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Abstract

The Szlenk index has found many applications in the isomorphic theory
of Banach spaces. Its definition is based in some kind of interplay between
a weak topology and the norm metric with not much care on the linear
structure. There is no obstacle to consider the notion of Szlenk index in
more general settings. In this paper we study the compact spaces of Szlenk
index ω at most with respect to an associated metric. We include new
applications to Banach spaces of the these methods, where the estimations
of the growth speed of the finite Szlenk indices play a fundamental role.

1 Introduction

Consider X a topological space together with a pseudometric d defined on it which
may be not related to the topology of K. We say that X is fragmented by d if for
every nonempty subset A ⊂ X and every ε > 0 there is U ⊂ X open such that
A ∩ U 6= ∅ and diam(A ∩ U) < ε, where ‘diam’ is the diameter measured with
respect to d. For any subset A ⊂ X of a topological space with an associated
pseudometric d we define a set derivation

〈A〉′ε = {x ∈ A : ∀U neighbourhood of x, diam(A ∩ U) ≥ ε}.
By iteration, the sets 〈A〉γε are defined for any ordinal γ, taking intersection in
the case of limit ordinals. The Szlenk indices of the space X with respect to d are
ordinal numbers defined by

Sz(X, ε) = inf{γ : 〈X〉γε = ∅}
and Sz(X) = supε>0 Sz(X, ε). If X is fragmented by d, the Szlenk indices al-
ways exist. If it not the case, for some ε > 0 there is an ordinal γ such that
〈X〉γε = 〈X〉γ+1

ε 6= ∅. Then we put Sz(X, ε) = ∞ and Sz(X) = ∞ with the
agreement that any ordinal number is less than ∞.
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At this moment we have to point out that the original definition of Szlenk
index is intended for Banach spaces. The Szlenk index of an Asplund Banach
space X is defined dually as the Szlenk index (in the above sense) of its dual ball
BX∗ endowed with the weak∗ topology and the norm metric. It follows that the
Szlenk index so defined for the space X is an isomorphic invariant of X. See [21]
for the original sequential definition and [12, 6] for an account of properties of the
Szlenk indices on Banach spaces.

This paper is concerned with compact spaces K such that Sz(K) ≤ ω for a
finer metric. Notice that in such a case, for every ε > 0, the indices Sz(K, ε)
must be finite. The study of the variation of Sz(K, ε), as a function of ε, is one
the aims in this paper. Our self limitation to compact spaces is motivated by the
fact that compactness is an essential hypothesis in most of the main results, and
simplifies many of the arguments in the proofs. Although some of the results can
be stated with more general hypothesis, our examples are mainly compact spaces
and weak∗ compact subsets of dual Banach spaces.

The class of compact spaces of Szlenk index at most ω includes trivially the
metrizable compacta if we take any compatible metric d. Examples far away from
metrizability are provided by the scattered compacta with finite Cantor-Bendixon
index together with the discrete metric. Geometrically, the nicest examples of
compacta with Szlenk index at most ω with respect to the norm metric are the
balls of superreflexive Banach spaces endowed with the weak topology. This a
consequence of the uniformly convex renorming, and in the particular case of `p

spaces we have that Sz(B`p , ε) asymptotically behaves like ε−p, see Example 4.10.
Notice that the power type of the uniform convexity modulus of `p is 2 for every
p ∈ (1, 2], implying that the Szlenk index is more sensitive than the dentability
index, see [12] for this definition.

From the Szlenk index point of view, uniformly convex spaces are a particular
case of dual Banach spaces with a weak∗ uniformly Kadec-Klee norm. The norm
of a dual Banach space X∗ is UKK∗ if for every ε > 0 there is θ(ε) ∈ (0, 1) such
that

〈BX∗〉′ε ⊂ (1− θ(ε))BX∗ ,

where the distance associated to the derivation is the norm distance. Notice that
using iteration on the set inclusion it is easy to deduce that Sz(BX∗ , ε) is finite for
every ε > 0 and so Sz(BX∗) ≤ ω. In our paper [19] we have shown the converse,
that is, if Sz(BX∗) ≤ ω then there exists an equivalent UKK∗ dual norm on X∗

(previously it was done in [9] with separability assumptions). Here we are able to
give the following improvement

Theorem 1.1 Let K ⊂ X∗ be a weak∗ compact of Szlenk index ω at most. Then
there exists B ⊂ X∗ weak∗ compact convex symmetric with K ⊂ B such that for
every ε > 0 there is θ(ε) ∈ (0, 1) such that

〈B〉′ε ⊂ (1− θ(ε))B.
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Moreover, θ(ε) can be taken of the form a εpSz(K, b ε)−1 for any p > 1 and some
constants a, b > 0.

A straightforward consequence is that the class of weak∗ compact subsets of
Szlenk index at most ω is stable by convex hulls. Further, given K a compact space
together with a metric d such that Sz(K) ≤ ω, we shall prove that the Radon
probabilities on K (with a suitable extension of the metric) is also of Szlenk index
at most ω, see Corollary 4.6.

We shall begin our study considering the compact spaces of Szlenk index at
most ω in an abstract topological context, Section 2. If the metric is skipped,
then a compact space of Szlenk index ω at most is simply a descriptive compact
space, see Theorem 2.8. For that reason, we shall pay special attention to the
estimation of the finite Szlenk indices of new compact spaces obtained by basic
operations from compact spaces of Szlenk index ω at most. In Section 3 the
compacts are placed in a locally convex vector space and the metric is induced by
a norm. In this setting we shall study the pass to the closed convex hull of the
Szlenk indices, obtaining Theorem 1.1 as a consequence. Along the last section we
shall give some applications to Banach spaces. The possibility of obtaining good
estimations from below of the Szlenk index of the unit ball of a Banach space is
related to its asymptotic uniform smoothness. All these techniques are illustrated
with some examples around the classical `p spaces.

2 Basic properties

This section deals with the abstract topological setting. All the compact spaces
are Hausdorff and the associated pseudometric is understood in the auxiliary
results. The first result of this characterizes the property Sz(K, ε) < ω without
any mention to the order imposed by the derivation process.

Theorem 2.1 Given K a compact space together with an associated pseudometric
d and ε > 0, the following are equivalent:

i) 〈K〉nε = ∅.
ii) There exists closed subsets Aj ⊂ K with 1 ≤ j ≤ n such that for every x ∈

K, there is j and U ⊂ K open such that x ∈ Aj ∩U and diam(Aj ∩U) < ε.

If d is moreover lower semicontinuous, the following is also equivalent:

iii) There exists a partition K =
⋃n

j=1 Dj such that for every j and x ∈ Dj,
there is and U ⊂ K open such that x ∈ U and diam(Dj ∩ U) < ε.

Proof. If i) holds the reader can verify with no difficulty that ii) is satisfied with
the sets Aj = 〈K〉j−1

ε and iii) is satisfied with the sets Dj = 〈K〉j−1
ε \ 〈K〉jε.

Assume ii) is true and define sets

Bi = {x ∈ K : #{j : x ∈ Aj} ≥ i}.
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It is clear that every Bi is closed, B1 = K and Bi = ∅ if i > n. We claim that
〈Bi〉′ε ⊂ Bi+1. Indeed, if x ∈ Bi \Bi+1 there is a set of indices S0 with #(S0) = i
such that x ∈ ⋂

j∈S0
Aj and for some jo ∈ S0 there is U open with x ∈ Ajo

∩ U
and diam(Ajo ∩ U) < ε. It is easy to check that

V = U \
⋃
{
⋂

j∈S

Aj : S 6= S0;#(S) = i}

is a neighborhood of x. The fact that diam(Bi ∩ V ) < ε follows from

Bi ∩ V ⊂ (
⋂

j∈S0

Aj) ∩ U ⊂ Ajo ∩ U.

After the claim is proved, clearly we have 〈K〉nε = ∅.
If the pseudometric d is lower semicontinuous, then closures keep the diameter.
Assuming that iii) holds, it is easy to check that Aj = Dj satisfies condition ii).

Corollary 2.2 A scattered compact K verifies K(ω) = ∅ if and only if it is a
finite union of relatively discrete subsets.

A slight modification of the derivation process has some advantages when es-
tablishing quantitative results. We shall use the following version of Kuratowski’s
measure of noncompactness

α(A) = inf{ max
1≤i≤n

diam(Ai) : n ∈ N, Ai ⊂ K closed A ⊂
n⋃

i=1

Ai},

the corresponding set derivation

K〈K〉′ε = {x ∈ A : ∀U neighbourhood of x, α(A ∩ U) ≥ ε}

and ordinal indices Sk(K, ε) and Sk(K) defined after iteration in the obvious way.
Next lemma shows that the derivation using Kuratowski’s measure is equivalent
to the one defined in the introduction and to the ‘net’-derivation, which is a
modification of the ‘sequence’-derivation used in the original definition of the
Szlenk index.

Lemma 2.3 For every A ⊂ K closed, ε > 0 and δ > 2ε we have

〈A〉′δ ⊂ {x ∈ A : ∃(x$) ⊂ A, d(x$, x) > ε, x = lim
$

x$} ⊂ K〈A〉′ε ⊂ 〈A〉′ε

and therefore Sz(K, δ) ≤ Sk(K, ε) ≤ Sz(K, ε).

Proof. We shall prove the inclusions starting from the left side. If x ∈ 〈A〉′δ then
x ∈ A \B[x, ε]. Indeed, if not then A \ A \B[x, ε] would be a neighborhood of x
of diameter at most 2ε which contradicts the choice of x. Therefore is possible to
take (x$) ⊂ A \ B[x, ε] converging to x. For the second inclusion, if x 6∈ K〈A〉′ε
then there is a neighborhood of x covered by finitely many compacts Ki of di-
ameter less than ε. If a net (x$) is converging to x, eventually it will be in the
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neighborhood and for some i the set {$ : x$ ∈ Ki} will be cofinal. Therefore
x ∈ Ki and then d(x$, x) ≤ ε. The third and last inclusion just follows from
regularity of the topology.

This result shows one of the advantages of the derivation with Kuratowski’s
measure of non compactness.

Lemma 2.4 Let A1, . . . , An ⊂ K be closed sets, then K〈⋃n
i=1 Ai〉′ε =

⋃n
i=1

K〈Ai〉′ε.
If moreover Ai ∩Aj ⊂ 〈Ai〉′ε for every i 6= j, then 〈⋃n

i=1 Ai〉′ε =
⋃n

i=1〈Ai〉′ε.
Proof. The first part is left to the reader. For the second one, notice that one of
the set inclusions is obvious. For the other observe that

x ∈
n⋃

i=1

Ai \
n⋃

i=1

〈Ai〉′ε

implies that x ∈ Ai \
⋃

j 6=i Aj for some 1 ≤ i ≤ n. Otherwise x ∈ Ai ∩Aj ⊂ 〈Ai〉′ε,
which is a contradiction. Take U 3 x open such that diam(Ai ∩ U) < ε, define
V = U \⋃

j 6=i Aj , and observe

x ∈ (
n⋃

j=1

Aj) ∩ V ⊂ Ai ∩ U.

Therefore x ∈ ⋃n
j=1 Aj \ 〈

⋃n
j=1 Aj〉′ε and so 〈⋃n

i=1 Ai〉′ε ⊂
⋃n

i=1〈Ai〉′ε.

The class of subsets of Szlenk index ω at most of a given compact together
with an associated metric is obviously stable by closed subsets and by finite unions
by the previous lemma. We leave to the reader the easy proof of the next result.

Proposition 2.5 Let K be a compact space together with an associated pseudo-
metric d and let A,A1, . . . , An ⊂ K be closed subsets having Szlenk index ω at
most. Then for any ε > 0:

a) If B ⊂ A is closed, then Sz(B, ε) ≤ Sz(A, ε).

b) Sk(
⋃n

i=1 Ai, ε) = max{Sk(Ai, ε) : i = 1, . . . , n)}.
Another typical operation in topology is the cartesian product. The following

is implicitly contained in [15].

Proposition 2.6 Let (K1, d1) and (K2, d2) be compact spaces of Szlenk index ω
at most. Then (K1 ×K2, d) where d = max{d1, d2} is of Szlenk index ω at most.
Moreover

Sz(K1 ×K2, ε) = Sz(K1, ε) + Sz(K2, ε)− 1.

Proof. It is not difficult to show that K1 ×K2 is of Szlenk index ω at most by
means of the characterization given in Theorem 2.1 but for an exact calculation
we need to describe the derivation process. It is easy to show that

〈K1 ×K2〉′ε = (〈K1〉′ε ×K2) ∪ (K1 × 〈K2〉′ε).
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Assume i1 + j1 = i2 + j2 = n, i1 < i2 and j1 > j2. The following chain of set
inclusions

(〈K1〉i1ε × 〈K2〉j1ε ) ∩ (〈K1〉i2ε × 〈K2〉j2ε ) = 〈K1〉i2ε × 〈K2〉j1ε
⊂ (〈K1〉i1+1

ε × 〈K2〉j1ε ) ∩ (〈K1〉i1ε × 〈K2〉j2+1
ε )

⊂ 〈〈K1〉i1ε × 〈K2〉j1ε 〉′ε ∩ 〈〈K1〉i2ε × 〈K2〉j2ε 〉′ε
implies that the hypothesis in Lemma 2.4 is fulfilled. Now, there is not obstacle
to obtain by recurrence

〈K1 ×K2〉nε =
⋃

i+j=n

〈K1〉iε × 〈K1〉jε.

The estimation of the Szlenk index follows straight as a consequence.

Example 2.7 Given a left continuous decreasing function φ : (0, 1] → N, there
exists a zero dimensional metrizable compact K together with a lower semicontin-
uous metric such that Sz(K, ε) = φ(ε) for all ε > 0.

Proof. We may assume that limε→0+ φ(ε) = ∞, otherwise just stop the following
construction at the suitable step. Consider together with a strictly decreasing
sequence (εn) ⊂ (0, 1] with ε1 = 1 and a strictly increasing sequence (kn) ⊂ N
such that φ(ε) = kn if εn+1 < ε ≤ εn. Define a new sequence by a1 = k1

and an = kn− kn−1 + 1. Let Kn = [1, ωan−1] together with the associated metric
dn = εnd where d is the discrete metric. Then Sz(Kn, ε) = 1 in case of ε > εn and
Sz(Kn, ε) = an if ε ≤ εn. Consider

∏n
i=1 Ki endowed with the product topology

and the maximum metric. We claim that Sz(
∏n

i=1 Ki, ε) = φ(ε) if εn+1 < ε ≤ 1.
The proof will be by induction. For n = 1 is clear since Sz(K1, ε) = k1, so assume
that the hypothesis is true for some n. Having in mind

n+1∏

i=1

Ki = (
n∏

i=1

Ki)×Kn+1,

we obtain for εn+1 < ε ≤ 1 using Lemma 2.6 that

Sz(
n+1∏

i=1

Ki, ε) = φ(ε) + Sz(Kn+1, ε)− 1 = φ(ε).

Now assume that εn+2 < ε ≤ εn+1, then we obtain again by Lemma 2.6

Sz(
n+1∏

i=1

Ki, ε) = kn + an+1 − 1 = kn+1 = φ(ε).

Finally consider K =
∏∞

i=1 Kn with the maximum metric and just notice that
given an arbitrary ε > 0 then Sz(K, ε) = Sz(

∏n
i=1 Ki, ε) = φ(ε) if n ∈ N is cho-

sen such that εn+1 < ε.
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A compact space K is said to be descriptive if its topology has a σ-isolated
network. Let us remind the terminology. Let {Hi : i ∈ I} be a family of subsets
of a topological space (Z, τ). The family is said to be isolated if it is discrete in
its union endowed with the relative topology, or in other words, if for every i ∈ I
we have

Hi ∩
⋃

j∈I\{i}
Hj = ∅.

If there is a decomposition I =
⋃∞

n=1 In such that every family {Hi : i ∈ In}
is isolated, then the family {Hi : i ∈ I} is said to be σ-isolated. A family N of
subsets of Z is said to be a network if every open set is a union of members of
N. To see the topological properties of the family of descriptive compacta and its
relation to renorming see [14, 16].

Theorem 2.8 A compact space is of Szlenk index at most ω with respect to some
finer metric if and only if it is descriptive.

Proof. Let τ be the topology of K and let d a finer metric such that (K, d)
is of Szlenk index ω at most. Taking the sets (Aj) given by Theorem 2.1 for
all ε = 1/n and arranging into a unique sequence (An) that clearly, enjoys the
following property that we called P (τ, d): for every x ∈ K and ε > 0 there is
U open and n ∈ N such that x ∈ An ∩ U and diam(An ∩ U) < ε. Using [14,
Theorem 2.2], d has network N which is σ-isolated with respect to τ . Clearly N
is a σ-isolated network for τ .
Assume now that K is descriptive. Using again [14, Theorem 2.2] there exists a
finer metric ρ, closed sets An and families {Ui : i ∈ In} of open sets, such that
the families {An ∩ Ui : i ∈ In} are disjoint and {An ∩ Ui : n ∈ N, i ∈ In} is a
network for ρ, and therefore a network for τ . Define a pseudometric dn on K by
dn(x, y) = 0 if either

{x, y} ⊂ K \An;

{x, y} ⊂ An ∩ Ui for some i ∈ In;

or {x, y} ⊂ An \
⋃

i∈In

Ui

and dn(x, y) = 1/n in any other case. Considering the Szlenk derivation with
respect to dn for ε < 1/n, it is clear that 〈K〉′ε ⊂ An, 〈K〉′′ε ⊂ An \

⋃
i∈In

Ui and
〈K〉′′′ε = ∅. Define d(x, y) = max{dn(x, y) : n ∈ N}. It is not difficult to check that
d is a finer metric on K. On the other hand (K, d) is isometric to the diagonal
of

∏∞
k=1(K, dk). Given ε > 0, for n ∈ N such that 1/n < ε, notice for the Szlenk

index computed with respect to d that

Sz

( ∞∏

k=1

(K, dk), ε

)
= Sz

(
n∏

k=1

(K, dk), ε

)
≤ 2n + 1

by iterated use of Proposition 2.6, and so (K, d) is of Szlenk index ω at most.

Next result is concerned with the stability of the Szlenk indices by continuous
images.
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Proposition 2.9 Consider two pairs (K1, d1) and (K2, d2) of compacta together
with associated metrics such that there exits a surjection of K1 onto K2 which is
continuous and uniformly continuous between the metrics with modulus of uniform
continuity τ . Then Sk(K2, τ(ε)) ≤ Sk(K1, ε) for any ε > 0.

Proof. Let f : K1 → K2 be the surjection. It enough to show that

K〈f(H)〉′τ(ε) ⊂ f( K〈H〉′ε)

for every closed subset H ⊂ K1. Indeed, if x ∈ f(H) \ f( K〈H〉′ε), then f−1(x)
is compact subset of H disjoint with K〈H〉′ε. The set f−1(x) can be covered
with finitely many open sets U such that α(H ∩ U) < ε. Let V be the union
of all such open sets, so V ∩ K〈H〉′ε = ∅ and α(H ∩ V ) < ε. Taking the open
set W = K2 \ f(H \ V ) we have x ∈ f(H) ∩W ⊂ f(H ∩ V ) which implies that
x 6∈ K〈f(H)〉′τ(ε) since α(f(H ∩ V )) < τ(ε).

The character of being of Szlenk index ω at most is preserved by continuous
surjections which are uniformly continuous with respect to the metrics, but the
finite indices may be very different.

Example 2.10 Let φ1, φ2 : (0, 1] → N be two surjective decreasing left continuous
functions. Let K1 and K2 be the compact spaces associated to these functions
provided by the method of Example 2.7. Then K1 and K2 are homeomorphic and
uniformly homeomorphic with respect to the associated metrics.

Proof. Both compact are of the form
∏∞

n=1[1, ω] with a metric of described by
d((xn), (yn)) = εm if m ∈ N is the least of the coordinates where xm 6= ym, being
(εn) a strictly decreasing sequence in (0, 1] with limit 0. The identity map between
two metrics of that form is always a uniform homeomorphism.

Asking Lipschitz property with respect to the metrics, the fragmentability
speed of the image is bounded by the speed of the domain in a more usable form.

Corollary 2.11 The compact spaces of Szlenk index at most ω are preserved by
continuous images which are Lipschitz with respect to the metrics. Moreover if
K2 is a continuous and Lipschitz image of K1 then

Sk(K2, ε) ≤ Sk(K1, ε/λ)

where λ > 0 is the Lipschitz constant.

The former result fails for non compact spaces. Just observe that every sepa-
rable Banach space is a quotient of `1.

3 Convex hulls

Along this section we shall place our compact K inside a locally convex space X,
where there is defined a certain norm ‖·‖. The topological dual space of X will be
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denoted X∗. All the topological notions will always be referred to the topology of
X, unless explicit mention to a different topology. Furthermore, we shall assume
the following technical conditions:

a) K is ‖ · ‖-bounded.

b) the closed convex hull in X of K is compact.

c) ‖ · ‖ generates a finer topology on bounded sets.

These conditions together with the ‖ · ‖-fragmentability of K are not completely
independent. For instance, the reader may easily prove that a ‖ · ‖-fragmentable
convex compact must be ‖·‖-bounded. On the other hand, the proof of Lemma 3.1
implies the compactness of the closed convex hull of a ‖ · ‖-fragmentable compact
if (X, ‖·‖) is complete. Notice that ‖·‖ does not need to be lower semicontinuous.

The topological case of a compact together with a finer metric can be reduced
to this setting by means of the following ‘canonical’ construction. Let L(K, d)
denote the space of Lipschitz functions on K with respect to the metric d endowed
with the norm

‖f‖L = max{‖f‖∞, L(f)}
where L(f) is the optimal Lipschitz constant for f . If K is fragmented by d, then
Lipschitz functions are universally measurable. Therefore we may define a norm
on C(K)∗ by the formula

‖µ‖∗L = sup{
∫

K

f dµ : f ∈ L(K, d), ‖f‖L ≤ 1}.

This norm extends the metric d and generates a topology finer than the weak∗ on
bounded subsets since any f ∈ C(K), as d-continuous function, can be uniformly
approached by Lipschitz functions. If the metric d is lower semicontinuous, then
the set W = BL(K,d) ∩ C(K) is rich enough to recover d from it. Therefore, if d
is lower semicontinuous, we may change ‖ · ‖∗L by the norm on C(K)∗ calculated
by taking the supremum on W , which has the advantage of being weak∗-lower
semicontinuous.

The following result appears in [13] for a lower semicontinuous norm.

Lemma 3.1 If K ⊂ X is a ‖ · ‖-fragmentable compact, then

conv(K) = conv‖·‖(K).

Proof. Given x ∈ conv(K) there is a Radon probability µ on K representing
x. Using fragmentability, for every ε > 0 there is a transfinite sequence (Dε

α)α<γ

of nonempty disjoint measurable sets of ‖ · ‖-diameter less than ε where µ is
additive, that means µ(Dε

α) = 0 except for countably many indices, where the
measure is concentrated. Pick points xε

α ∈ Dε
α. Taking ε = 1/n, define a function

fn : K → X by fn(x) = x
1/n
α if x ∈ D

1/n
α . Since fn is µ-measurable, bounded
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and has essentially separable range, it is µ-Bochner integrable in a completion of
(X, ‖ · ‖). By construction fn converges uniformly to the identity I of K, that
turns to be µ-Bochner integrable as well. Therefore x is represented by µ also in
Bochner sense and we have

x =
∫

K

I dµ = ‖ · ‖ − lim
n

∫

K

fn dµ ∈ conv‖·‖(K)

since
∫

K
fn dµ =

∑
α<γ µ(D1/n

α )xα is a ‖ · ‖-convergent series.

The following result tells us the good behavior by convex hulls of Kuratowski’s
measure of non-compactness. The proof avoids the difficulty of dealing with non
lower semicontinuous metrics.

Lemma 3.2 Let K1, . . . ,Kn be convex compact sets, K = conv(K1 ∪ . . . ∪Kn),
∆ = {(λi) ∈ [0, 1]n :

∑n
i=1 λi = 1} and A ⊂ K closed. Then

α(A) ≤ sup{
n∑

i=1

λi diam(Ki) : (λi) ∈ ∆, A ∩
n∑

i=1

λi Ki 6= ∅}.

Proof. For every point x ∈ A and every ε > 0 we shall find an open neighborhood
U of x such that

α(K ∩ U) < max{
n∑

i=1

λi diam(Ki) : (λi) ∈ ∆, x ∈
n∑

i=1

λi Ki}+ 2ε.

Indeed, take Mi = supx∈Ki
‖x‖ and consider

∑n
i=1 Miλi as a function of (λi).

By compactness of ∆, we can find finitely many closed subsets ∆k ⊂ ∆ with
∆ =

⋃m
k=1 ∆k such that the oscillation of

∑n
i=1 Miλi is less than ε on each ∆k.

Take dk = max{∑n
i=1 λi diam(Ki) : (λi) ∈ ∆k}. With all these choices, it is easy

to check that the compact sets

Ck = {
n∑

i=1

λixi : (λi) ∈ ∆k, xi ∈ Ki}

verify diam(Ck) < dk + ε and K =
⋃m

k=1 Ck. For x ∈ A, we can take U as the
complement of the compact set

⋃
x 6∈Ck

Ck and then we have K ∩ U ⊂ ⋃
x∈Ck

Ck

and thus α(K ∩U) < max{dk : x ∈ Ck}+ε. The proof is finished by compactness
of A and the arbitrary choosing of ε.

The following result uses ideas from [19] to build a somehow UKK-function,
but here is just an intermediate step towards a much better result, Theorem 3.8.
A similar function in a dual Banach space X∗ with Sz(BX∗) ≤ ω was built by
Lancien [10, 11] in a very different way.

Lemma 3.3 Let K be a symmetric compact with Sz(K, ε) < ω for some ε > 0.
Then given ε∗ > 2ε, there is an homogeneous lower semicontinuous function
F : X → [0,+∞], such that the radial set B = {x ∈ X : F (x) ≤ 1} verifies
K ⊂ B ⊂ 2conv(K) and 〈B〉′ε∗ ⊂ (1− η)B for some 0 < η < 1.
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Proof. Take n = Sz(K, ε) and fix r ∈ (0, 1) such that 4ε
r+r2 < ε∗. Define the

symmetric radial compact sets

H = {λx : λ ∈ [0, 1], x ∈ K} and

Hk = {λx : λ ∈ [0, 1], x ∈ 〈K〉kε} ∪ rH.

It is not difficult to see that limω xω ∈ Hk+1 whenever (xω) ⊂ Hk is a converging
ε-separated net. Let f be the Minkowski functional of H and for every 0 ≤ k ≤ n
let fk be the Minkowski functional of Hk. We have f = f0 ≤ fk ≤ r−1f . Define

F (x) =
1
2
f(x) +

r

2(n + 1)

n∑

k=0

fk(x).

The function F is lower semicontinuous and 1+r
2 f ≤ F ≤ f . If B = {x ∈ X :

F (x) ≤ 1}, then the former inequality implies that B ⊂ 2H ⊂ 2conv(K). By
Lemma 2.3, if x ∈ 〈B〉′ε∗ then there is net (xω) ⊂ B converging to x and such that
‖xω − x‖ > 2ε

r+r2 . Without loss of generality we may assume that F (xω) = 1 for
every ω. An easy computation gives

1 ≤ fk(xω) ≤ 2
r + r2

for all k (for k = 0 or k = n estimations are much better). We may assume that
limω fk(xω) exists without loss of generality. For ω large enough fk(xω)−1xω is
ε-separated from its limit and contained in Hk. Therefore its limit limω fk(xω)−1x
belongs to Hk+1, implying

fk+1(x) ≤ lim
ω

fk(xω).

Now we have
n∑

k=0

fk(x) ≤ f0(x) + lim
ω

n∑

k=0

fk(xω)− lim
ω

fn(xω) ≤ lim
ω

n∑

k=0

fk(xω)− 1− r

r + r2

since f0(x) = f(x) ≤ 2
1+r and fn(xω) = r−1f(xω) ≥ 1

r . We deduce that

F (x) ≤ 1− 1− r

2(r + 1)(n + 1)
= 1− η

and so x ∈ (1− η)B as we wanted.

Proposition 3.4 For every symmetric compact K ⊂ X with Sz(K, ε) < ω there
exists an homogeneous lower semicontinuous function F : X → [0, +∞] verifying
that the radial set BF = {x ∈ X : F (x) ≤ 1} is compact, K ⊂ BF ⊂ 2conv(K)
and 〈BF 〉′3ε ⊂ (1− η)BF , where η = 1

30 Sz(K, ε)−1.

Proof. Taking ε∗ = 3ε in the previous Lemma, then observe in the proof that we
may fix the value of r ∈ (0, 1) independently of ε. The function η is given by

η(ε) =
1− r

2(r + 1)(Sz(K, ε) + 1)

11



which satisfies the statement for any ε > 0. The value 1
30 is obtained for r = 4

5
after some rough estimations.

At this point we need to introduce the convex Szlenk index. Given K ⊂ X
convex compact, for every ε > 0 take

[K]′ε = {x ∈ K : ∀H open halfspace containing x, α(K ∩H) ≥ ε}

and define [K]αε inductively. The index Cz(K, ε) is the least ordinal α (if there
exists) such that [K]αε = ∅.

Lemma 3.5 Let K ⊂ X be a fragmentable compact with diam(K) ≤ M . Assume
that for some ε ∈ (0,M), some compact C ⊃ 〈K〉′ε and f ∈ X∗ is such that
sup{f, K} > sup{f, C}, then

sup{f, [conv(K)]′2ε} − sup{f, C} ≤ (1− ε

M
)(sup{f, K} − sup{f, C}).

Proof. Take b = sup{f, K} and sup{f, C} < a < b. We have {x ∈ K : f(x) ≥ a}
can be covered by relatively open sets of diameter less than ε. Using compactness,
we easily obtain that {x ∈ K : f(x) ≥ a} =

⋃n
i=1 Ki where the sets Ki with

i = 1, . . . , n are compact and have diameter less than ε. Consider the convex
sets Ci = conv(Ki) with i = 1, . . . , n and C0 = {x ∈ conv(K) : f(x) ≤ a}.
Lemma 3.1 implies that diam(Ci) ≤ ε for i = 1, . . . , n and diam(C0) ≤ M . Notice
conv(K) = conv(

⋃n
i=0 Ci). Take c = a + (1 − ε/M)(b − a). We claim that if

x =
∑n

i=0 λixi with xi ∈ Ci, λi ≥ 0 and
∑n

i=0 λi = 1, verifies f(x) ≥ c then
λ0 ≤ ε/M . Indeed, assume the contrary, then

∑n
i=1 λi < 1− ε/M and so

f(x) ≤ (
n∑

i=1

λi)b + λ0a = a + (
n∑

i=1

λi)(b− a) < a + (1− ε/M)(b− a) = c

a contradiction. Therefore, if for some numbers λi ≥ 0 with
∑n

i=1 λi = 1 we have

(
n∑

i=0

λiCi) ∩ {x ∈ conv(K) : f(x) ≥ c} 6= ∅

then necessarily it must be
∑n

i=0 λidiam(Ci) ≤ (
∑n

i=1 λi)ε + λ0M < 2ε. Using
Lemma 3.2 we obtain that

α({x ∈ conv(K) : f(x) ≥ c}) ≤ 2ε

and thus

sup{f(x) : [conv(K)]′2ε} − a ≤ c− a = (1− ε

M
)(b− a).

Since a can be taken arbitrarily close to sup{f, C} we obtain the statement.
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Proposition 3.6 Given ε ∈ (0, 2
3 ), for every symmetric compact K ⊂ X with

Sz(K, ε) < ω and diam(K) ≤ 1, there exists a homogeneous lower semicontinuous
convex function F : X → [0, +∞] verifying that the symmetric convex set

BF = {x ∈ X : F (x) ≤ 1}

is compact, conv(K) ⊂ BF ⊂ 2conv(K) and 〈BF 〉′6ε ⊂ (1 − θ)BF , where θ =
1
20 ε Sz(K, ε)−1.

Proof. Fix ε > 0 and let B the radial compact set given by Proposition 3.4. The
function F is just the Minkowski functional of conv(B). Notice that diameter of
B is less than 2. Moreover, we have

〈B〉′3ε ⊂ (1− η)B

where η = 1
30 Sz(K, ε)−1. Taking C = (1 − η)B in Lemma 3.5 and an arbitrary

f ∈ X∗, we have

sup{f, [conv(B)]′6ε} − sup{f, C} ≤ (1− 3ε

2
)(sup{f, B} − sup{f, C}).

Having in mind sup{f, C} = (1−η) sup{f, B}, we obtain after a short calculation

sup{f, [conv(B)]′6ε} ≤ (1− 3εη

2
) sup{f, B}.

Therefore
[conv(B)]′6ε ⊂ (1− 3εη

2
) conv(B)

so finishing the proof.

Corollary 3.7 Let K ⊂ X be a compact of Szlenk index ω at most, then conv(K)
and aconv(K) are also of Szlenk index ω at most, and moreover

Cz(conv(K), ε) ≤ a ε−1Sz(K, b ε)

for some constants a, b > 0 and every ε > 0.

Theorem 3.8 Let K be a symmetric compact of Szlenk index ω at most and
diameter less than 1. There is an homogeneous lower semicontinuous convex
function F : X → [0, +∞] and Θ(ε) ∈ (0, 1) such that the symmetric convex set

BF = {x ∈ X : F (x) ≤ 1}

is compact and verifies conv(K) ⊂ BF ⊂ 2conv(K) and 〈BF 〉′25ε ⊂ (1−Θ(ε))BF .
Moreover, it is possible to take Θ such that for every p > 1 then

lim
ε→0+

ε−p Θ(ε)Sz(K, ε) = +∞.
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Proof. Let f be the Minkowski’s functional of conv(K). Let Fn be the functions
given by Proposition 3.6 for ε = 2−n. Then we have 1

2f ≤ Fn ≤ f . Take

F (x) = 6π−2
∞∑

n=1

n−2Fn(x).

Let (x$) ⊂ BF a net converging to x such that ‖x$ − x‖ > 12ε. Without loss of
generality we may suppose that F (x$) = 1. Fix n ∈ N such that 2−n < ε ≤ 21−n.
Again, without loss of generality we may suppose that Fn(x$) is convergent and
thus

Fn(x) ≤ (1− θ(21−n)) lim
$

Fn(x$)

where θ is the function introduced in Proposition 3.6. Summing all the terms and
using lower semicontinuity we get

F (x) ≤ lim inf
$

F (x$)− 6 θ(21−n)
π2n2

lim
$

Fn(x$)

and using the bounds Fn ≥ 1
2f ≥ 1

2F we obtain

F (x) ≤ 1− 3 θ(21−n)
π2n2

which implies 〈BF 〉′25ε ⊂ (1−Θ(ε))BF where

Θ(ε) =
3 θ(21−n)

π2n2
=

3 · 21−n

20 π2n2Sz(K, 21−n)
≥ c ε

(1− log2(ε))2Sz(K, ε)

for a suitable constant c > 0, following the asymptotic behavior of Θ.

Proof of Theorem 1.1. Follows straight from Theorem 3.8 starting with the
symmetric set K ∪ (−K). Notice that this operation introduces a factor 2 since
the union may be not disjoint.

We shall finish this section by showing the existence of an upper bound for
the modulus function θ(ε) obtained in previous results.

Proposition 3.9 If θ : (0, 1) → (0, 1) is such that 〈K〉′ε ⊂ (1− θ(ε))K for some
symmetric convex compact K ⊂ X and for every ε, then θ(ε) ≤ α(K)−1ε.

Proof. Given f ∈ X∗ with sup{f,K} = 1 and r ≥ 1, observe that taking an
homothety from a point in the slice we obtain that

α({x ∈ K : f(x) > 1− r θ(ε)}) ≤ r α({x ∈ K : f(x) > 1− θ(ε)}) ≤ r ε.

The proof is finished just taking r = θ(ε)−1.
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4 Applications and more examples

Let us recall that the norm of a dual Banach space X∗ is UKK∗ if for every ε > 0
there is θ(ε) ∈ (0, 1) such that

〈BX∗〉′ε ⊂ (1− θ(ε))BX∗ .

The following is the main result in [19] that appears now as a consequence of the
results about convex hulls of compacta of Szlenk index ω at most.

Corollary 4.1 Let X be a Banach space such that Sz(BX∗) ≤ ω. Then there is
an equivalent norm on X such that the dual norm on X∗ is UKK∗ with modulus
of power type θ(ε) = c εp.

Proof. If the ball BX∗ of a dual Banach space together with the norm metric
is of Szlenk index ω then the finite indices Sz(BX∗ , ε) are submultiplicative, so
there exist C, p > 0 such that Sz(BX∗ , ε) ≤ Cε−p, see [12] for instance. Then the
convex set given by Theorem 1.1 is the ball of an equivalent UKK∗ dual norm
with modulus of power type.

Every compact space K together with a lower semicontinuous metric d imbeds
homeomorphically as a weak∗ compact in a dual Banach space such that the
metric induced by the norm coincides with d, see [7, Theorem 2.1]. The next two
results are concerned with the imbedding of compact spaces of Szlenk index ω
into dual Banach spaces.

Corollary 4.2 If K imbeds as w∗-compact of a dual UKK∗ Banach space with
the induced metric, then

Sz(K, ε) ≤ a ε−p

for some constants a > 0, p ≥ 1 and every ε > 0.

Corollary 4.3 There exists compact a space of Szlenk index ω with respect to a
lower semicontinuous metric which embed into no dual UKK∗ Banach space.

Proof. By Example 2.7 there is a compact space K together with a lower semi-
continuous metric such that Sz(K, ε) > 21/ε.

Recall that the d-Lipschitz functions on K are denoted L(K, d). The following
is a transfer type result.

Theorem 4.4 Let (K, d) have Szlenk index ω at most. If Y is a Banach space
which embeds isomorphically into C(K) as a subset of L(K, d), then Sz(BY ∗) ≤ ω.
Moreover

Sz(BY ∗ , ε) ≤ a ε−1Sz(K, b ε)

for some constants a, b > 0 and every ε > 0.
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Proof. Let J : Y → C(K) be the embedding and J∗ : C(K)∗ → Y ∗ its adjoint.
By the Baire category theorem it is easy to show that there is a common Lipschitz
bound λ for all the functions of J(BY ). Clearly, J∗(K) is a weak∗ compact and
norming subset of Y ∗. We shall show that also it is a Lipschitz image of K.
Indeed, if y ∈ BY and x1, x2 ∈ K then

|J∗(x1)(y)− J∗(x2)(y)| = |J(y)(x1)− J(y)(x2)| ≤ λ d(x1, x2).

Taking supremum on y ∈ BY we get ‖J∗(x1) − J∗(x2)‖ ≤ λ d(x1, x2). Then
Sk(J∗(K), ε) ≤ Sk(K, ε/λ) by Corollary 2.11. We finish applying Corollary 3.7
since aconv(J∗(K)) contains a ball of Y ∗.

Corollary 4.5 A Banach space Y admits an equivalent norm such that the dual
norm is UKK∗ if and only there is a compact space K together with a metric d
of Szlenk index ω at most such that Y imbeds as a closed subspace of C(K) made
up of d-Lipschitz functions.

The following results are concerned with the properties of the space C(K)∗

with Sz(K) ≤ ω. Let us recall the definition of the norm defined on C(K)∗ by

‖µ‖∗L = sup{
∫

K

f dµ : f ∈ L(K, d), ‖f‖L ≤ 1},

where ‖ · ‖L is the Lipschitz norm of L(K, d). The results of the former section
have the following implications.

Corollary 4.6 Let K be a compact space together with a finer metric d. If K is
of Szlenk index ω at most, then (BC(K)∗ , ‖ · ‖∗L) is also of Szlenk index ω at most.
Moreover

Cz(BC(K)∗ , ε) ≤ a ε−1Sz(K, b ε)

for some constants a, b > 0 and every ε > 0.

Proof. It follows from Corollary 3.7.

Corollary 4.7 Let K a compact space together with a finer metric d having Szlenk
index ω at most. Then there is an equivalent dual norm |||.||| on C(K)∗ with the
following property: for every ε > 0 there is θ > 0 such that

|||x||| ≤ 1− θ

whenever x = w∗- lim$ x$ with |||x$||| ≤ 1 and ‖x$ − x‖∗L > ε for all $.

Proof. In this case the symmetric convex set given by Theorem 3.8 is the unit
ball of the desired equivalent dual norm using Lemma 2.3.

If K is a scattered compact then the norm ‖.‖∗L coincides with the standard
norm of C(K)∗ retrieving this result of Lancien [11].

Corollary 4.8 Let K be a compact space. The C(K) admits an equivalent UKK∗

dual norm if and only if K is scattered with K(ω) = ∅.
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The UKK∗ renorming of a dual Banach space X∗ has a counterpart on its
predual X. It will be convenient to introduce some more notation. Consider a
Banach space X. For Y ⊂ X a subspace, we shall denote BY = BX ∩ Y and
BY (x, r) = x + (B(0, r) ∩ Y ). Following [8], the modulus of asymptotic uniform
smoothness of X is defined for ε > 0 by

ρX(ε) = sup
‖x‖=1

inf
D(X/Y )<∞

sup
y∈BY [x,ε]

‖y‖ − 1

where D stands for dimension, so Y runs on the finite codimensional subspaces of
X. The space X is said asymptotically uniformly smooth if limε→0 ε−1ρX(ε) = 0.
It is possible to show that X is asymptotically uniformly smooth if and only if X∗

is UKK∗, and moreover ρX(ε) are related quantitatively to the UKK∗ modulus
θ(ε) by Young’s duality, see [4, 8] for the details.

We wish to relate the modulus of asymptotic smoothness with the Szlenk index
for the unit ball in the same Banach space endowed with the weak topology and
the norm metric. In the following we shall not require any kind of compactness
for the ball. The essential inner radius ρ(A) of a set A ⊂ X is the supremum of
the numbers r > 0 such that BY (x, r) ⊂ A for some x ∈ A and Y ⊂ X a finite
codimensional subspace. Consider the following set derivation

dAc′ε = {x ∈ A : ∀U w-neighbourhood of x, ρ(A ∩ U) ≥ ε}
and extend it by iteration. The associated ordinal index is the goal Szlenk index
and it will be denoted Gz(A, ε). The name is motivated by comparison with soc-
cer game, because we are trying that balls, up to some diameter, do not enter into
the set. The reader can easily check that ρ(Bc0 ∩ U) = 1 for every weakly open
U meeting the unit sphere of c0. Therefore dBc0c′ε = Bc0 and so Gz(Bc0) = ∞.

The knowledge of modulus of asymptotic smoothness of a Banach space X
allows us to bound Sz(BX , ε) and Gz(BX , ε) from below, where BX is endowed
with the weak topology.

Proposition 4.9 If ε ∈ (0, 1/6), then (2ρX(3ε))−1 ≤ Gz(BX , ε) ≤ Sz(BX , 2ε).

Proof. The inequality between Sz and Gz follows from the obvious set inclusion
dAc′ε ⊂ 〈A〉′2ε by iteration. Now, the definition of ρX(ε) and the fact that any
weakly open set contains finite codimensional affine subspaces imply that

BX ⊂ dB[0, 1 + ρX(ε)]c′ε.
Fix ε < 1/6 and take ρ = ρX(3ε), thus ρ < 1/2. If r ∈ [1/2, 1], then by homo-
geneity we have

dB[0, r]c′ε ⊃ dB[0, r]c′3rε
1+ρ

⊃ B[0,
r

1 + ρ
] ⊃ B[0, r − ρX(3ε)].

The statement follows from the fact that the inclusion above can be iterated as
long as the radius of ball on the right side is greater that 1/2.
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It is easy to see that Gz(BX , ε) ≥ ε−1 for any Banach space X, but this is
too trivial to be useful. Under suitable equivalent norms, the moduli of Kadec-
Klee uniformity and uniform smoothness provide good estimations of the Szlenk
index. A typical case is that of `p(Γ) spaces, for which, after some rough standard
computations, it is possible to prove the following result (the conjugate exponent
of p is denoted by p′).

Example 4.10 For every infinite set Γ and 1 ≤ p < +∞ then

2−pε−p ≤ Gz(B`p(Γ), ε) ≤ Sz(B`p(Γ), ε) ≤ Cz(B`p(Γ), ε) ≤ 3pp ε−p.

A similar result for general Lp spaces is not true as Lp[0, 1] contains copies of
`2. In the case of Orlicz sequence spaces, the computation of the Szlenk indices
has been done by L. Borel-Mathurin in [3].

Next result shows that inverting the growth speed of the indices Sz and Gz
by a linear operator may cause norm compactness.

Theorem 4.11 Let T : X → Y be a bounded linear operator. If for every n ∈ N
there exists ε > 0 such that Sz(T (BX), ε) < Gz(BX , nε), then T is compact.

Proof. For a given n ∈ N, take ε > 0 such that

N = Sz(T (BX), ε) < Gz(BX , (n + 1)ε).

Consider the weakly closed sets Aj = BX∩T−1(〈T (BX)〉jε) with 0 ≤ j < N . Then
for some j there exists x ∈ Aj \Aj+1 such that every weakly neighborhood U of x

verifies ρ(Aj ∩U) ≥ (n+1)ε. Since T (x) ∈ 〈T (BX)〉jε \ 〈T (BX)〉j+1
ε , by continuity

we may fix U such that diam(T (Aj ∩ U)) < ε. Without loss of generality, we may
assume BZ [x, nε] ⊂ Aj ∩ U , where Z ⊂ X is a finite codimensional subspace.
Therefore diam(T (BZ [x, nε])) < ε and by scaling we have diam(T (BZ)) < n−1.
Using the Bartle-Graves selection of the quotient map from X onto X/Z, see [2,
Proposition 1.19], we have BX ⊂ 3BZ + F where F ⊂ X is a norm compact
subset. Therefore

T (BX) ⊂ T (F ) + 3T (BZ) ⊂ T (F ) + BY [0, 3/n].

Since n ∈ N was arbitrary, we deduce that T (BX) is norm compact.

With these ideas and arguing like in [8, Proposition 2.3] it is possible to prove
that if Gz(BX , ε) > Sz(BY , δ) for some 0 < δ < 2ε ≤ 1, then every bounded
linear operator from X into Y is compact. Let us mention here that the classical
Pitt’s theorem, see [5] for instance, can be deduced easily as a consequence of
Theorem 4.11 together with the estimations of Example 4.10.

Next results are devoted to some nonlinear applications of the Szlenk indices
to `p spaces. Consider the Mazur bijective mapping ψp,q : B`p(Γ) → B`q(Γ) defined
by

ψp,q( (xγ)γ∈Γ ) = (sign(xγ)|xγ |p/q)γ∈Γ
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where p, q ≥ 1. The Mazur mapping is always a homeomorphism between the
pointwise topologies and a uniform homeomorphism between the metrics, see [2,
Theorem 9.1]. Proposition 2.9 guaranties that all these balls should have the same
Szlenk index ω, already calculated in Example 4.10. The growth speed of Szlenk
indices can distinguish between them in the Lipschitz classification.

Example 4.12 The Mazur mapping ψp,q : B`p(Γ) → B`q(Γ) is Lipschitz if and
only if p ≥ q.

Proof. If p > q then ψp,q is Gâteaux differentiable everywhere and the norm of
its differential is bounded by p/q at the points of B`p(Γ), see the details in the
proof of [2, Theorem 9.1]. On the other hand, the existence of a continuous and
Lipschitz surjection ψ : B`p(Γ) → B`q(Γ) for p < q would imply by Corollary 2.11
and Example 4.10 that ε−q ≤ c ε−p for some constant c > 0 and every ε > 0 which
is clearly impossible.

Example 4.13 There exists a metrizable compact K of Szlenk index ω with re-
spect to a lower semicontinuous metric such that for every p ∈ [1, +∞) there is a
continuous and Lipschitz surjection Πp : K → B`p .

Proof. Take Kn = B`n with the metric dn(x, y) = n−1‖x − y‖n and K =∏∞
n=1 Kn together with the supremum metric. It is easy to see that

Sz(K, ε) = Sz(
n∏

i=1

Ki, ε) < ω,

where n > 2ε−1. Given p ∈ [1, +∞), take n > p and compose the projection on
the n-th coordinate with the Mazur mapping ψn,p.

We proved in [17] that if K is a compact which is fragmented by a lower
semicontinuous metric d, then C(K) cannot contain a copy of `1 made up of d-
Lipschitz functions. In the next result we study the possibility of finding copies of
other `p spaces made up of metrically Lipschitz functions in certain C(K) spaces.

Proposition 4.14 Let p ≥ 1 and endow B`p with the pointwise topology, which
makes it compact, and consider also the norm metric on it. Given q ≥ 1, then

a) C(B`p) contains a copy of `q made up of Lipschitz functions if q ≥ p
p−1 ,

b) C(B`p) contains no copy of `q made up of Lipschitz functions if q < p+1
p .

Proof. If q ≥ p
p−1 then for the conjugate exponent q′ ≤ p. The natural embedding

of `q into C(B`q′ ) together with the Mazur map Mp,q′ will provide the Lipschitz
copy. On the other hand, if X is a subspace of C(B`p), then Sz(BX∗ , ε) ≤ a ε−p−1

by Theorem 4.4 and so `q does not imbed as Lipschitz functions if q′ < p + 1.

In the case of p = 2, we get that C(B`2) contains Lipschitz copies of `q for
q ≥ 2 but it cannot for q < 3/2. We do not know what happens in the gap between
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these values. Observe that the space C(K), with K the compact built in Exam-
ple 4.13, contains isometric copies of the spaces `p for every p ∈ (1, +∞) made
up of metrically Lipschitz functions, but it cannot contain such a copy of `1 by [17].

Final Remarks.
(1) The main source of inspiration for this work was the Doctoral Thesis of Gilles
Lancien [10] realized under the supervision of G. Godefroy. In particular, the
results concerning the quantitative use of the Szlenk and dentability indices when
they are finite.
(2) Godefroy, Kalton and Lancien showed in [4] that the exponent of the modulus
in the UKK∗ renorming can be taken arbitrarily close to the exponent bounding
the Szlenk index. Unfortunately our method of proving Corollary 4.1 here leaves
a gap of 1 between both exponents. On the other hand, the asymptotic estimation
of Sz(C(K)∗, ε) given in Corollary 4.6 is optimal for K scattered with K(ω) =
∅. Indeed, if K is the one point compactification of an infinite discrete set Γ,
Corollary 4.6 gives that Sz(BC(K)∗ , ε) < C ε−1 for some C > 0. The exponent
−1 cannot be improved by Proposition 3.9.
(3) If K is a scattered compact with K(ω) = ∅, then it is possible to improve
Corollary 4.8 saying that the modulus can be taken of the form θ(ε) = c ε−1.
That is called a Lipschitz-UKK∗ norm. A careful reading of the proofs of Section 3
allows to see that the function F given by Proposition 3.6 for a fixed ε < 1/3 is
such a norm. But doing that is not worth at all since, in that case, it is easier to
write an explicit formula, see [6, p. 84].
(4) Some of the results in [14, 16], such as the stability of the descriptive compacta
by taking convex hulls, can be deduced from the results of this paper. Notice that
Corollary 4.7 implies that for K descriptive there exists a dual norm on C(K)∗

with a w∗-metrizable sphere, but that fact is implicit in the construction done for
the main result in [16]. The construction of a weak∗ rotund renorming on such
C(K)∗, see [16], from the results for compact spaces of Szlenk index ω needs some
extra work. See [20] for results on another kind of uniform renorming of C(K)∗

with K descriptive.
(5) In our paper [18] we studied the finitely dentable bounded convex (F.D. for
short) sets in Banach spaces. A F.D. set is a particular case of weakly compact of
Szlenk index ω at most with respect to the norm metric. We address to [18] for
the definition and the properties that will be used in the following construction.
Consider X = (

⊕∞
n=2 `n)2 and Y = (

⊕∞
n=2 `n)∞ and T : X → Y defined by

T ((xn)) = (n−1xn). Then T (BX) is a F.D. weakly compact convex subset of Y .
Indeed, as in Example 2.7, for every ε > 0 just the coordinates with n < 2/ε are
relevant and the finite product of F.D. set is again F.D. by [18, Proposition 4.4].
By construction, limε→0+ εp Sz(T (BX), ε) = +∞ for every p > 0, and therefore
T cannot factorize through any reflexive UKK Banach space. In particular, T is
a uniformly convexifying operator [1] factorizing through no superreflexive space.
Beauzamy gave an example of such an operator using Orlicz spaces [1, p. 122].
(6) Notice that Theorem 4.11 is valid for infinite ordinal indices. In order to ex-
plore the potential of this compactness criterion it is necessary to make a detailed
study of the index Gz, which is quite different of Sz in behavior. Moreover, it is

20



advisable to compute the indices of other classes of Banach spaces. These tasks
are out of the scope of this paper. We believe that the example of classical `p

spaces is enough as a motivation for the reader about the utility of the Szlenk
indices techniques in several situations.
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