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Abstract

Let X be a Banach space with Szlenk index ω, then its dual space X∗

has an equivalent weak∗ uniformly Kadec-Klee norm with modulus of power
type. That extends results of Knaust, Odell and Schlumprecht [8] and solves
a problem of Huff [6].

1 Introduction

The norm of a Banach space X is said to be uniformly Kadec-Klee (UKK) if for
every ε > 0 there is θ(ε) ∈ (0, 1) such that every x ∈ BX with ‖x‖ > 1−θ(ε) has a
weak open neighborhood U with diam(BX∩U) < ε. The function θ is called mod-
ulus. Dealing with dual Banach spaces, we say that the norm is weak∗ uniformly
Kadec-Klee (UKK∗) if the weak topology is replaced by the weak∗ above. These
notions were originally introduced by Huff [6] using sequences, but we are using
a more restrictive version due to Lancien [10]. Our choice has some advantages.
For instance, the UKK∗ property, as defined above, is dual to the asymptotically
uniformly smoothness, studied in [7] in relation with the differentiability of Lips-
chitz mappings. In the case of reflexive Banach spaces, Lancien’s UKK property
coincides with Huff’s definition and also with the notion of nearly uniformly con-
vex norm [6, Theorem 1], which has applications in fixed point theory [1]. Finally,
with the above definition, our main result provides a characterization of the UKK∗

renormability in dual Banach spaces.

Let X be an Asplund Banach space, see [2], and X∗ its dual. For any bounded
subset A ⊂ X∗ we define a set derivation

〈A〉′ε = {x∗ ∈ A : ∀U w∗-neighbourhood of x∗,diam(A ∩ U) ≥ ε}
which is a proper subset of A if it is nonempty. By iteration, the sets 〈A〉γε are
defined for any ordinal γ, taking intersection in the case of limit ordinals. The
Szlenk indices are ordinal numbers defined by

Sz(X)ε = inf{γ : 〈BX∗〉γε = ∅}
and Sz(X) = supε>0 Sz(X)ε. It is not difficult to see that Sz(X) is an isomorphic
invariant of X. See [9] for an account of properties of the Szlenk indices.
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Notice that the norm of a dual Banach space X∗ is UKK∗ if for every ε > 0
there is θ(ε) ∈ (0, 1) such that

〈BX∗〉′ε ⊂ (1− θ(ε))BX∗

By iteration of that set inclusion it is easy to deduce that Sz(X)ε is finite for
every ε > 0. Therefore, if X∗ has an equivalent UKK∗ norm, then Sz(X) ≤ ω. A
natural question is to know if the converse is true [6]. An affirmative answer was
obtained by Knaust, Odell and Schlumprecht [8] in the case of separable Banach
spaces. Moreover, their renorming verifies θ(ε) = cεp for some c, p > 0, analo-
gously to Pisier results about superreflexive spaces [11]. Godefroy, Kalton and
Lancien gave in [5] optimal results linking the exponent of the modulus and the
growth of the Szlenk indices and proved that the condition Sz(X) ≤ ω is invariant
by uniform homeomorphisms. Let us also mention that [12, 3, 10] contain results
about UKK∗ renorming in certain classes of Banach spaces.

Our main result links the Szlenk index of a Banach space and the UKK∗

renormability of its dual in the general case.

Theorem 1.1 Let X be a Banach space with Sz(X) ≤ ω. Then there is an
equivalent norm on X such that the dual norm on X∗ is UKK∗ with modulus of
power type θ(ε) = cεp.

This answers a question of Huff [6] about nearly uniformly convex renorming of
reflexive spaces. In particular, using duality [12, Theorem 2.4] a reflexive Banach
space X is nearly uniformly smooth renormable if, and only if, Sz(X) ≤ ω. For a
general Banach space, the condition Sz(X) ≤ ω implies that X is asymptotically
uniformly smoothable, see [7] for the definition and properties.

The arguments to prove Theorem 1.1 are very different of the proofs in the
separable case [8, 5]. Here the UKK∗ norm is obtained as a sum of Minkowski
functionals of equivalent balls obtained by a suitable slicing of the original unit
ball. The process of the proof can be easily understood with pictures if the
Kuratowski measure of non compactness is replaced by the diameter.

2 Slow slicing in finitely many steps

In order to simplify the reading, along this section X will be a dual Banach
space and the predual will be denoted F and identified as a subspace of X∗.
Topological notions (open, closed, closure, compact, limit) are always referred
to the weak∗ topology. The family of open halfspaces, {x ∈ X : f(x) > a}
with f ∈ F , is denoted H. A slice of A ⊂ X is a subset of the form A ∩ H.
Dealing with a bounded set A and f ∈ F , the following notation will be useful:
sup{f, A} = sup{f(x) : x ∈ A} and

S(A, f, ξ) = {x ∈ A : f(x) > sup{f,A} − ξ}
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Kuratowski’s measure of non-compactness is denoted α. Recall that α(A) < ε
means that A is covered by finitely many sets of diameter less than ε. Fixing
a closed convex set B ⊂ X, the “slow slicing” set derivation is defined for any
bounded subset A ⊂ X as

B [A]′ε = {x ∈ A : ∀S(A, f, ξ) 3 x &S(A, f, 2ξ) ∩B = ∅ ⇒ α(S(A, f, 2ξ)) ≥ ε}
For any ordinal n ∈ N, the sets B [A]nε are defined in the obvious way. If B = ∅
we simply write [A]′ε. Using compactness, it is easy to see that α(A ∩H) < ε for
any H ∈ H with [A]′ε ∩H = ∅. Notice that α(A) < ε whenever A is compact and
〈A〉′ε = ∅. The falsity of the last two facts for the weak topology are the main
handicaps to extend our results to non dual Banach spaces.

Lemma 2.1 Suppose that [C]′ε ⊂ D, then [C + Q]′ε+α(Q) ⊂ D + Q.

Proof. The reader can easily check that if S(C + Q, f, ξ) ∩ (D + Q) = ∅ then
S(C, f, ξ) ∩D = ∅, and

S(C + Q, f, 2ξ) ⊂ S(C, f, 2ξ) + Q

implying the statement.

The following technical lemma use ideas from [4], where the authors gave a
version of the so called Bourgain-Namioka Lemma, see [2, Theorem 3.4.1], for the
Kuratowski measure of non compactness.

Lemma 2.2 Given A,B ⊂ X closed convex with α(A) ≤ ε ≤ 1 and α(B) ≤ 1,
f ∈ F with sup{f, A} > sup{f,B} and δ ∈ (0, 2). Then the sequence (An) defined
by A1 = conv(A ∪B) and An+1 = conv((B [An]′ε+δ ∩A) ∪B) verifies

sup{f, An} − sup{f, B} ≤ (1− δ

4
)n−1(sup{f,A} − sup{f,B})

Proof. It is enough to prove

sup{f, A2} − sup{f, B} ≤ (1− δ

4
)(sup{f,A1} − sup{f, B})

Take
D = {(1− λ)y + λz : y ∈ A, z ∈ B, λ ∈ [

δ

2
, 1]}

If x ∈ A1 \ D then x = (1 − λ)y + λz with y ∈ E, z ∈ B and λ ∈ [0, δ
2 ]. Since

x− y = λ(z − y), we have

A1 \D ⊂ A + λ(B −A)

and so
α(A1 \D) ≤ α(A) + 2λ ≤ ε + δ

We have
sup{f,D} ≤ (1− δ

2
) sup{f,A}+

δ

2
sup{f,B}
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If ξ = 2−1(sup{f, A} − sup{f, D}) then

S(A1, f, 2ξ) ∩B = ∅ and α(S(A1, f, 2ξ)) < ε + δ.

Therefore B [A1]′ε+δ ∩ S(A1, f, ξ) = ∅, that is

sup{f, B [A1]′ε+δ} ≤ sup{f,A1} − ξ

≤ 1
2

sup{f, A}+
1
2

sup{f, D} ≤ +(1− δ

4
) sup{f,A}+

δ

4
sup{f,B}

and thus

sup{f, B [A1]′ε+δ} − sup{f,B} ≤ (1− δ

4
)(sup{f, A} − sup{f, B})

and the proof is finished.

We say that a pair D ⊂ C of closed convex subsets of X is (n, ε)-admissible if
〈D ∩H〉nε = ∅ for every H ∈ H with D ∩H = ∅. In all that follows 0 < ε ≤ 1.

Lemma 2.3 There exists N(n, δ) ∈ N for n ∈ N and δ ∈ (0, 1) such that

sup{f, D[C]N(n,δ)
ε+δ } − sup{f, D} ≤ 1

2
(sup{f, C} − sup{f,D})

whenever D ⊂ C is an (n, ε)-admissible pair with α(C) ≤ 1 and every f ∈ F with
sup{f, C} ≥ sup{f, B}.

Proof. We shall need the following fact: the inequality in the thesis implies that

D[C]mN(n,δ)
ε+δ ⊂ D + 2−mQ

for every m ∈ N if C ⊂ D +Q. It is enough to check it for m = 1. Indeed, assume
it is not true and find f ∈ F such that

sup{f, D[C]N(n,δ)
ε+δ } > sup{f,D + 2−1Q} = sup{f,D}+ 2−1 sup{f, Q}

on the other hand

sup{f, D[C]N(n,δ)
ε+δ } ≤ sup{f, D}+ 2−1(sup{f, C} − sup{f,D})

= 2−1(sup{f, C}+ sup{f,D}) ≤ 2−1(sup{f,D}+ sup{f, Q}+ sup{f, D})
= sup{f, D}+ 2−1 sup{f,Q}

which is a contradiction.
The proof will be by induction on n for all the (n, ε)-admissible pairs of closed
convex sets D ⊂ C with α(C) ≤ 1 and every δ ∈ (0, 1). For n = 1 we may take
N(1, δ) = 2 for any δ. Assume that the result is true for n and let D ⊂ C an
(n + 1, ε)-admissible pair and f ∈ F with sup{f, C} > sup{f, D}.
Fix p ∈ N such that (1− δ

8 )p−1 < 1
8 and q ∈ N such that 2−q < δ

4p .
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Given f ∈ F such that sup{f, C} > sup{f, D}, take Q = C − {x0} where x0 ∈ D
and f(x0) = sup{f, B}. That implies C ⊂ B + Q and sup{f,Q} = sup{f, C} −
sup{f, B}. Take a ∈ R such that

sup{f, D} < a < sup{f,D}+ 8−1 sup{f, Q}

and H = {x : f(x) > a}. We may assume without loss of generality that
〈C ∩H〉nε 6= ∅. Since 〈C ∩H〉n+1

ε = ∅, by compactness we have α(C ∩H) < ε.
Let (Ak)p

k=1 the sets given by Lemma 2.2 for A = conv(〈C ∩H〉nε ), B = C \ H
and eating with α-size ε + δ

2 . We have

sup{f,Ap} < sup{f,B}+ 8−1 sup{f, Q} < sup{f, D}+ 4−1 sup{f,Q}

The pair of sets Ak+1 ⊂ B [Ak]′ε+δ/2 is (n, ε)-admissible. Indeed, if H ∩Ak+1 = ∅
then

〈H ∩ B [Ak]′ε+δ/2〉nε = ∅
since H ∩ B [Ak]′ε+δ/2 ∩ A = ∅ by definition of the sets Ak. Using the induction
hypothesis and the fact above we have

D[Ak]1+qN(n,δ/2)
ε+δ/2 ⊂ Ak+1

[
B [Ak]′ε+δ/2

]qN(n,δ/2)

ε+δ/2
⊂ Ak+1 + 2−qQ

Put C0 = C and Ck = Ak + k2−qQ. Then

D[Ck]1+qN(n,δ/2)
ε+δ ⊂ D[Ck]1+qN(n,δ/2)

ε+δ/2+k2−q ⊂ Ck+1

We have
D[C]p+pqN(n,δ/2)

ε+δ ⊂ Ap + 4−1Q

If we take N(n + 1, δ) = p + pqN(n, δ/2) then

sup{f : D[C]N(n+1,δ)
ε+δ } < sup{f, D}+ 2−1 sup{f,Q}

which finishes the proof of the lemma.

The Szlenk index is submultiplicative [10]. The next result shows that is
possible to define a submultiplicative dentability index.

Proposition 2.4 Suppose that Sz(F ) ≤ ω, then for every ε ∈ (0, 1) there is a
least N(ε) ∈ N with the property

S(C, f, ξ) ∩ B [C]N(ε)
ε = ∅

whenever B ⊂ C are closed convex subsets of X, f ∈ F , B ∩ S(C, f, 2ξ) = ∅
and α(S(C, f, 2ξ)) ≤ 1. Moreover, N(ε) is a submultiplicative function, that is,
N(ε1ε2) ≤ N(ε1)N(ε2).
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Proof. Fix ε1 ∈ (0, 1). First we shall show the existence of N(ε1). Indeed, if
n = Sz(F ) ε1

3
, then 〈A〉n2ε1

3
= ∅ whenever A is closed with α(A) ≤ 1. Taking

D = {x ∈ C : f(x) = 1} we have that the pair D ⊂ S(C, f, 2ξ) is (n, 2ε1
3 )-

admissible. Putting ε = 2ε1
3 and δ = ε1

3 in Lemma 2.3 we have

D[S(C, f, 2ξ)]mε1
∩ S(C, f, ξ) = ∅

if m = N(n, 2ε1
3 ) since α(S(C, f, 2ξ)) ≤ 1. Notice that

B [C]mε1
∩ S(C, f, 2ξ) ⊂ D[S(C, f, 2ξ)]mε1

implying B [C]mε1
∩ S(C, f, ξ) = ∅ and so the existence of N(ε1).

Take ε2 ∈ (0, 1). In order to show that N(ε1ε2) ≤ N(ε1)N(ε2) it is enough to
prove that B [C]N(ε2)

ε1ε2 ⊂ B [C]′ε1
. If x ∈ C\B [C]′ε1

, then for some slice x ∈ S(C, f, ξ)
and α(S(C, f, 2ξ)) ≤ ε1. By scaling, it is clear that B [C]N(ε2)

ε1ε2 ∩ S(C, f, ξ) = ∅.
Therefore x 6∈ B [C]N(ε2)

ε1ε2 and the proof is complete.

3 Construction of the UKK∗ norm

We say that a net (x$) is ε-separated if ‖x$1 − x$2‖ > ε for $1 ≺ $2. The next
result applied to the unit ball of a dual Banach space provides a characterization
of the UKK∗ property using nets. Huff’s definition [6] of the UKK∗ property
consists in replacing nets by sequences.

Lemma 3.1 Given A ⊂ X and δ > 2ε > 0 then

〈A〉′δ ⊂ {x ∈ A : ∃(x$) ⊂ A, ε-separated, x = lim
$

x$} ⊂ 〈A〉′ε

Proof. The second inclusion is easy, so we shall give the arguments for the second
one. Fix x ∈ 〈A〉′2ε and B a local basis at x of the topology. The set Ω will be
the finite subsets of B directed by inclusion. For $ ∈ Ω take U$ = V1 ∩ . . . ∩ Vn

if $ = {V1, . . . , Vn}. It is obvious that the net (x$) converges to x for any choice
x$ ∈ U$. We shall build by induction on #($) an ε-separated net (x$) with the
property ‖x$−x‖ > ε. If #($) = 1, as diam(A∩U$) ≥ δ, we may find x$ ∈ U$

with ‖x$ − x‖ > ε. Assume now that x$′ is built if #($′) < #($) and consider

U = U$ \
⋃

$′≺$

B[x$′ , ε]

which is a neighborhood of x. Since diam(A ∩ U) ≥ δ, it is possible to find
x$ ∈ A∩U with ‖x$−x‖ > ε. That finishes the proof of the first set inclusion.

Consider the following set derivation

(A)′ε = {x ∈ A : ∀H ∈ H, x ∈ H, α(A ∩H) ≥ ε}
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The reader can check without difficulty that

〈BX〉′2ε ⊂ (BX)′ε ⊂ conv(〈BX〉′ε)
As a consequence, the norm of X is UKK∗ if, and only if, (BX)′ε ⊂ (1− θ(ε))BX

with some θ(ε) > 0. The convex Szlenk indices are introduced in [5] by

Cz(F )ε = inf{γ : (BX)γ
ε = ∅}

and Cz(F ) = supε>0 Cz(F )ε, where F is the predual of X.

Proposition 3.2 Assume that Sz(F ) ≤ ω. Then Cz(F )ε < cε−p for some posi-
tive constants c, p > 0, in particular Cz(F ) ≤ ω.

Proof. For every convex set C we have (C)′ε ⊂ [C]′ε. Since α(BX) = 2, we
obtain that (BX)N(ε/2)

ε = ∅. It is well know that the submultiplicativity implies
N(ε) ≤ kε−p for some p > 0 and k > 0, following the power bound for Cz(F )ε.

For a Banach space with Sz(F ) ≤ ω, Lancien deduced in [10] from the submul-
tiplicativity of the Szlenk index that Sz(F )ε < cε−p for some positive constants.
In [5] the authors prove that Sz(F ) and Cz(F ) have the same power type among
the separable Banach spaces.

Proof of Theorem 1.1. Let X be a dual Banach space with predual F . Taking
Nn = N(2−n−1), we know by Proposition 2.4 that

1
3
BX ⊂ 1

3 BX [BX ]Nn

2−n ⊂ 2
3
BX

Take Cn,m =
1
3 BX [BX ]m2−n for 1 ≤ m ≤ Nn and Cn,0 = BX . Let fn,m be the

Minkowski functional of Cn,m. We have ‖x‖ ≤ fn,m(x) ≤ 3‖x‖. Consider the
equivalent dual norm defined by

|||x||| = ‖x‖+
1
15

∞∑
n=1

n−2

Nm + 1

Nm∑
m=0

fn,m(x)

Clearly we have ‖x‖ ≤ |||x||| ≤ 4
3‖x‖. Let B|||.||| denote the unit ball of the norm |||.|||.

We shall prove that |||.||| is UKK∗ with modulus of power type. By Lemma 3.1 we
can use nets for that aim. Given ε > 0 take n ∈ N with 2−n < ε

3 ≤ 2−n+1. Let
(x$) ⊂ B|||.||| an ε-separated net weak∗ converging to x. Without loss of generality
we may assume that |||x$||| = 1 and lim$ fn,m(x$) exists for every 0 ≤ m ≤ Nn.
Fix m and consider

y$ = fn,m(x$)−1x$

we have that (y$) is 2−n-separated for $ large enough and so

lim
$

y$ = lim
$

fn,m(x$)−1 x ∈ Cn,m+1

therefore
fn,m+1(x) ≤ lim

$
fn,m(x$)
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Observe that

Nm∑
m=0

fn,m(x) ≤ fn,0(x) + lim
$

Nm−1∑
m=0

fn,m(x$) ≤ lim
$

Nm∑
m=0

fn,m(x$)− 1
8

since fn,0(x) = ‖x‖ ≤ 1 and fn,Nn(x$) ≥ 3
4

3
2 . That implies

|||x||| ≤ 1− n−2

120(Nn + 1)
≤ 1− (1− log2(ε/3))−2

120(N(ε/6) + 1)

If N(ε) ≤ kε−q, then for any p > q there is some c > 0 such that

|||x||| ≤ 1− cεp

therefore we may take θ(ε) = cεp as we wanted.

The exponent in the modulus of power type verifies that p ∈ [1, +∞). Indeed,
assume that an infinite-dimensional dual space X has a norm with θ(ε) = cεp

where 0 < p < 1. Since BX \ (BX)′ε contains a ball B of diameter θ(ε), then
cεp ≤ 2α(B) < 2ε which is not true for ε > 0 small enough.

The method of “slow slicing” and the subsequent construction of the norm can
be used to prove the Enflo-Pisier theorem about uniformly convex renorming of
superreflexive spaces [11]. That will appear in [14] among some other results.
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