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Abstract. A simple observation about embeddings of smooth Banach
spaces into C(K) spaces allows us to construct a parametrization of the
separable Banach spaces using closed subsets of the interval [0, 1]. The
same idea is applied to the study of the isometric embedding of `p spaces
into certain C(K) spaces with the additional condition that the functions
of the image must be Lipschitz with respect to a fixed finer metric on K.
The feasibility of that kind of embeddings is related to Szlenk indices.

1. Introduction

Along the paper all the Banach spaces considered are real. We shall de-

note by K a compact Hausdorff space and C(K) will be the Banach space

of real continuous functions on K endowed with the supremum norm. As

usual, if X is a Banach space we shall denote BX its closed unit ball, and

SX its unit sphere. For any unexplained concept or notation about Banach

spaces we address the reader to [2].

Given a subspace X ⊂ C(K) and a closed subset H ⊂ K, we shall denote

by X|H the restriction of the functions of X to H, understood as elements

of C(H). This map is in general not injective, so any coset is identified with

the same function on H. We are ready to state the first result of the paper.

Theorem 1.1. There exists a closed linear subspace W ⊂ C[0, 1] with the

following property: for any separable Banach space X, there exists a closed

subset H ⊂ [0, 1] such that X is isometric to W |H .

The result claims that the range of the mapping that to a closed subset

H ⊂ [0, 1] assigns the linear space W |H covers all the isometry classes of

separable Banach spaces. Notice that it provides a sort of “parametriza-

tion” of the separable Banach spaces by a quite simple set of indices. The

precise description of the family of closed subsets H ⊂ [0, 1] such that W |H
is a Banach space is done in Proposition 2.3. Compare Theorem 1.1 to the

classical Banach-Mazur Theorem [2, Theorem 5.8] about the universality of
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C[0, 1] for the separable Banach spaces.

As a byproduct of the ideas behind the proof of Theorem 1.1 we give

an application to the properties of the subspaces of C(K) made up of func-

tions which are Lipschitz with respect to a fixed finer metric defined on K.

This topic has been discussed in our papers [4, 5]. It is an easy exercise

to prove that if K is a compact metric space, then every closed subspace

of C(K) made of Lipschitz functions is finite dimensional. Therefore, to

avoid trivial situations, we shall always consider K equipped with a met-

ric whose induced topology is strictly finer than the original topology on

K. A typical scenario for that is a dual ball BX∗ , which is compact for the

weak∗ topology, together with the metric d induced by the dual norm on X∗.

The second result that we are going to prove in this note partially solves

a question motivated after [5, Proposition 4.14].

Theorem 1.2. Let p, q ∈ [1,+∞). The topology τp of pointwise convergence

turns B`p into a compact space. On B`p we also consider the metric d induced

by the norm ‖ · ‖p. Then C(B`p) contains an isometric copy of `q made of

functions that are Lipschitz for the metric d if and only if (p−1)(q−1) ≥ 1.

The isomorphic embedding of `1 as Lipschitz functions into a C(K) space

has been studied in [4] in relation with the fragmentability of K. In the

case of embeddings of `p, the “speed of the fragmentation” of K, which is

understood in terms of the Szlenk index, plays a major role in the arguments

(see Proposition 3.2).

2. Parametrization of separable Banach spaces

We shall use the notion of Gâteaux smoothness of a norm, see [2, Defi-

nition 7.1]. For our purposes is enough to know that Gâteaux smoothness

is equivalent, by the Šmulian Lemma [2, Corollary 7.22], to the uniqueness

of norming functionals, that is, the set {x∗ ∈ BX∗ : x∗(x) = ‖x‖} has only

one element for every x ∈ X \ {0}.

The following result was first noticed by Donoghue [1] under stronger

hypotheses and used for the construction of Peano-type filling curves.

Lemma 2.1. Let X be an infinite dimensional Banach space endowed with

a Gâteaux smooth norm and let J : X → C(K) be an isometric embedding.

Then

BX∗ = J∗(K) ∪ (−J∗(K)),
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where J∗ denotes the adjoint map from C(K)∗ into X∗.

Proof. Let NA ⊂ SX∗ the set of norm-one attaining functionals. Given

x ∈ X and its corresponding norm attaining functional x∗ ∈ NA, we have

{y∗ ∈ BX∗ : |y∗(x)| = ‖x‖} = {x∗,−x∗},

since the norm is Gâteaux smooth. The function J(x) attains its norm at

some t ∈ K, and so, since J is an isometry, ‖x‖ = |J(x)(t)|. It follows that

J∗(t) ∈ {x∗,−x∗}. Since x ∈ X was arbitrary, we have

NA ⊂ J∗(K) ∪ (−J∗(K)).

Now NA = SX∗ by the Bishop-Phelps Theorem [2, Theorem 7.41]. As X is

infinite dimensional

BX∗ = SX∗
w∗

= NA
w∗ ⊂ J∗(K) ∪ (−J∗(K)),

finishing the proof, since the other inclusion is trivial. �

The former lemma has a simpler proof —skipping the use of the Bishop–

Phelps theorem— if we make the stronger assumption that X∗ is strictly

convex. Note that every separable Banach space has an equivalent Gâteaux

norm, which can be obtained by a strictly convex dual renorming of its dual

[2, Corollary 7.23].

Proof of Theorem 1.1. Let W be the space `1 with a Gâteaux smooth equiv-

alent norm. By the Banach-Mazur Theorem [2, Theorem 5.8] we may find

W isometrically inside C[0, 1]. Let J be the inclusion mapping of W into

C[0, 1].

Given a separable Banach space X, there is an onto linear operator T :

W → X with ‖T‖ ≤ 1, since every separable Banach space is isomet-

ric to a quotient of `1 [2, Theorem 5.1]. For the adjoint operator we have

‖T ∗‖ = ‖T‖ ≤ 1 an thus

T ∗(BX∗) ⊂ BW ∗ = J∗([0, 1]) ∪ (−J∗([0, 1])).

Take H = {t ∈ [0, 1] : J∗(t) ∈ T ∗(BX∗)}. Obviously, we have

T ∗(BX∗) = J∗(H) ∪ (−J∗(H)).

Given any w ∈ W , then we have

‖T (w)‖ = sup
x∗∈BX∗

T ∗(x∗)(w) = sup
w∗∈T ∗(BX∗ )

w∗(w) = sup
t∈H
|J(w)(t)|.

This last equality implies that X is isometric to W |H and now the proof is

complete. �
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Remark 2.2. Given a closed subspace W ⊂ C(K) and a closed subset

H ⊂ K, in general W |H is not a closed subspace of C(H) . As a matter of

fact, in the proof of Theorem 1.1 we may suppose that X is the range of a

bounded linear operator defined on `1 (or any separable Banach space) in

order to obtain an isometry onto a linear space of the form W |H .

The parametrization of the class of the separable Banach spaces provided

by Theorem 1.1 will be completed with a suitable description of the set of

indices. We shall denote F(K) the family of nonempty closed subsets of a

metrizable compact space K. Endowed with the Vietoris topology, F(K)

becomes a metrizable compact space, and its associated Borel σ-algebra

coincides with the Effros Borel structure. Recall that the Vietoris topology

of F(K) is generated by the sets of the form {H ∈ F(K) : H ⊂ U} and

{H ∈ F(K) : H ∩ U 6= ∅} where U ⊂ K is open. We address the reader to

[6] for additional definitions and more information about these topics.

Proposition 2.3. Let K be a compact metric space and let W ⊂ C(K) be

a closed subspace. Then the set

D = {H ∈ F(K) : W |H is Banach}

is Borel with respect to the Vietoris topology on F(K).

Proof. Fix a dense sequence (fk)k∈N ⊂ W . The subsets of K defined by

U(m, k, j) = {x ∈ K : |fk(x)− fj(x)| < 1/m},

V (n,m, k, j) = {x ∈ K : ‖fj‖ < n|fk(x)|+ 1/m}
for n,m, k, j ∈ N are open. Lemma 2.4 (stated below) applied to the re-

striction operator TH : W → C(H), which is defined as TH(f) = f |H for

H ∈ F(K), implies that

D =
⋃
n∈N

⋂
m,k∈N

⋃
j∈N

{H ∈ F(K) : H ⊂ U(m, k, j), H ∩ V (n,m, k, j) 6= ∅}.

Hence D is a Gδσ set in the Vietoris topology, and so it is Borel. �

Lemma 2.4. Let X and Y be separable Banach spaces, let T : X → Y be

a bounded linear operator and let (xk)k∈N ⊂ X be a dense sequence. Then

T (X) is closed in Y if and only if there is β > 0 such that, for every ε > 0

and every k ∈ N, there is j ∈ N satisfying that ‖T (xk) − T (xj)‖ < ε and

‖xj‖ < β‖T (xk)‖+ ε.

Proof. If T (X) is closed in Y , then T is open onto T (X) by the open map-

ping principle [2, Theorem 2.25]. Hence there is β > 0 such that for every

y ∈ T (X), there is x ∈ X such that T (x) = y and ‖x‖ ≤ β‖y‖. Now set
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y = T (xk) and find j ∈ N such that ‖x − xj‖ < min{ε, ‖T‖−1ε}. We have

‖T (xk)− T (xj)‖ < ε and ‖xj‖ ≤ ‖x‖+ ‖x− xj‖ < β‖T (xk)‖+ ε.

Let y ∈ Z := T (X) with ‖y‖ ≤ 1. Find a subsequence (xkn)n∈N such that

y = limn xkn . We may assume ‖T (xkn)‖ < 2 for all n ∈ N. Find, according

to our assumption, xjn such that ‖xjn‖ ≤ 2β+1/n with ‖T (xkn)−T (xjn)‖ <
1/n. We have limn T (xjn) = y and ‖xjn‖ < α := 2β + 1. This shows that

BZ ⊂ T (αBX). By [2, Lemma 2.24], we get λBZ ⊂ T (αBX) for some

λ ∈ (0, 1), and so T is an open mapping from X into Z. This shows, in

particular, that T (X) is closed. �

3. Smooth subspaces and finite Szlenk indices

We need to introduce several notions. In all that follows, we shall consider

a pair (K, d) consisting of the compact space K is equipped with a metric

d whose induced topology is strictly finer than the original topology on K.

Let ‘diam’ denote the diameter measured with respect to d. For any subset

A ⊂ K consider the following derived set

〈A〉′ε = {x ∈ A : ∀U neighbourhood of x, diam(A ∩ U) ≥ ε}.

By iteration, the sets 〈A〉γε are defined for any ordinal γ, taking intersection

in the case of limit ordinals. The Szlenk indices of K (with respect to d) are

ordinal numbers defined by

Sz(K, ε) = inf{γ : 〈K〉γε = ∅}

if such an ordinal exists, otherwise we say that Sz(K, ε) = ∞ (beyond

ordinals). We say that K has Szlenk index at most ω if Sz(K, ε) < ω for

every ε > 0. For instance, the closed balls of superreflexive Banach spaces

endowed with the weak topology have Szlenk index at most ω with respect

to the norm metric. Note that the standard Szlenk index of a Banach space

X is defined dually as supε>0 Sz(BX∗ , ε) and it has many applications in

isomorphic theory of Banach spaces, see [3]. The “bitopological” version

of the Szlenk index that we will use here has been studied in [5]. Finally,

L(K, d) stands for the set of real functions defined on K which are Lipschitz

with respect to the metric d. If d is lower semicontinuous, then C(K) ∩
L(K, d) separates points of K. The next lemma contains the properties of

the Szlenk index that we shall use here.

Lemma 3.1. Let (K, d) be a compact space together with an associated

metric.

(a) Sz(K, ε) ≤ max{Sz(Ai, ε/2) : i = 1, . . . , n} whenever Ai ⊂ K are

closed with K =
⋃n
i=1Ai and ε > 0.



6 M. RAJA

(b) Let (K̃, d̃) be a compact space with an associated metric such that

there exits a continuous surjection of K onto K̃ which is Lipschitz

for the two metrics. Then there exists a > 0 such that Sz(K̃, ε) ≤
Sz(K, aε) for any ε > 0.

Hint of the proof. Changing the diameter by the measure of noncompact-

ness of Kuratowski in the definition of the set derivation above we obtain a

new ordinal index denoted as Sk(K, ε), see the details in [5]. The relation

between the functions Sk and Sz is given by the inequality

Sz(K, 2ε) ≤ Sk(K, ε) ≤ Sz(K, ε).

Statement (a) follows from the fact that Sk(K, ε) = max1≤i≤n Sk(Ai, ε), [5,

Proposition 2.5]. On the other hand, statement (b) follows from [5, Corol-

lary 2.11], saying that Sk(K̃, ε) ≤ Sk(K, ε/λ) where λ the Lipschitz con-

stant of the mapping. �

This result is an improvement of [5, Theorem 4.4] under stronger as-

sumptions.

Proposition 3.2. Let (K, d) have Szlenk index at most ω. If X is a Banach

space endowed with a Gâteaux smooth norm which embeds isometrically into

C(K) as a subset of L(K, d), then

Sz(BX∗ , ε) ≤ Sz(K, c ε)

for some c > 0 and every ε > 0.

Proof. Without loss of generality we may assume that X is of infinite di-

mension. Let J : X → C(K) be the embedding and J∗ : C(K)∗ → X∗ its

adjoint. A suitable use of the Baire category theorem implies that there is

a common Lipschitz bound λ > 0 for all the functions of J(BX). The set

J∗(K) is a weak∗ compact subset of X∗ such that BX∗ = J∗(K)∪(−J∗(K))

by Lemma 2.1. We claim that J∗(K) is also a Lipschitz image of K. Indeed,

if x ∈ BX and t1, t2 ∈ K then

|J∗(t1)(x)− J∗(t2)(x)| = |J(x)(t1)− J(x)(t2)| ≤ λ d(t1, t2).

Taking supremum on x ∈ BX we get ‖J∗(t1) − J∗(t2)‖ ≤ λ d(t1, t2). Then

Sz(J∗(K), ε) ≤ Sz(K, aε) by (b) of Lemma 3.1. Applying now (a) of

Lemma 3.1, we have Sz(BX∗ , ε) ≤ Sz(J∗(K), ε/2) and the conclusion of

the proof is straightforward. �

Remark 3.3. If (K, d) has Szlenk index at most ω, and the Banach space

X embeds isomorphically into C(K) as a subset of L(K, d), then BX∗ has
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Szlenk index at most ω by [5, Theorem 4.4]. In particular, X∗ admits an

equivalent locally uniformly rotund dual norm [3, Theorem 13] and therefore

X is Fréchet smoothable.

Proof of Theorem 1.2. Let q′ denote the conjugate exponent of q, that is
1
q

+ 1
q′

= 1. Clearly, the inequality (p− 1)(q− 1) ≥ 1 is equivalent to q′ ≤ p.

Consider the Mazur mapping ϕp,q′ : B`p → B`q′
defined by

ϕp,q′( (xn)n∈N ) := (sign(xn)|xn|p/q
′
)n∈N

which is Lipschitz for q′ ≤ p, see the proof of [2, Theorem 12.50]. The

natural embedding of `q into C(B`q′
) composed with the Mazur mapping

will provide the isometric embedding of `q made up of Lipschitz functions.

On the other hand, if X is a Gâteaux smooth subspace of C(B`p), then

Sz(BX∗ , ε) ≤ Sz(B`p , cε) ≤ c ε−p

for some c > 0 by Proposition 3.2, and so `q does not embed as Lipschitz

functions if q′ ∈ (p,+∞) because Sz(B`q′
, ε) ≥ a ε−q

′
for some a > 0, see

[5, Example 4.10]. In case that q′ = +∞, then Sz(B`∞) = ∞ since `1 is

not Asplund, see [3, Theorem 2], and so `1 does not embed as Lipschitz

functions into C(B`p). �
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