicativity of the Szlenk index that Sz(F'). < ce~P for some positive constants.
In [5] the authors prove that Sz(F) and Cz(F) have the same power type among
the separable Banach spaces.

Proof of Theorem 1.1. Let X be a dual Banach space with predual F. Taking
N, = N(27"71), we know by Proposition 2.4 that

1 2
3Bx C $Bx [ Bx|Nn, 3 Bx

Take Cp o = 35%[Bx]p", for 1 < m < N, and Cy, o = Bx. Let fum be the
Minkowski functional of C), ,,,. We have ||z| < fom(z) < 3|jz||. Consider the
equivalent dual norm defined by

-2

00 N,
1 n =
lol = el + 35 3= 577 3 )

m=0

Clearly we have ||z|| < ||lz|| < 3|/z||. Let By denote the unit ball of the norm ..
We shall prove that ||.|| is UKK* with modulus of power type. By Lemma 3.1 we
can use nets for that aim. Given ¢ > 0 take n € N with 27" < £ < 27"+ Let
(r) C By an e-separated net weak* converging to . Without loss of generality
we may assume that |2x| = 1 and limg fr m(2) exists for every 0 < m < N,,.
Fix m and consider

Yw = fn,m(xw)_lxw

we have that (y) is 27 "™-separated for w large enough and so
hmyw = lim fn,m(‘rw)71 T € Cn,m+1
™ w

therefore
Jnm+1 (r) < li;)n fnm ()



Observe that

Npm—1 N,

N,
> fam(@) < fao(@) +lm Y fum(@e) SIm Y fom(rs) -
m=0 m=0 m=0

|

since f,0(z) = ||z|| <1 and f, N, (z=) > 2 2. That implies

R, (1-logy(e/3)

el <1 — 0N, +1) = 120(N(£/6) + 1)

If N(g) < ke, then for any p > ¢ there is some ¢ > 0 such that

el <1 —ce?

therefore we may take 6(g) = ceP as we wanted. [ |

The exponent in the modulus of power type verifies that p € [1,+00). Indeed,
(

assume that an infinite-dimensional dual space X has a norm with 6(¢) = ce?
where 0 < p < 1. Since Bx \ (Bx). contains a ball B of diameter 6(¢), then
ce? < 2a(B) < 2¢ which is not true for € > 0 small enough.

The method of “slow slicing” and the subsequent construction of the norm can

be used to prove the Enflo-Pisier theorem about uniformly convex renorming of
superreflexive spaces [11]. That will appear in [14] among some other results.
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