
On asymptotically uniformly smooth

Banach spaces

M. Raja

October, 2012

Abstract

The class of asymptotically uniformly smoothable Banach spaces has
been considered in connection with several problems of Nonlinear Func-
tional Analysis, as the differentiability of Lipschitz functions, the uniform
classification of Banach spaces or the fixed point property. The known
characterizations for those spaces come from p-estimates when finite dimen-
sional block decompositions are available or via duality by means of the
Szlenk index. In this paper we found a geometrical characterization for the
existence of asymptotically uniformly smooth renorming using an ordinal
type index defined for subsets of the space. Among the applications, we
prove that the modulus of asymptotic uniform smoothness is the same for
all the non-asymptotically uniformly smoothable Banach spaces.

1 Introduction

Consider a real Banach space X. Following [4], the modulus of asymptotic uniform
smoothness of X is defined for ε > 0 by

ρX(ε) = sup
‖x‖=1

inf
D(X/Y )<∞

sup
y∈Y, ‖y‖≤ε

(‖x + y‖ − 1),

where D stands for dimension, so Y runs over the finite codimensional sub-
spaces of X. The space X is said to be asymptotically uniformly smooth if
limε→0 ε−1ρX(ε) = 0. The modulus of asymptotic uniform convexity of X is
defined for ε > 0 by

δX(ε) = inf
‖x‖=1

sup
D(X/Y )<∞

inf
y∈Y, ‖y‖≥ε

(‖x + y‖ − 1).

The space is said to be asymptotically uniformly convex if δX(ε) > 0 for every
ε > 0. Both moduli were introduced by Milman in [9] under different names. The
related notion of nearly uniformly smooth Banach space was introduced by Prus
in [12] and its corresponding modulus defined by Domı́nguez-Benavides in [1]. In
the case of X being a dual Banach space, if Y runs over the finite codimensional
weak∗ closed subspaces of X, the obtained modulus is denoted by δ

∗
X(ε), and the
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space is called weak∗ asymptotically uniformly convex if δ
∗
X(ε) > 0 for all ε > 0. It

is possible to show that X is asymptotically uniformly smooth if and only if X∗ is
weak∗ asymptotically uniformly convex, and moreover ρ∗X(·) is related quantita-
tively to δX(·) by Young’s duality, see [2, 4] for the details. Analogously, we may
define in a dual Banach space the modulus ρ∗X(.). The second section of [4] is the
best source of information and references about asymptotically uniformly smooth
and asymptotically uniformly convex Banach spaces.

In words of the authors of [4], the papers [5] and [2] contain implicitly the deep-
est information about the moduli of asymptotic smoothness and asymptotic con-
vexity. This is due to the fact that the weak∗ asymptotically uniformly convexity
for a dual Banach space coincides with the so called weak∗ uniformly Kadets-Klee
property, abbreviated UKK∗ (for X non-separable it is necessary to use Lancien’s
definition [7] instead of the original one by Huff [3]). The papers [5, 2] are con-
cerned, among other things, with UKK∗ renorming in relation to the Szlenk index.
In [5] it is shown that the UKK∗ modulus, which is essentially equivalent to the
function δ

∗
X(·), can be taken of power type. A different proof of this result can

be found in [2] giving the sharpest estimation of the power exponent in terms of
the Szlenk index. See also [13] for a more geometrical approach to the UKK∗

renorming. By duality, an asymptotically uniformly smoothable Banach space X
admits an equivalent norm such that ρX(ε) ≤ kεp for some k > 0 and p > 1.
A more recent paper [10] contains interesting information about asymptotically
uniformly smooth renorming of separable Banach spaces.

Our purpose is to provide a non-dual isomorphic characterization of the ex-
istence of an asymptotically uniformly smooth equivalent norm. This is done by
means of an ordinal index Gz similar to the Szlenk index, denoted Sz following
[6], but defined in terms of subsets of the space. The construction of the smooth
norm is completely geometrical and allows to relate the index Gz to ρX(·) in such
a way that the power type appears naturally. To define this index, some prelimi-
naries are necessary. For Y ⊂ X a subspace, we shall denote BY = BX ∩ Y and
BY (x, r) = x + rBY (all the balls we consider will be closed). The essential inner
radius %(A) of a set A ⊂ X is the supremum of the numbers r ≥ 0 such that
BY (x, r) ⊂ A for some x ∈ A and Y ⊂ X is a finite codimensional subspace. For
instance, consider the space `p with p ∈ [1,+∞). If U is a weak neighborhood
of some x ∈ B`p then we have %(B`p ∩ U) ≥ (1 − ‖x‖p

p)
1/p (just take finite codi-

mensional balls with center x). In order to define an ordinal index, consider the
following set derivation

[A]′ε = {x ∈ A : ∀U w-neighbourhood of x, %(A ∩ U) ≥ ε}
and extend for n ∈ N by iteration taking [A]nε = [[A]n−1

ε ]′ε. The goal Szlenk index,
denoted Gz(A, ε) is defined as

Gz(A, ε) = min{n ∈ N : [A]nε = ∅}
if such a number exists. If it is not the case, the set derivation can be defined for
transfinite ordinals in a very natural way in order to assign a value to Gz(A, ε).
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If [A]αε = [A]α+1
ε 6= ∅ for some ordinal α, then the derivation process does not

arrive at ∅ and we take Gz(A, ε) = ∞, which is beyond the ordinals. Since we
are mainly interested in numerical lower bounds for the goal index, any non-finite
value of Gz(A, ε) will be taken as +∞ in terms of real arithmetics. We shall also
consider the index Gz(A) = supε>0 Gz(A, ε). The goal index was introduced in
[14] as a tool to bound below the Szlenk index. In fact, Gz(A, ε) ≤ Sz(A, 2ε)
for every ε > 0, where the Szlenk index of a subset Sz(A, ε) is defined as above
just using the usual norm diameter instead of the essential inner radius “%”. In a
dual Banach space we may consider the analogous notions in terms of the weak∗

topology. In the paper we shall point out the results that are true, with suit-
able changes, in their dual version. The relation of this derivation to asymptotic
uniform smoothness is given by the following.

Proposition 1.1 Let X be a Banach space. Then X is asymptotically uniformly
smooth if and only if limε→0+ ε−1ζX(ε) = 0 where

ζX(ε) = 1− sup{r : rBX ⊂ [BX ]′ε}.

Notice that the supremum above is actually a maximum since [BX ]′ε is closed.
The function ζX(ε) is equivalent to ρX(ε), but it is more suitable for our com-
putations. In a dual Banach space we may consider ζ∗X(ε) defined in the obvious
way. The index Gz(BX , ε) is a monotone function of ε > 0 taking natural values.
Moreover, we shall see that always Gz(BX , ε) > ε−1, but a difference bigger than
one between both numbers implies the existence of an asymptotically uniformly
smooth equivalent norm. The characterizations of the renorming are summarized
in the following.

Theorem 1.2 For a Banach space X the following statements are equivalent:

i) X has an equivalent asymptotically uniformly smooth norm;

ii) X has an equivalent norm such that its modulus of asymptotic uniform
smoothness is of power type, that is, ρX(ε) = O(εp) for some p > 1;

iii) X has an equivalent norm such that ρX(ε) < ε for some ε > 0;

iv) there exists c > 0, p > 1 such that Gz(BX , ε) > c ε−p for every ε ∈ (0, 1);

v) there exists ε ∈ (0, 1) such that Gz(BX , ε) > ε−1 + 1.

We recall that the equivalence of i) and ii) was established for separable spaces
via duality in [5] for the first time. It was proven in [4] that statement iii) implies
that X is Asplund. The relation between p > 1 in statement iv) and the power
type of the asymptotic uniform smoothness modulus is almost optimal, in the
same sense that the results of [2] concerning to the Szlenk index are. However,
we have not found a direct argument (without renorming) to relate the goal index
of a Banach space X to its Szlenk index, computed in X∗. A consequence of
statement iii) above is the following.
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Corollary 1.3 If X is a Banach space which has no equivalent asymptotically
uniformly equivalent norm, then ρX(ε) = ε for every ε > 0.

Notice that the equality ρX(ε) = ε holds under any equivalent renorming of X.

The most asymptotically uniformly smooth Banach space is c0, since it is easy
to see that ρX(ε) = 0 for every ε < 1. On the other hand, Milman proved that
X contains a copy of c0 provided that ρX(ε) = 0 for some ε > 0. The next
result gives a quantitative estimation of “how much c0 is contained” inside an
asymptotically uniformly smooth Banach space.

Theorem 1.4 If X has an equivalent asymptotically uniformly smooth norm of
power type p > 1, then there exists k > 0 such that for every n ∈ N the following
holds

inf{d
BM

(Y, `n
∞) : Y ⊂ X,D(Y ) = n} ≤ k n1/p,

where d
BM

stands for the Banach-Mazur distance between isomorphic spaces.

The organization of the paper is as follows. In section 2 we present the prop-
erties of the goal derivation that we will need for the rest of the paper. Section 3
is devoted to the main renorming result, whose proof is split into several lemmas.
Finally, the results involving copies of the space c0 and its finite representability
are studied in section 4.

2 Properties of the goal derivation

We shall begin this section with some elementary properties of the set derivation
introduced above and its associated index. In the following X will be an infinite
dimensional real Banach space and Y ⊂ X will always denote a subspace. An
obvious argument that will be used continuously is the following: if U ⊂ X is
weakly open and x ∈ U , then there exists Y ⊂ X of finite codimension such that
x + Y ⊂ U . Most of the results of this section can be stated in a dual Banach
space with minor changes in terms of the weak∗ topology.

Lemma 2.1 Let A ⊂ X be a closed subset and ε > 0, then

{x ∈ A : d(X \A, x) ≥ ε} ⊂ [A]′ε.

In particular, for any r ≥ ε, then (r − ε)BX ⊂ [rBX ]′ε.

Proof. If x ∈ A is such that d(X \ A, x) ≥ ε, then for any finite codimensional
Y ⊂ X and any ε′ < ε, we have BY (x, ε′) ⊂ A and so x ∈ [A]′ε.

Corollary 2.2 If X is a Banach space, then Gz(BX , ε) > ε−1 and ξX(ε) ≤ ε for
every ε > 0.

Lemma 2.3 For every A ⊂ X closed convex and ε > 0, the set [A]′ε is closed
convex and for every δ > 0 and x ∈ [A]′ε there is y ∈ BX(x, δ) and Y ⊂ X of
finite codimension such that BY (y, ε− δ) ⊂ A.
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Proof. Consider for any r > 0 the set

Ar = {x ∈ A : ∃Y ⊂ X, D(X/Y ) < ∞, BY (x, r) ⊂ A}

which is convex. Indeed, suppose we are given x1, x2 ∈ Ar and λ ∈ (0, 1), for
some finite codimensional subspaces Yi ∈ X i = 1, 2 we have BYi

(xi, r) ⊂ A. Take
Y = Y1 ∩ Y2 which is of finite codimension, then

BY (λx1 + (1− λ)x2, r) ⊂ λBY (x1, r) + (1− λ)BY (x2, r) ⊂ A.

Notice that the norm and weak closures of Ar coincide by Mazur’s Theorem. We
claim that

[A]′ε =
⋂
r<ε

Ar.

Indeed, if x ∈ A\⋂
r<ε Ar then x 6∈ Ar for some r < ε and so there exists a weakly

open U 3 x such that %(A∩U) ≤ r < ε. This shows that [A]′ε ⊂
⋂

r<ε Ar. On the
other hand, suppose x ∈ ⋂

r<ε Ar. Take any weakly open U 3 x and any r < ε.
Since x ∈ Ar, by construction we have %(U ∩A) ≥ r and therefore %(U ∩A) ≥ ε.
The last statement is a consequence of this representation of [A]′ε.

Remark 2.4 In the case of the weak∗ topology, the analogous result will provide
weak∗ density of the centers of big finite codimensional balls, which is enough to
prove the weak∗ versions of the remaining results of the section, with the exception
of Proposition 2.11.

We shall need the following rules for the “arithmetics” of sets.

Lemma 2.5 Let A,B ⊂ X and ε, η ≥ 0, then

η[A]′ε = [ηA]′ηε,

[A]′ε + B ⊂ [A + B]′ε,

[A]′ε + [B]′η ⊂ [A + B]′ε+η.

Proof. The first equality is simply obtained by scaling. The second set inclusion
follows from the third one just noticing that B = [B]′0. Finally, take a ∈ [A]′ε and
b ∈ [B]′η and let U be any weakly open neighborhood of a+b. Applying Lemma 2.3,
for any ε′ < ε and η′ < η we can find Y ⊂ X of finite codimension, x ∈ [A]′ε and
y ∈ [B]′η such that x + y ∈ U , BY (x, ε′) ⊂ A and BY (y, η′) ⊂ B. It follows that
BZ(x + y, ε′ + η′) ⊂ (A + B) ∩ U where Z ⊂ Y is a suitable finite codimensional
subspace. Therefore %((A + B) ∩ U) ≥ ε′ + η′, and so %((A + B) ∩ U) ≥ ε + η,
implying that a + b ∈ [A + B]′ε+η.

The following properties are known for ρX(ε), see [4, Proposition 2.3].

Proposition 2.6 The function ζ is convex and the map ε → ε−1ζX(ε) is not
decreasing.
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Proof. Given ε, η ≥ 0 and λ ∈ [0, 1] consider the following chain of set inclusions

(λ(1− ζX(ε)) + (1− λ)(1− ζX(η)) )BX ⊂ λ[BX ]′ε + (1− λ)[BX ]′η

⊂ [λBX ]′λε + [(1− λ)BX ]′(1−λ)η ⊂ [BX ]′λε+(1−λ)η.

Therefore, we have

λ(1− ζX(ε)) + (1− λ)(1− ζX(η)) ≤ 1− ζX(λε + (1− λ)η),

which implies the convexity of ζX . For the second part, if 0 < ε < η, take λ = ε/η.
Applying the convexity to ε = (1− λ)0 + λη we have ζX(ε) ≤ (ε/η)ζX(η).

Proposition 2.7 If Y ⊂ X is of finite codimension, A ⊂ X closed convex sym-
metric and ε > 0, then

[Y ∩A]′ε = Y ∩ [A]′ε.

Proof. It is clear that we may suppose that Y has codimension 1 and so Y =
ker(x∗) with x∗ ∈ X∗. The inclusion [Y ∩ A]′ε ⊂ Y ∩ [A]′ε is obvious. Suppose
that it is strict and take y ∈ Y ∩ [A]′ε \ [Y ∩ A]′ε. We can find U , a convex
weakly open neighborhood of y, such that %(Y ∩A ∩U) < ε. On the other hand,
fixing ε′ < η < ε, there exist a ∈ A and Z ⊂ X of finite codimension such that
BZ(a, η) ⊂ A ∩ U . Without loss of generality we may assume x∗(a) > 0. The
segment joining y with −a is contained in [A]′η and meets U at points of the set
{x ∈ A : x∗(x) < 0}. This implies, with the help of Lemma 2.3, the existence
of b ∈ U with x∗(b) < 0 and BW (b, ε′) ⊂ A ∩ U for some W ⊂ Z of finite
codimension. A suitable convex combination of a and b provides c ∈ Y such that
BW (c, ε′) ⊂ A ∩ U . Since ε′ < ε was arbitrary, this implies %(Y ∩ A ∩ U) ≥ ε,
which is a contradiction.

Corollary 2.8 For every Y ⊂ X of finite codimension and ε > 0,

Gz(BY , ε) = Gz(BX , ε).

We say that the functions f, g : (0,∞) → R are equivalent if there exist
constants a, b > 0 such that a−1f(b−1x) ≤ g(x) ≤ af(bx) for every x > 0. It
is almost obvious that Gz(BX , ε) and Gz(BY , ε) are equivalent if X and Y are
isomorphic Banach spaces.

Corollary 2.9 Let A ⊂ X be a nonempty bounded set. Then either Gz(A, ε) = 1
for every ε > 0, or Gz(A, ε) is equivalent to Gz(BX , ε).

For infinite ordinal values of the goal index we have the following.

Corollary 2.10 Let A ⊂ X be a nonempty bounded set. Suppose that Gz(A) > ω,
then Gz(A) ≥ ωω.

Proof. By Corollary 2.9 we may take A = BX . There exists ε ∈ (0, 1), r ∈ [ε, 1]
and Y ⊂ X of finite codimension such that BY (0, r) ⊂ [BX ]ωε . A scaling argument
implies that BY (0, r2) ⊂ [BX ]ω

2

rε , and recursively we have BY (0, rn) ⊂ [BX ]ω
n

rn−1ε
for n ∈ N. This implies Gz(BX) ≥ ωω, as desired.

6



Proposition 2.11 Let A ⊂ X be closed convex symmetric with nonempty interior
and ε > 0. Then for every x ∈ [A]′ε and λ > 1, there is Y ⊂ X of finite
codimension such that BY (x, ε) ⊂ λA.

Proof. Fix δ > 0 such that A + BX(0, 2δ) ⊂ λA and take ε − δ < ε′ < ε. By
Lemma 2.3 we can find z ∈ A with ‖z − x‖ < δ and Y ⊂ X of finite codimension
such that BY (z, ε′) ⊂ A. Therefore

BY (x, ε) ⊂ BY (z, ε′) + BX(0, 2δ) ⊂ A + BX(0, 2δ) ⊂ λA,

which finishes the proof.

3 Asymptotically uniformly smooth renorming

We shall begin the section by showing the equivalence of ρX(ε) and ζX(ε).

Proposition 3.1 For ε > 0 we have

ζX(ε) ≥ ρX(ε) ≥ ζX(
ε

1 + ρX(ε)
).

Proof. Given ε > 0, λ > 1 and x ∈ X with ‖x‖ = 1, then x′ = (1 − ζX(ε))x is
the center of some ball BY (x′, ε) ⊂ λBX as an application of Proposition 2.11,
where Y ⊂ X is of finite codimension. Since BY (x, ε) = ζX(ε)x + BY (x′, ε), we
deduce that BY (x, ε) ⊂ (λ + ζX(ε))BX , and so ρX(ε) ≤ λ + ζX(ε) − 1 because
x was arbitrary. As λ > 1 was arbitrary too, we arrive to ρX(ε) ≤ ζX(ε). On
the other hand, the definition of the modulus of asymptotic uniform smoothness
implies that

BX ⊂ [(1 + ρX(ε))BX ]′ε = (1 + ρX(ε))[BX ]′ ε
1+ρX (ε)

,

hence
BX ⊂ (1 + ρX(ε))(1− ζX(

ε

1 + ρX(ε)
)) BX ,

and thus (1 + ρX(ε))(1− ζX( ε
1+ρX(ε) )) ≥ 1, which implies the result.

Remark 3.2 An analogous result for the weak∗ version of this results is not true.
Consider `∞ = `∗1, then it is easy to check that ρ∗`∞(ε) = ε while ζ∗`∞(ε) = 0 for
every ε ∈ (0, 1). Moreover, notice that a uniformly smoothable dual Banach space
is necessarily reflexive.

Proof of Proposition 1.1. By the previous proposition, it is easy to see that
limn→0 ε−1ζX(ε) = 0 if and only if limn→0 ε−1ρX(ε) = 0.

The proof of Theorem 1.2 will be split into several lemmas.

Lemma 3.3 For any Banach space X and 0 < ε < 1/2, then

Gz(BX , ε) ≥ ζX(2ε)−1.
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Proof. With the help of Lemma 2.5, for n ∈ N we have the following set inclusions

BX(0, 1 + (n− 1)ζX(2ε)) = BX(0, 1− ζX(2ε)) + BX(0, nζX(2ε))

⊂ [BX ]′2ε + BX(0, nζX(2ε)) ⊂ [BX + BX(0, nζX(2ε))]′2ε

= [BX(0, 1 + nζX(2ε))]′2ε.

As a consequence, we have [BX(0, 2)]n2ε 6= ∅ if n is such that nζX(2ε) < 1. Taking
n as the integer part of ζX(2ε)−1, we have Gz(2BX , 2ε) ≥ n + 1 and the final
statement is obtained by scaling.

The next result shows how the power type appears in a very natural way.

Lemma 3.4 Suppose that Gz(BX , ε0) > ε−1
0 +1 for some ε0 ∈ (0, 1). Then there

exist c > 0 and p > 1 such that Gz(BX , ε) > c ε−p for all ε ∈ (0, 1).

Proof. Since Gz(BX , ε) has countably many discontinuities we may find 0 <
η < ε0 such that Gz(BX , ε) is continuous at η and Gz(BX , η) > η−1 + 1. Take
N = Gz(BX , η) − 1. We claim that [A]′ε ⊂ [A]Nηε for any A ⊂ BX and any
ε ∈ (0, 1). Indeed, if it is not the case, take U = X \ [A]Nηε and ε′ < ε such that

Gz(BX ,
ηε

ε′
) = Gz(BX , η).

We have U ∩ [A]′ε 6= ∅, and so there is a ball BY (x, ε′) ⊂ U ∩ A for some finite
codimensional Y ⊂ X. We deduce that [BY (x, ε′)]Nηε = ∅ and by scaling

[BY ]Nηε
ε′

= ∅,

which contradicts the choice of N after Proposition 2.7.
Once the fact is proven, by recurrence we have [A]kε ⊂ [A]kN

ηε . In particular,
for ε = η and k = N we have [BX ]Nη ⊂ [BX ]N

2

η2 , which implies [BX ]N
2

η2 6= ∅
and so Gz(BX , η2) > N2. Choosing ε equal to integer powers of η and the
same recurrence arguments provides that [BX ]N

k

ηk 6= ∅ for k ∈ N and therefore
Gz(BX , ηk) > Nk. Given any ε ∈ (0, 1) take k ∈ N such that ηk+1 < ε ≤ ηk. We
have

Gz(BX , ε) ≥ Gz(BX , ηk) > Nk >
N logη ε

N
=

εlogη N

N
=

ε−p

N

where p = − logη N > 1. This completes the proof of the lemma.

Remark 3.5 Notice that the proof of Lemma 3.4 gives an estimation of the power
type of Gz(BX , ε) that will also be an estimation of the power type of the modulus
of asymptotic uniform smoothness of the equivalent norm provided by Lemma 3.8
below.

Remark 3.6 Suppose that Gz(BX , ε) has power type p and Sz(BX , ε) has power
type q, that is, Sz(BX , ε) ≤ c ε−q for some c > 0 and any ε > 0. The inequality
Gz(BX , ε) ≤ Sz(BX , ε) implies that p ≤ q.
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Lemma 3.7 Assume that [BX ]mε 6= ∅ for m > 1. Then there is symmetric convex
set B such that BX ⊂ B ⊂ 2BX and

(1− 1
m

)B ⊂ [B]′ε.

Proof. We shall prove that the set

B = BX +
1
m

(BX + [BX ]′ε + . . . + [BX ]m−1
ε )

does the work. We have the following set inclusions

(1− 1
m

)B ⊂ (1− 1
m

)BX +
1
m

(BX + [BX ]′ε + . . . + [BX ]m−1
ε ) =

BX +
1
m

([BX ]′ε + . . . + [BX ]m−1
ε ) ⊂ [B]′ε,

where the last one is a consequence of Lemma 2.5.

The following result shows that the power type of the asymptotically uniformly
smooth renorming is almost optimal.

Lemma 3.8 Let c > 0 and p > 1 such that Gz(BX , ε) ≥ cε−p. Then there exist
an equivalent norm |||.||| on X, such that limε→0 ε−qζ|||.|||(ε) = 0 for any 1 < q < p.

Proof. Without loss of generality we may assume that Gz(BX , ε) − cε−p > 2.
For n ∈ N consider the set Bn given by Lemma 3.7 for ε = n22−n and m > cε−p.
Consider the set B =

∑∞
n=1 n−2Bn and notice that

[
1
n2

Bn]′2−n =
1
n2

[Bn]′n22−n ⊃ (1− n2p

c 2pn
)

1
n2

Bn.

The application of Lemma 2.5 gives us

(1− n2p

c 2pn
)B ⊂ [B]′2−n .

Given ε > 0, take n ∈ N such that 2−n−1 < ε ≤ 2−n. Then we have

[B]′ε ⊃ [B]′2−n ⊃ (1− 2p

c
(− log2 ε)2pεp) B.

Therefore, we deduce that

ζ|||.|||(
ε

4
) ≤ 2p

c
(− log2 ε)2pεp,

where the factor 1/4 inside ζ|||.||| corrects the fact that distances are now com-
puted with the new norm |||.|||. Finally we arrive to limε→0 ε−qζ|||.|||(ε) = 0 for any
1 < q < p.
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Proof of Theorem 1.2. It is clear that ii) ⇒ i) and i) ⇒ iii). Suppose that i)
holds. Then by Proposition 3.1 we have limε→0 ζX(2ε)−1ε = +∞. Thus, there is
0 < ε < 1 such that

Gz(BX , ε) ≥ ζX(2ε)−1 > 2ε−1 > ε−1 + 1

by application of Lemma 3.3. Therefore we have i) ⇒ v). Now, v) ⇒ iv) is
established in Lemma 3.4. Finally, iv) ⇒ ii) is consequence of Lemma 3.8 and
Proposition 3.1. Once we have proven the equivalences i) ⇔ ii) ⇔ iv) ⇔ v), the
equivalence with iii) will be established in Lemma 3.9 below.

The following is an improvement of [4, Proposition 2.4], since an asymptotically
uniformly smooth Banach space is Asplund.

Lemma 3.9 Let X be a Banach space. Assume that exists τ > 0 such that
ρX(τ) < τ . Then X is asymptotically uniformly smoothable.

Proof. We can take a number δ < τ such that BX(0, r) ⊂ [BX(0, r + δ)]′τ for any
r ≥ 1. Therefore, for every n ∈ N we have [BX(0, 1 + nδ)]nτ 6= ∅. By scaling, we
deduce that Gz(BX , τ

1+nδ ) > n. For n large enough and ε = τ
1+nδ , we shall have

Gz(BX , ε) > n > ε−1 + 1. Finally apply the above proved implication v) ⇒ i) of
Theorem 1.2.

The properties of the function ρX(·) imply that the hypothesis in Lemma 3.9
is equivalent to ρ ′X(0) < 1 (right-hand derivative). Analogously, if ξX(ε) < ε for
some ε ∈ (0, 1), then X is asymptotically uniformly smoothable.

Remark 3.10 An analogue of Theorem 1.2 is true for dual Banach spaces en-
dowed with the weak∗ topology and the modulus of asymptotic uniform smoothness
changed to ζ∗X(ε). Recall that ζ∗X(ε) and ρ∗X(ε) cannot be equivalent in that case.

Proposition 3.11 Let X be a Banach space such that limε→0 εpGz(BX , ε) = +∞
for every p > 0 (in particular, if Gz(BX , ε0) ≥ ω for some ε0 > 0). Then there
exist an equivalent norm |||.||| on X, such that limε→0 ε−pζ|||.|||(ε) = 0 for any p > 0.

Proof (Sketch). Follow the proof of Lemma 3.8 with appropriate changes.

The Tsirelson space T (see [8] for the construction, but notice that the space
defined there is in fact T ∗, the dual of the Banach space built originally by
Tsirelson) can be renormed for every p > 1 in such a way that δT (ε) ≥ cp εp,
[5, Remarks 7.2]. By duality, we have that T ∗ can be renormed for every q > 1 in
such a way that ρT∗(ε) = O(εq). In the next section, we shall show that actually
Gz(BT∗ , ε) > ω for 0 < ε < 1/2.

4 Embedding c0 and distances to `n
∞

Let X a Banach space such that ρX(ε) = 0 for some ε > 0. Milman [9] proved
that X contains a copy of c0. It is proved in [4, Theorem 2.9] that if X is in
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addition separable, then X is isomorphic to a subspace of c0. The existence of a
norm with such a property is characterized as follows.

Theorem 4.1 If there exists a nonempty bounded set A ⊂ X such that [A]′ε = A
for some ε > 0, then X admits an equivalent renorming such that ρX vanishes in
a neighborhood of 0.

Proof. Without loss of generality we may assume that A is closed and convex.
Then, after Lemma 2.5, we obtain that B = A + (−A) + BX is the ball of an
equivalent norm such that [B]′ε = B, and therefore [B]′η = B for every η < ε.

The aforementioned result [4, Theorem 2.9] implies the following.

Corollary 4.2 A Banach space X is isomorphic to a subspace of c0 if and only if
it is separable and there exists a nonempty bounded set A ⊂ X such that [A]′ε = A
for some ε > 0.

Corollary 4.3 If c0 does not imbed into X, then [A]′ε  A for every nonempty
bounded A ⊂ X and every ε > 0. In particular, we have Gz(BX) < ∞.

The inequality Gz(BX , ε) ≤ Sz(BX , ε), which is true for ordinal values, implies
that Gz(BX , ε) < ω whenever X has an equivalent asymptotically uniformly
convex norm. The next two results are concerned with the values that Gz(BX , ε)
can take.

Theorem 4.4 Let T ∗ be the dual of the Tsirelson space, then Gz(BT∗) = ωω.

Proof. Firstly we shall prove that Gz(BT∗) ≥ ωω. By Corollary 2.10 it is enough
to show that Gz(BT∗ , ε) > ω for ε ∈ (0, 1/2). In the following all the vectors
considered are finitely supported. As usual in sequence spaces u < v means that
max supp(u) < min supp(v). The standard basis of T ∗ is (ei). Given N ∈ N, our
goal is to prove that (1 − 2ε)BT∗ ⊂ [BT∗ ]Nε , which implies that [BT∗ ]ωε 6= ∅. For
every n ∈ N consider the set

An = {
n∑

i=0

vi : |v0|+ eN < v1 < . . . < vn, ‖v0‖ ≤ 1− 2ε, ‖vi‖ ≤ ε if i ≥ 1}.

By a remarkable property of T ∗, we have ‖v1 + . . . + vn‖ ≤ 2ε if vi are as above
and n ≤ N , and therefore AN ⊂ BT∗ . We claim that An−1 ⊂ [An]′ε. Indeed,
if v0 + . . . + vn−1 ∈ An−1 and Y ⊂ T ∗ is the finite codimensional subspace of
the vectors which are zero on the first max supp(vn−1) coordinates, then for every
v ∈ εBY we have v0+ . . .+vn−1+v ∈ An. That is, v0+ . . .+vn−1 is the center of a
finite codimensional ball of radius ε contained in An and so v0+. . .+vn−1 ∈ [An]′ε.
Once the claim is proven, apply it N times to obtain A0 ⊂ [AN ]Nε . The last in-
clusion implies that (1− 2ε)BT∗ ⊂ [BT∗ ]Nε , since A0 dense in (1− 2ε)BT∗ .
It was proved in [11, Proposition 16] that Sz(BT∗) = ωω, the Szlenk index of T
in our notation. Since we have Gz(BT∗) ≤ Sz(BT∗), we deduce Gz(BT∗) = ωω.
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Recall that the Tsirelson dual space T ∗ is a reflexive Banach space. On the
other hand, the following result shows that for large reflexive Banach spaces X
the goal index is always finite.

Theorem 4.5 Let X be a Banach space such that c0 does not imbed into X and
X∗ does not contain a weak∗-total sequence (for instance, if X is a non-separable
reflexive space). Then Gz(BX , ε) < ω for every ε > 0.

Proof. Notice that the hypothesis implies that countable codimensional sub-
spaces of X are nontrivial. Fix ε ∈ (0, 1) and suppose Gz(BX , ε) ≥ ω. We will
find a copy of c0 into X. For every n ∈ N we may consider the convex set given
in Lemma 3.7 that was defined by

Bn = BX +
1
n

(BX + . . . + [BX ]n−1
ε )

in the proof. Recall that it satisfies the set inclusion (1 − n−1)Bn ⊂ [Bn]′ε and
notice that the sequence (Bn) is decreasing. Let fn be the Minkowski functional
of Bn. We have for every x ∈ X that 2−1‖x‖ ≤ fn(x) ≤ ‖x‖ and (fn(x)) is an
increasing sequence. If we put f(x) = limn fn(x), then f defines an equivalent
norm on X whose unit ball will be denoted by B. Fix x ∈ B and n ∈ N. Since
x ∈ Bn, using Proposition 2.11, we may fix Yx,n ⊂ X of finite codimension such
that

BYx,n(x, ε) ⊂ (1 +
2
n

)Bn.

Now, for every x ∈ B we can fix a countable codimensional space Yx =
⋂∞

n=1 Yx,n.
If z ∈ BYx(x, ε) then fn(z) ≤ 1+2/n. Taking limits we have f(z) ≤ 1 and therefore

BYx(x, ε) ⊂ B.

We shall construct a sequence (xn) ⊂ X with ‖xn‖ = ε and such that
∑n

k=1±xk ∈
B for any choice of signs. By a classical result of Bessaga and PeÃlczyński, this
implies c0 ⊂ X. There is no problem to find x1. Suppose that we already have
found xk for k ≤ n. Consider the following subspace of X which is of countable
codimension

Y = {y : ∀x =
n∑

k=1

±xk, y ∈ Yx}

and take any xn+1 ∈ Y with ‖xn+1‖ = ε. The property of B ensures that∑n+1
k=1 ±xk ∈ B for any choice of signs.

With some extra work it is easy to obtain an explicit copy of c0 in the previous
theorem instead of using Bessaga-PeÃlczyński. In fact, we shall develop this idea
to prove the following proposition.

Proposition 4.6 Let A ⊂ BX be a bounded symmetric closed convex set with
nonempty interior, let n ∈ N be such that [A]nε 6= ∅ for some ε ∈ (0, 1). Then
for every δ > 0 there exist a operator T : `n

∞ → X such that T (B`n∞) ⊂ A and
‖T−1‖ ≤ ε−1(1 + δ).

12



Proof. Fix λ = (1 + δ)1/2, take η = λ−1ε and ξ = λ1/n. Define sets Ak =
ξk[λ−1A]n−k

η in order to use Proposition 2.11 between each pair of contiguous
sets. We claim that there exist sets {e1, . . . , en} ⊂ SX and {e∗1, . . . , e∗n} ⊂ SX∗

such that e∗i (ej) = 0 for i 6= j, e∗i (ei) ≥ λ−1 and
∑k

i=1± ηei ∈ Ak for any
1 ≤ k ≤ n and any choice of the signs. We have 0 ∈ A0 and take e1 ∈ X
such that ‖e1‖ = 1 and ηe1 ∈ A1. Take e∗1 norming e1. Suppose now that ei

and e∗i are defined for i ≤ k < n. Take Y ⊂ X of finite codimension such that
{e∗1, . . . , e∗k} ⊂ Y ⊥ and BY (x, ε) ⊂ Ak+1 for every x ∈ ∑k

i=1± ei, which is possible
by using Proposition 2.11 2k times. Take e∗k+1 ∈ SX∗ ∩ {e1, . . . , ek}⊥ such that
sup{e∗k+1, BY } = 1. And finally, take ek+1 ∈ SY such that e∗k+1(ek+1) ≥ λ−1.
This finishes the proof of the claim. Now define the operator T : `n

∞ → X
by the formula T ((ak)n

k=1) =
∑n

k=1 ηakek. The choice of vectors implies that
T (B`n∞) ⊂ A. On the other hand, T−1 is given explicitly by the formula

T−1(x) = η−1

(
e∗1(x)
e∗1(e1)

, . . . ,
e∗n(x)
e∗n(en)

)

for x ∈ T (`n
∞). Therefore ‖T−1‖ ≤ ε−1λ2 = ε−1(1 + δ), finishing the proof.

Corollary 4.7 Let X a Banach space such that Gz(BX , ε) ≥ ω for some ε > 0,
then c0 is finitely representable in X.

Proof of Theorem 1.4. By Theorem 1.2, there is c > 0 such that Gz(BX , ε) > n
for ε = cn−1/p. Applying Proposition 4.6 with A = BX , the operator T verifies
that ‖T‖ ≤ 1 and ‖T−1‖ < ε−1(1 + δ) where δ > 0 can be arbitrarily small.
Therefore we have

inf{dBM (Y, `n
∞) : Y ⊂ X,D(Y ) = n} ≤ ε−1

which proves the statement.

Notice that Theorem 1.4 can be established also for Banach-Mazur distances
from `n

1 to n-dimensional subspaces of the dual space X∗.
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