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Abstract

For every superreflexive Banach space X there exists a supermultiplica-
tive function which is the supremum, in a very natural ordering, of the set
of all the moduli of convexity of equivalent norms. If this supremum is ac-
tually a maximum achieved under some equivalent renorming of X, then its
modulus of convexity is the best possible in asymptotic sense. Otherwise,
we can give an almost optimal uniformly convex renorming of X beyond the
classical power type bound obtained by Pisier [23].

1 Introduction

A Banach space X is said to be superreflexive if every Banach space Y that is
finitely representable in X is reflexive. Recall that being Y finitely representable
in X roughly means that every finite subspace F ⊂ Y can be embedded into X
almost isometrically. Finite representability and superreflexivity, were introduced
by R. C. James [15, 16] in the early 70’s and nowadays they have become standard
notions in Banach Space Theory. Among the different conditions which follow al-
most directly from the definition, we shall use the following: if X is superreflexive,
then any ultraproduct XN/U is reflexive. We refer the reader to [2, 5] for more
information on superreflexive Banach spaces.

The modulus of convexity of a Banach space (X, ‖ · ‖) is defined for t ∈ [0, 2]
by the formula

δ‖·‖(t) = inf{1− ‖x+ y

2
‖ : x, y ∈ BX , ‖x− y‖ ≥ t}.

The standard notation for the modulus of convexity is δX(t), but this is not the
case in this paper since X is going to stand for an abstract Banach space endowed
with many equivalent norms. A good source of information on properties of the
modulus of convexity is [20]. The norm ‖ · ‖ of a Banach space X is said to
be uniformly convex if δ‖·‖(t) > 0 for every t > 0. This notion was introduced
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by J. A. Clarkson [4] in the 30’s. A Banach space having a uniformly convex
equivalent norm is superreflexive. The converse is also true by a striking result of
Enflo [6] (the original proof can be also found in [7]).

Theorem 1.1 (Enflo) A superreflexive Banach space has an equivalent uniformly
convex norm.

The well known improvement of Enflo’s Theorem made by Pisier [23] states
that for a superreflexive Banach space there is an equivalent norm ‖·‖, p ∈ [2,+∞)
and c > 0 such that δ‖·‖(t) ≥ c tp for every t ∈ [0, 2]. This is the so-called power
type modulus. From an asymptotic point of view, “the most uniformly convex
renorming” is the one with p as low as possible. In general, the best value of p is
not attained, but at least there is a totally ordered hierarchy for the power type
modulus of equivalent renormings. It is known that very general functions can be
optimal modulus of convexity of Orlicz and Lorentz spaces, see [1, 21, 9, 20], but
simply looking at the power type implies a loss of information. Our first result
establishes the existence of a suitable upper bound for all the moduli of possible
equivalent renormings. Consider the following partial order for functions defined
on (0, 1]. We write φ � ψ if there is a constant c > 0 such that φ(t) ≤ c ψ(t) for
all t ∈ (0, 1]. If φ � ψ and ψ � φ, then we say that φ and ψ are equivalent.

Theorem 1.2 Let X be a superreflexive Banach space. There exists a positive de-
creasing submultiplicative function NX(t) defined on (0, 1] satisfying that NX(t)−1

is the supremum, up to equivalence, with respect to the order � of the set

{δ|||·|||(t) : ||| · ||| is an equivalent norm on X}.

Recall that the function φ is submultiplicative if φ(st) ≤ φ(s)φ(t). Note that
the function NX(t)−1 is supermultiplicative, which gives the alternative formula-
tion of Theorem 1.2 claimed in the abstract. Such a property for the optimal
modulus of convexity was first observed by Altshuler among Lorentz sequence
spaces [1], see also [9, 20]. It is not difficult to see that a positive decreasing
submultiplicative function φ defined on (0, 1] is bounded by a power type function
of the form c t−p with c, p > 0. Our next corollary shows the relation between the
function NX(t) and the infimum of the possible exponents of power type modulus.

Corollary 1.3 Given a superreflexive Banach space X, consider its type exponent
defined as

pX = inf
0<t<1

log(NX(t))

log(1/t)
.

Then, for every p > pX there is c > 0 such that NX(t) ≤ c t−p. Moreover, when
the above infimum is attained, then NX(t) is equivalent to t−pX .

We say that the modulus of convexity is optimal if it is maximum with respect
to the order � among all the moduli of convexity of equivalent norms.

Corollary 1.4 A uniformly convex Banach space X with its norm ‖ · ‖ has an
optimal modulus of convexity if, and only if, δ‖·‖(t) is equivalent to NX(t)−1.
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At this point, we have not given yet any positive result concerning the existence
of an optimal renorming with modulus equivalent to NX(t)−1. We believe that
this problem has a negative answer in general. We say that the norms ‖·‖1 and ‖·‖2
are η-equivalent for η > 1 if η−1‖x‖1 ≤ ‖x‖2 ≤ η‖x‖1. Note that η-equivalence
is a symmetric relation but it is not transitive. The best approximation of the
optimal modulus of convexity that we can prove is the following.

Theorem 1.5 Given a superreflexive Banach space X and η > 1, there exists a
constant c > 0 such that for every t ∈ (0, 1], there is a η-equivalent norm ||| · |||t on
X which satisfies

δ|||·|||t(t) ≥ cNX(t)−1.

Compare this result to [13, Theorem 4.7]. Blending the norms given by the
previous theorem in a series we will get a norm with a nearly optimal modulus of
uniform convexity.

Corollary 1.6 Let X be a superreflexive Banach space. For every α > 1 there
exists an equivalent uniformly convex norm ||| · ||| such that for some k > 0 it
satisfies

δ|||·|||(t) ≥ k | log t|−αNX(t)−1

for every t ∈ (0, 1]. In particular, the modulus of convexity of ||| · ||| has power type
p for every p > pX .

We may now deduce the result that Pisier pointed out in the abstract of [23]:
suppose that the norm of X satisfies limt→0 t

−p δ‖·‖(t) = ∞, then there is q < p
and an equivalent norm such that limt→0 t

−q δ|||·|||(t) =∞. Indeed, this hypothesis
implies that limt→0 NX(t) tp = 0 and thus pX ≤ p. On the other hand pX 6= p,
since the equality implies that t−p � NX(t) which is not possible. Therefore,
limt→0 t

−q δ|||·|||(t) =∞ for any q ∈ (pX , p) with the norm given in Corollary 1.6.

The techniques used by Pisier [23] involve the use of basic sequences, martin-
gales in L2(X) and several inequalities obtained analytically. In this part of the
introduction we shall describe the tools that we have used to obtain the afore-
mentioned results. First we need some geometrical definitions. The family of
open halfspaces, {x ∈ X : f(x) > a} with f ∈ X∗, is denoted by H. A slice
of A ⊂ X is a nonempty subset of the form A ∩ H where H ∈ H. When deal-
ing with a bounded set A and f ∈ SX∗ , the following notation will be useful:
sup{f,A} = sup{f(x) : x ∈ A} and

S(A, f, ξ) = {x ∈ A : f(x) > sup{f,A} − ξ},

where the infimum of all numbers ξ > 0 producing the same set is called the width
of the slice S. For ε > 0, define the slice derivation

[A]′ε = {x ∈ A : ∀H ∈ H, x ∈ H ⇒ diam(A ∩H) ≥ ε}.

In other words, [A]′ε is obtained by removing from A its slices of diameter less
than ε. It is clear that [A]′ε is closed and convex if so is A. A set A is called
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dentable if it has arbitrarily small slices. If X is reflexive, its bounded subsets
are dentable and so [A]′ε  A. The useful Lancien’s midpoint argument says that
any slice S of a convex set A which does not meet [A]′ε has diameter at most
2ε. Indeed, if x, y ∈ S = A ∩ H and [A]′ε ∩ H = ∅ then x+y

2 ∈ A \ [A]′ε, so

there is a G ∈ H such that diam(A ∩ G) < ε and x+y
2 ∈ G. Since x or y be-

longs to G, we get that a segment of length ‖x−y‖2 is contained in A ∩ G; hence
‖x − y‖ < 2ε and thus diam(A ∩ H) ≤ 2ε. Lancien’s midpoint argument may
be used as well in the following way: if x, y ∈ A and ‖x−y‖ ≥ 2ε, then x+y

2 ∈ [A]′ε.

The operation [ · ]′ε is a set derivation. The iterated derived sets are defined
in a natural way as [A]nε = [[A]n−1

ε ]′ε. It is possible to define derived sets of order
any ordinal number, but this is unnecessary for superreflexive spaces since The-
orem 1.1 implies that given a bounded set A ⊂ X and ε > 0, there is an n ∈ N
such that [A]nε = ∅. The least n ∈ N with this property is called the dentability
index and it is denoted Dz(A, ε). This index was used by Lancien [19] in order to
give an alternative proof of Pisier’s improvements of Theorem 1.1 and it is related
to the so-called Szlenk index Sz(A, ε) of the set. We refer the reader to [18] for
the main properties and applications of these indices.

The next result describes a process that removes small slices from the “outer
side” of a big slice without touching its complement. This process cannot exhaust
the slice in finitely many steps, but the width of slices of bounded diameter can
be uniformly reduced to one half.

Proposition 1.7 Let X be a superreflexive Banach space. For every ε ∈ (0, 1]
there is an Nε ∈ N, such that for every slice S = A∩H, with A convex and H ∈ H,
of diameter at most 1 and width h > 0 there are closed convex sets (Cn)Nεn=0 having
these properties:

a) A = C0 ⊃ C1 ⊃ . . . ⊃ CNε ⊃ (A \H),

b) [Cn−1]′ε ⊂ Cn, and

c) CNε ∩H has width less than h/2.

The least Nε with all these properties will be denoted MX(ε).

The reader can check (with the help of a picture) that this process for slices of
diameter 1 of big balls in Hilbert spaces takes Nε ' ε−2 steps. The construction of
the function NX(t) is also geometrical, but just a bit more tricky. All the compu-
tations are done in X and the use of hyperspaces like L2(X) is not needed. Later
we shall see that MX(t) and NX(t) are equivalent functions. As a consequence of
the submultiplicativity of NX(t), we get that MX(t)−1 satisfies the so-called ∆2

condition at zero, that is, there exists c > 0 such that MX(2t) ≤ cMX(t) for any
t ∈ (0, 1/2]. Moreover, it follows that NX(t) and MX(t) are isomorphic invariants
of X determined up to equivalence.

The structure of the rest of the paper is as follows. Section 2 contains an
alternative proof of Enflo’s Theorem (Theorem 1.1) using simple properties of
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superreflexive Banach spaces. In Section 3 we introduce the slow slicing deriva-
tion, showing its feasibility in uniformly convex spaces, which will provide the
construction of the function NX . Section 4 is devoted to renorming using func-
tions NX(t) and MX(t). Finally, Section 5 contains several applications of these
techniques. Throughout the paper X will be a superreflexive Banach space, but
we will emphasize this fact in most of the statements.

2 A proof of Enflo’s Theorem

The proof given by P. Enflo [6] of the existence of a uniformly convex renorming
of a superreflexive Banach space is rather mysterious from a geometrical point of
view. Alternative proofs in [23, 2, 19, 12] are not more elementary. The purpose
of this section is to give a simple alternative proof of Enflo’s Theorem, offering
a first glance of the techniques developed in section 4. As well, the inclusion of
this proof makes the paper self-contained because the construction of the function
NX(t) requires at least the existence of one uniformly convex norm on X.

Let s denote a finite sequence with elements in {0, 1} and let |s| be its length.
We consider ∅ a sequence of length 0 and s _ i denotes the sequence of length
|s| + 1 obtained from s by adding i ∈ {0, 1}. Given γ ∈ [0, 1

2 ] we say that a set
of the form {xs : |s| ≤ n} is a γ-weighted dyadic tree (of height n) if there exist
λs ∈ [γ, 1− γ] such that xs = λsxs_0 + (1−λs)xs_1 for every |s| < n. The point
x∅ is called the root of the tree. The usual dyadic trees are 1

2 -weighted trees. We
say that a dyadic tree {xs : |s| ≤ n} is ε-separated if ‖xs_0−xs_1‖ > ε for every
|s| < n.

Proposition 2.1 Let X be a superreflexive Banach space, γ ∈ (0, 1
2 ] and ε > 0.

Then there exists an N such that n ≤ N for every {xs : |s| ≤ n} γ-weighted and
ε-separated dyadic tree contained in BX .

Proof. If there is not such a bound to the height of the trees, then we may
take an ε-separated tree {xns }|s|≤n ⊂ BX of height n for every n ∈ N. These
trees are γ-weighted with some coefficients (λns )|s|≤n ⊂ [γ, 1 − γ]. For every fi-
nite sequence s of 0’s and 1’s the sequence (xns )n defines an element xus of the
ultraproduct XN/U despite the fact that the first |s| − 1 elements are missing.
Taking λs = U − limn λ

n
s , it is elementary to check that T = (xus ) ⊂ BXN/U is an

infinite ε-separated dyadic tree with weights (λs)s ⊂ [γ, 1− γ]. Clearly, any slice
of T has diameter at least γε, which implies that XN/U cannot be reflexive which
contradicts our assumption that X is superreflexive.

The next simple lemma will be very useful throughout the paper.

Lemma 2.2 If ‖x‖ = ‖y‖ = 1 and r ∈ (0, 1), then

min{‖αx− βy‖ : α, β ∈ [r, 1]} ≥ r

2
‖x− y‖.
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Proof. Clearly, the minimum is attained for α or β equal to r. Without loss
of generality we may assume that the quantity to be estimated from below is
‖(r + λ)x− ry‖ where λ ∈ [0, 1− r]. Now, if λ ≥ r

2‖x− y‖ we are done since

‖(r + λ)x− ry‖ ≥ | ‖(r + λ)x‖ − ‖ry‖ | = λ.

Otherwise, we have

‖(r + λ)x− ry‖ ≥ ‖ry − rx‖ − ‖λx‖ ≥ r‖y − x‖ − r

2
‖x− y‖,

which also leads to the thesis of the lemma.

Like in Enflo’s original proof, the first step of our construction will provide us
with a non-convex “uniformly non-square” homogeneous function.

Lemma 2.3 Let X be a superreflexive Banach space and ε ∈ (0, 1]. Then there
exists a symmetric homogeneous function F : X → [0,+∞) and an η > 0 such
that 2

3‖x‖ ≤ F (x) ≤ ‖x‖ and

F (
x+ y

2
) ≤ 1− η

whenever x, y ∈ X satisfy F (x) = F (y) = 1 and ‖x− y‖ > ε.

Proof. Let Tn be the closure of the set of all roots of 1
3 -weighted ε

4 -separated
dyadic trees of height n contained in BX , and let N − 1 be an upper bound for
this height. Consider the radial set

An = {rx : r ∈ [0, 1], x ∈ Tn} ∪ (1− 3−n)BX

and let Fn be its Minkowski functional. Note that A0 = BX since any x ∈ BX is
the root of a tree of height 0, AN = (1 − 3−N )BX , and ‖x‖ ≤ Fn(x) ≤ 3

2‖x‖ for
any n. Define the function

F (x) = (1− 3−N−1)‖x‖+ 2 · 3−N−2(N + 1)−1
N∑
n=0

Fn(x).

Clearly (1− 3−N−1)‖x‖ ≤ F (x) ≤ ‖x‖. Moreover, it is easy to see that N > ε−1

which allows us to give the more handy estimate ‖x‖ ≤ (1 + ε/8)F (x).
Let x, y ∈ X be such that F (x) = F (y) = 1 and ‖x− y‖ > ε and fix 0 ≤ n < N ;
then we have 1 ≤ Fn(x), Fn(y) ≤ 2. Set x = Fn(x)−1x and y = Fn(y)−1y; then
x, y ∈ An.
We claim that ‖x− y‖ > ε/4. By previous estimates we already know that

max{‖x− x̂‖, ‖y − ŷ‖} ≤ ε/8,

where x̂ = ‖x‖−1x and ŷ = ‖y‖−1y, and thus ‖x̂ − ŷ‖ > 6ε/8. Since we
have ‖x‖, ‖y‖ ∈ [ 2

3 , 1], we can apply Lemma 2.2 with r = 2
3 , to obtain that

‖x− y‖ > 2
6

6
8ε = ε/4.
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Once the claim is proved, suppose that one of the points x or y belongs to
(1 − 3−n)BX , then ‖λx + (1 − λ)y‖ ≤ 1 − 3−n−1 for any λ ∈ [ 1

3 ,
2
3 ]. If this is

not the case, then we must have x, y ∈ Tn. Since ‖x − y‖ > ε/4 by Lemma 2.2,
any point of the form λx+ (1− λ)y with λ ∈ [ 1

3 ,
2
3 ] is arbitrarily close to the root

of 1
3 -weighted ε

4 -separated dyadic tree of height n+1 obtained by gluing two trees
of height n. In any case, we have

x+ y

Fn(x) + Fn(y)
= λx+ (1− λ)y ∈ (1− 3−n−1)BX ∪ Tn+1 ⊂ An+1

and by the homogeneity of the functionals we arrive to the inequality

Fn+1(x+ y) ≤ Fn(x) + Fn(y).

This is the key point for the following shift argument:

N∑
n=0

Fn(x+ y) = ‖x+ y‖+

N∑
n=1

Fn(x+ y)

≤ ‖x+ y‖+

N−1∑
n=0

(Fn(x) + Fn(y)) ≤
N∑
n=0

(Fn(x) + Fn(y))− 3−N

since

FN (x) + FN (y)− ‖x+ y‖ ≥ 2(1− 3−N )−1 − 2(1− 3−N−1)−1 > 3−N .

Hence, we obtain that

F (x) + F (y)− F (x+ y) ≥ 3−2N−2(N + 1)−1

which proves the lemma.

Proof of Theorem 1.1. Fix ε ∈ (0, 1] and let B be the closed convex hull of the
set A = {x ∈ X : F (x) ≤ 1}, where F is given by Lemma 2.3 and we may also
assume that η < 2

3ε. We claim that diam(S) < 8ε for any slice S = B ∩H such
that H ∈ H does not meet (1− ηε)B.
Indeed, without loss of generality we may suppose that H = {x ∈ X : f(x) >
1 − ηε} with f ∈ X∗ and sup{f,B} = 1. The assumption on η gives us that
diam(A∩G) ≤ 2ε for the halfspace G = {x ∈ X : f(x) > 1− η}. Consider the set

D = {(1− λ)y + λz : y ∈ conv(A ∩G), z ∈ B \G,λ ∈ [ε, 1]}.

Any point x ∈ B is of the form x = (1 − λ)y + λz with y ∈ conv(A ∩ G) and
z ∈ B\G. Take x ∈ B\D; then necessarily λ ∈ [0, ε] and, since x−y = λ(z−y) ⊂
2εB, we get B \D ⊂ conv(A ∩G) + 3εBX . Hence diam(B \D) ≤ 8ε. Note that

sup{f,D} ≤ (1− λ) + λ(1− η) = 1− ηλ

so we have S ⊂ B \D, and therefore diam(S) < 8ε as claimed.
Now let ‖ · ‖n be the Minkowski functional of the symmetric convex set B given
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by the above construction with ε = 1
n for every n ∈ N and set ξn = ηε. We claim

that the equivalent norm

|||x||| = 3

4
‖x‖+

1

4

∞∑
n=1

2−n‖x‖n

is uniformly convex. First notice that

|||x||| ≤ ‖x‖ ≤ 3

2
‖x‖n ≤

3

2
‖x‖ ≤ 2|||x|||.

Given ε > 0, fix n ∈ N such that n > 128 ε−1. Suppose that x, y ∈ X are
such that ‖x − y‖ > ε and |||x||| = |||y||| = 1. Since we have ‖x‖n, ‖y‖n ≤ 2,
Lemma 2.2 gives that ‖x − y‖ > ε/4 > 32/n for x = x

‖x‖n and y = y
‖y‖n . The

segment with endpoints x and 1
2 (x + y) has length greater than 16/n, therefore

‖ 1
4 (3x+y)‖ ≤ 1−ξn by Lancien’s midpoint argument. A similar reasoning with the

segment of endpoints y and 1
2 (x+y) allows us to deduce that ‖ 1

4 (x+3y)‖ ≤ 1−ξn.
Therefore, we get that ‖λx+ (1−λ)y‖n ≤ 1− ξn for any λ ∈ [ 1

4 ,
3
4 ]. In particular,

we have
‖x+ y‖n
‖x‖n + ‖y‖n

≤ 1− ξn,

which implies ‖x‖n + ‖y‖n − ‖x+ y‖n ≥ 4ξn and thus

|||x|||+ |||y||| − |||x+ y||| ≥ 2−nξn.

This proves the uniform convexity of ||| · |||, as desired.

Remark 2.4 Note that the uniformly convex norm ||| · ||| can be taken arbitrarily
close to ‖ · ‖ (η-equivalent for any η > 1) by a suitable choice of coefficients. That
implies the well known fact that uniformly convex norms are dense among the
equivalent norms of a superreflexive Banach space X.

Remark 2.5 The best modulus of convexity obtained with this technique is of
exponential type, like in Enflo’s original proof. The rest of the paper is devoted to
improve the quality of the possible modulus under renorming.

Corollary 2.6 If X is superreflexive, then for every ε > 0 there is an n ∈ N such
that [BX ]nε = ∅ and so Dz(BX , ε) is finite.

3 Slicing in uniformly convex spaces

Along this section X will be a superreflexive Banach space with a fixed leading
norm ‖ · ‖ which is not necessarily uniformly convex. We shall show that the
functions NX and MX are controlled by the moduli of convexity of equivalent
norms on X. To simplify computations, instead of using the usual modulus of
convexity for an equivalent norm ||| · |||, we will consider the following modulus of
convexity of a norm ||| · ||| (relative to ‖ · ‖)

ϑ|||·|||(ε) = 1− 1

2
sup{|||x+ y||| : |||x||| = |||y||| = 1, ‖x− y‖ > ε}.
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Clearly we have δ|||·|||(γ
−1ε) ≤ ϑ|||·|||(ε) ≤ δ|||·|||(γε) if ||| · ||| is γ-equivalent to ‖ · ‖.

Lemma 3.1 Suppose that we are given norms ‖ · ‖1 and ‖ · ‖2 on X such that
‖ · ‖ ≤ 2‖ · ‖1 ≤ 4‖ · ‖ and ‖ · ‖ ≤ ‖ · ‖2 ≤ 2‖ · ‖. Then the norm ‖ · ‖η defined by

‖x‖η = (1− η)‖x‖1 +
η

4
‖x‖2

for any η ∈ (0, 1/2) satisfies ϑ‖·‖η (16ε) ≥ η
70 ϑ‖·‖2(ε) and ‖ · ‖η ≤ ‖ · ‖1.

Proof. Clearly ‖ · ‖η ≤ ‖ · ‖1. If ‖x‖η = 1, then 1 ≤ ‖x‖1 ≤ (1 − η)−1 and thus
1/2 ≤ ‖x‖2 ≤ 8. Suppose ‖x‖η = ‖y‖η = 1 and ‖x − y‖ > 16ε. By Lemma 2.2
applied to ‖ · ‖2 we obtain

‖ x

‖x‖2
− y

‖y‖2
‖2 ≥

1

16
‖x− y‖2 ≥

1

16
‖x− y‖ ≥ ε.

Take x = x
‖x‖2 , y = y

‖y‖2 and λ ∈ [γ, 1− γ] where γ ∈ (0, 1/2]. A simple convexity

argument shows that

1− ‖λx+ (1− λ)y‖2 ≥ 2γ ϑ‖·‖2(ε).

It is easy to verify that

λ =
‖x‖2

‖x‖2 + ‖y‖2
∈ [

1

17
,

16

17
]

and so we have

‖x‖2 + ‖y‖2
2

− ‖x+ y

2
‖2 =

‖x‖2 + ‖y‖2
2

(
1− ‖x+ y‖2
‖x‖2 + ‖y‖2

)
≥ 1

17
ϑ‖·‖2(ε).

Therefore,

1− ‖x+ y

2
‖η ≥

η

68
ϑ‖·‖2(ε)

which completes the proof of the lemma.

For the proof of the main result in this section we shall need another definition.
We call cylinder of center x, radius r > 0 and height h > 0 to a convex body of
the form

C = {x+ y + tz : y ∈ ker f, ‖y‖ ≤ r, t ∈ [−h/2, h/2]}

where f ∈ SX∗ and z ∈ SX satisfies f(z) = 1.

Lemma 3.2 A cylinder centered at 0 of radius r > 0 and height h > 0 contains
a ball of radius min{r/2, h/2} and it is contained in a ball of radius r + h/2.

Proof. Without loss of generality, we may assume that the cylinder has its center
at 0. If ‖x‖ ≤ min{r/2, h/2}, then x = (x − f(x)z) + f(x)z is a decomposition
like in the definition of cylinder. Thus, we have |f(x)| ≤ h/2 and ‖x− f(x)z‖ ≤
r/2 + r/2 = r. The other set inclusion is obvious.
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Lemma 3.3 Let S = A ∩H be a slice of diameter at most 1/2 and width h of a
closed convex set A ⊂ X with H ∈ H. Then there is a cylinder C of radius 1 and
height 2 such that C ∩H has width h and S ⊂ C ∩H.

Proof. Indeed, suppose that H is defined by f ∈ SX∗ and a = sup{f,A}. Pick a
vector z ∈ SX with f(z) = 1. By the definition of width it is possible to pick a
point x0 ∈ A ∩ f−1(a− h). Then set the center of the cylinder at x0 + (h− 1)z.
The other properties are elementary to check.

Let us fix a closed convex set B ⊂ X (we even admit B = ∅), the slow slicing
set derivation (with respect to B) is defined for any bounded subset A ⊂ X as

[A |B ]′ε = {x ∈ A : ∀S(A, f, ξ) 3 x & S(A, f, 2ξ)∩B = ∅ ⇒ diam(S(A, f, 2ξ)) ≥ ε}.

Removing only one half, with respect to the width, of the small slice will be the
key to get the submultiplicative property of NX . The sets [A |B ]nε are defined by
iteration for any number n ∈ N.

That derivation will allow us to slim slices without touching its complement.

Lemma 3.4 Let X be a superreflexive Banach space, A ⊂ X a closed convex
subset and S = S(A, f, 2ξ) a slice of width 2ξ > 0 and diam(S) = ∆ > 0. Given
ε ∈ (0,∆] there is an N ∈ N with the property

S(A, f, ξ) ∩ [A |A\S ]Nε = ∅.

Moreover, we can take N ≤ 2240ϑ|||·|||(
ε

64∆ )−1 for any norm ||| · ||| on X satisfying
‖ · ‖ ≤ ||| · ||| ≤ 2‖ · ‖.

Proof. By scaling we may suppose that ∆ > 0 is fixed, in particular we choose
∆ = 1/2 in order to keep nicer numbers in our construction. Set

H = {x ∈ X : f(x) > sup{f,A} − 2ξ},

so we have S = A ∩H. Recall that ‖f‖ = 1 and 2ξ ≤ ∆, so ξ ≤ 1/4.
By Lemma 3.3 there is a cylinder C of radius 1 and height 2 such that S ⊂ C ∩H
and C ∩ H has width 2ξ. In order to estimate the number of steps of the slow
slicing process to slim S to half width it is enough to work with such a kind of
cylinders.
Without loss of generality, we may assume that the cylinder C is centered at the
origin and so it is the unit ball of a 2-equivalent norm, so for some z ∈ SX norming
f we have

C = {y + tz : y ∈ BX ∩ ker f, t ∈ [−1, 1]}.

Obviously, the halfspace H can be written now as H = {x ∈ X : f(x) > 1− 2ξ}.
Later we shall need also the halfspace G = {x ∈ X : f(x) > 1− ξ}. Consider the
cylinder

C1 = {y + tz : y ∈ BX ∩ ker f, |t| ≤ 1− 3ξ

2
}
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also centered at the origin with equal parameters except its height which is
2(1 − 3

2ξ). Let ‖ · ‖1 be the Minkowski functional of C1 which clearly is a 2-
equivalent norm as well. Since ‖ · ‖1 and ‖ · ‖2 = ||| · ||| satisfy the hypothesis of
Lemma 3.1, we may consider the equivalent norm ‖ · ‖η given there for η = ξ/4.
If B is the unit ball of ‖ · ‖η, we claim that the choice of η implies that B∩G = ∅.
Indeed, ‖x‖η ≤ 1 implies that ‖(1− ξ

4 )x‖1 ≤ 1 and so

f(x) ≤ 1− 3ξ/2

1− ξ/4
< 1− ξ − ξ

4
.

On the other hand, the inclusion C1 ⊂ B and the inequality (1− 3ξ
2 )(1 + 4ξ) > 1

imply that C ⊂ (1 + 4ξ)B.
Lemma 3.1 says that ϑ‖·‖η (16ε) ≥ ξ

280 ϑ‖·‖2(ε). Since there are norms ||| · ||| satis-
fying the inequality of the statement which are uniformly convex, we may assume
at first that ϑ‖·‖2(t) > 0 for a given t ∈ (0, 1/64). Let N ∈ N be the integer part
of 2240ϑ‖·‖2(t)−1 and consider the convex sets

Dk =

(
1 +

4ξ(N − k)

N

)
B

for 0 ≤ k ≤ N . Note that C ⊂ D0 ⊂ 2B and DN = B. As ϑ‖·‖η (16t) > 2 4ξ
N , the

definition of modulus of convexity implies that

[Dn−2]′32t ⊂ Dn

and it is easy to check that DN−1 ∩ G = ∅. Note that the above derivation
shifts Dn−2 into Dn, which in terms of the slow slice derivation means that
[Dn−2|B ]′32t ⊂ Dn−1. Bearing in mind that we started with an arbitrary slice
of diameter ∆ = 1/2, we deduce by scaling for an arbitrary ∆ > 0 that

S(A, f, ξ) ∩ [A |A\S ]N64t∆ = ∅.

If ε ∈ [0,∆], taking t = ε
64∆ , the previous computations provide the existence

of N as claimed. Moreover, if ϑ‖·‖2(t) > 0 we have the upper estimation of
2240ϑ‖·‖2(t)−1, but if ϑ‖·‖2(t) = 0 then the estimation is trivially true.

We define here the function NX(ε). Let us recall that the existence of NX(ε)
was claimed in Theorem 1.2.

Theorem 3.5 Let X be a superreflexive Banach space. Then for every ε ∈ (0, 1]
there is a least NX(ε) ∈ N with the property

S(C, f, ξ) ∩ [C |B ]NX(ε)
ε = ∅

whenever B ⊂ C are closed convex subsets of X, f ∈ X∗, B ∩S(C, f, 2ξ) = ∅ and
diam(S(C, f, 2ξ)) ≤ 1. Moreover, NX(ε) is a submultiplicative function, that is,
NX(ε1ε2) ≤ NX(ε1)NX(ε2) for every ε1, ε2 ∈ (0, 1].
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Proof. Given B ⊂ C convex closed sets, if S ⊂ C is a slice disjoint from B, then
[C|B ]nε ⊂ [C|C\S ]nε for every n ∈ N. Thus the existence of NX(ε) is a straight-
forward consequence of Lemma 3.4 . Take ε1, ε2 ∈ (0, 1). In order to show that

NX(ε1ε2) ≤ NX(ε1)NX(ε2) it is enough to prove that [C |B ]
NX(ε2)
ε1ε2 ⊂ [C |B ]′ε1 . If

x ∈ C \ [C |B ]′ε1 , then for some slice x ∈ S(C, f, ξ) and diam(S(C, f, 2ξ)) ≤ ε1. By

scaling, it is clear that [C |B ]
NX(ε2)
ε1ε2 ∩ S(C, f, ξ) = ∅. Therefore, x 6∈ [C |B ]

NX(ε2)
ε1ε2 ,

which completes proof.

Corollary 3.6 NX(t) is an isomorphic invariant of X up to equivalence.

Proof. Let ‖ · ‖1 and ‖ · ‖2 be a pair of equivalent norms on X. If they are
γ-equivalent, a simple geometric argument gives us

N(X,‖·‖1)(t) ≤ N(X,‖·‖2)(γ
−2t) ≤ cN(X,‖·‖2)(t)

where c = N(X,‖·‖2)(γ
−2). By the symmetry of the argument, we have the equiv-

alence between N(X,‖·‖1)(t) and N(X,‖·‖2)(t).

Proof of Proposition 1.7. It is enough to consider the sets Ck = [A |A\H ]kε and
to take Nε = NX(ε).

Corollary 3.7 Let X be a superreflexive space. Then MX(t) ≤ NX(t).

Once we know the submultiplicativity of NX we can rewrite the estimation
given in Lemma 3.4 in a more handy way.

Theorem 3.8 Let X be a superreflexive space and γ > 1. There exist a constant
c > 0 such that NX(ε) ≤ c ϑ|||·|||(ε)−1 for any γ-equivalent norm ||| · ||| on X.

Proof. Suppose that the norm ‖ · ‖2 satisfies the inequality ‖ · ‖ ≤ ‖ · ‖2 ≤ 2‖ · ‖.
For ε ∈ (0, 1/64) Lemma 3.4 gives us that

NX(64ε) ≤ 2240ϑ‖·‖2(ε)−1.

Since NX(ε) ≤ NX(1/64)NX(64ε), it follows that

NX(ε) ≤ 2240NX(1/64)ϑ‖·‖2(ε)−1.

This proves the statement under the special restrictions of the norm ‖ ·‖2. In case
of starting with an arbitrary γ-equivalent norm ||| · ||| take ‖ · ‖2 = ‖ · ‖+ γ−1||| · |||
which satisfies the above assumptions and notice that

ϑ‖·‖2(aε) ≥ b ϑ|||·|||(ε)

where the constants a, b > 0 depends only on γ, by the same arguments used in
the proof of Lemma 3.1.



Finite slicing in superreflexive Banach spaces 13

4 Improving the modulus of uniform convexity

We will transfer the asymptotic behavior of functions NX and MX to the modulus
of convexity of a new norm.

Lemma 4.1 Let X be a superreflexive Banach space and fix 0 < γ < 1/12. Then
for every ε ∈ (0, 1] there is an equivalent norm ||| · ||| such that

(1− γ)‖x‖ ≤ |||x||| ≤ ‖x‖

and

1− |||x+ y

2
||| ≥ γ

36MX(ε)
,

whenever |||x||| = |||y||| = 1 and ‖x− y‖ ≥ 16ε.

Proof. Fix γ < η ≤ 1/12 and take α = 1− 4η, β = 1− 2η and ξ = 1− γ. Given
ε, fix N = MX(ε). There are sets (Cn) such that C0 = BX , [Cn−1]′ε ⊂ Cn and
αBX ⊂ CN ⊂ βBX . Indeed, Cn is obtained from Cn−1 by removing all the slices
of diameter less than ε which are disjoint from βBX . Any slice S = BX ∩ H
disjoint from βBX has width less than 4η. The definition of MX(ε), implies that
CN ∩H has width less than 2η. As S was arbitrary, we get that CN ⊂ αBX .
Denote by Fn the Minkowski functional of Cn. We have ‖x‖ ≤ Fn(x) ≤ α−1‖x‖.
Consider the equivalent norm on X defined by

|||x||| = (1− γ) ‖x‖+
γα

N + 1

N∑
n=0

Fn(x).

The definition clearly implies that ξ‖x‖ ≤ |||x||| ≤ ‖x‖. In particular, if |||x||| = 1,
then 1 ≤ ‖x‖ ≤ ξ−1 and 1 ≤ Fn(x) ≤ α−1ξ−1. Note that αξ2 > 1/2.
Assume |||x||| = |||y||| = 1 and ‖x− y‖ ≥ 16ε, then

1

2
< αξ ≤ Fn(x)

Fn(y)
≤ (αξ)−1 < 2.

Take x = Fn(x)−1x and y = Fn(y)−1y with n < N . Clearly x, y ∈ Cn and
applying Lemma 2.2 to norm ||| · ||| we get

‖x− y‖ ≥ |||x− y||| ≥ αξ

2
|||x− y||| ≥ αξ2

2
‖x− y‖ ≥ 4ε.

The segment with endpoints x and 1
2 (x+y) has length greater than 2ε. Lancien’s

midpoint argument we have 1
4 (3x+ y) ∈ Cn+1. After a similar reasoning with the

segment of endpoints y and 1
2 (x + y), we get that 1

4 (x + 3y) ∈ Cn+1. Therefore,
we have λx+ (1− λ)y ∈ Cn+1 for any λ ∈ [ 1

4 ,
3
4 ]. In particular, we may choose

λ =
Fn(x)

Fn(x) + Fn(y)

and thus
x+ y

Fn(x) + Fn(y)
∈ Cn+1
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which implies

Fn+1(
x+ y

2
) ≤ Fn(x) + Fn(y)

2
.

We now apply this inequality to the norm ||| · ||| with the shift argument

N∑
n=0

Fn(
x+ y

2
) = ‖x+ y

2
‖+

N∑
n=1

Fn(
x+ y

2
)

≤ ‖x+ y

2
‖+

N−1∑
n=0

Fn(x) + Fn(y)

2
≤

N∑
n=0

Fn(x) + Fn(y)

2
− (β−1 − ξ−1)

since ‖x+y
2 ‖ ≤ ξ

−1 and FN (x), FN (y) ≥ β−1. Observe that

β−1 − ξ−1 =
1

1− 2η
− 1

1− γ
=

2η − γ
(1− 2η)(1− γ)

≥ η.

Therefore,
N∑
n=0

Fn(
x+ y

2
) ≤

N∑
n=0

Fn(x) + Fn(y)

2
− η.

Thus,

1− |||x+ y

2
||| ≥ γαη

2(N + 1)

and the statement of the lemma follows by taking η = 1/12.

Proof of Theorem 1.5. Without loss of generality we may assume η < 12/11.
Fix γ = 1 − η−1 and take t > 0. For ε = t

16 consider the norm ||| · |||t given by
Lemma 4.1. If |||x|||t = |||y|||t = 1 and t ≤ |||x− y|||t ≤ ‖x− y‖. Then we have

1− |||x+ y

2
|||t ≥

1− η−1

36NX(t/16)
≥ 1− η−1

36NX(1/16)
NX(t)−1

which shows that δ|||·|||t(t) > cNX(t)−1, where the constant c only depends on X
and a fixed η > 1.

Lemma 4.2 Let (εn) and (θn) be non increasing sequences of positive numbers
with limit zero. Suppose in addition that

∞∑
n=1

MX(εn) θn < +∞.

Then there is an equivalent norm ||| · ||| on X and a constant k > 0 such that for
every n ∈ N we have

1− |||x+ y

2
||| ≥ k θn

whenever |||x||| = |||y||| = 1 and ‖x− y‖ ≥ 8εn.
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Proof. Put αn = MX(εn) θn and σ =
∑∞
n=1 αn for simplicity. Let ‖ · ‖n be

the equivalent norm built in Lemma 4.1 for ε = εn and γ = 1/12. Recall that
9
10‖x‖ ≤ ‖x‖n ≤ ‖x‖ for every x ∈ X. Consider the equivalent norm

|||x||| = ‖x‖+
1

5σ

∞∑
n=1

αn‖x‖n.

It is easy to see that if |||x||| = 1 then 3
4 ≤ ‖x‖n ≤ 1 for every n ∈ N. Suppose that

|||x||| = |||y||| = 1 and ‖x− y‖ > 8εn. For n ∈ N we have

λ =
‖x‖n

‖x‖n + ‖y‖n
∈ (

1

4
,

3

4
)

and using convexity we obtain that

‖λ x

‖x‖n
+ (1− λ)

y

‖y‖n
‖n ≤ 1− 1

432MX(εn)
.

After some elementary computations we have

‖x‖n + ‖y‖n
2

− ‖x+ y

2
‖n ≥

3

1728MX(εn)
.

This information applied to the norm ||| · ||| gives

1− |||x+ y

2
||| ≥ θn

2880σ

and the proof is complete.

Proof of Corollary 1.6. Take εn = 2−n and θn = MX(2−n)−1n−α in Lemma 4.2.
Given ε ∈ (0, 1], take n ∈ N such that 23−n ≤ ε < 24−n. We have ‖x− y‖ > ε ≥
8εn and thus

1− |||x+ y

2
||| ≥ kMX(2−n)−1n−α ≥ kMX(

ε

16
)−1(4− log ε

log 2
)−α.

Since MX( ε16 )−1 ≥ NX(1/16)−1 NX(ε)−1, for some K > 0 we have

1− |||x+ y

2
||| ≥ K (− log ε)−αNX(ε)−1

if ‖x − y‖ > ε. It is not difficult to enforce the above inequality for points that
satisfies |||x− y||| > ε just changing the value of K > 0.

Let us remark that for p ≥ 2, there exist constants cp, Cp > 0 such that
cpt
−p ≤M`p(t) ≤ Cpt−p. However the norm given in Corollary 1.6 will not be of

power type p. With the same idea, we can produce norms with modulus of con-
vexity arbitrarily close to MX(t)−1 (equivalently NX(t)−1) in asymptotic sense
but unfortunately they are not equivalent.
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Proof of Theorem 1.2. The construction of the function NX(t) and its submul-
tiplicativity was established in Theorem 3.5 and the property of being NX(t)−1

an upper bound in the order � for the set of all the moduli of convexity follows
from Theorem 3.8 as well as the relation between the functions ϑ|||·||| and δ|||·|||. It
only remains to show that it is a minimum. Suppose that φ(t) � NX(t)−1 and
φ(t) is also an upper bound for all the moduli of convexity.
The set E of equivalent norms on X is a complete metric space endowed with the
metric

d(‖ · ‖1, ‖ · ‖2) = sup{| log(
‖x‖1
‖x‖2

)| : x 6= 0}.

Indeed, the map Λ : E → `∞(SX) given by Λ(||| · |||) = (log(|||x|||))x∈SX is an
isometry onto its image. Now, if (‖ · ‖n) is a Cauchy sequence in E , the pointwise
convergence of (Λ(‖ · ‖n)) in `∞(SX) implies the existence of limn ‖x‖n = |||x||| for
every x ∈ X. It is elementary to check that ||| · ||| is an equivalent norm on X. Note
that the set of norms which are η-equivalent to ||| · ||| is exactly the ball of center
||| · ||| and radius log(η) in E .
By the Baire category theorem applied to the cover of E given by the sets Cn =
{||| · ||| : δ|||·|||(t) ≤ nφ(t)} there exists an equivalent norm ‖ · ‖0 and a γ > 1 such
that δ‖·‖(t) ≤ aφ(t) for all t ∈ (0, 1] and every γ-equivalent (to ‖ · ‖0) norm ‖ · ‖
on X. Without loss of generality we may assume X is already endowed with the
norm ‖·‖0 since the function NX remains equivalent. By Theorem 1.5 there exists
a constant b > 0 such that for a given t ∈ (0, 1] there is a γ-equivalent norm ‖ · ‖t
such that

δ‖·‖t(t) ≥ bN
−1
X (t).

Multiplying by φ(t)−1 we get

bN−1
X (t)φ(t)−1 ≤ δ‖·‖t(t)φ(t)−1 ≤ a

and hence NX(t)−1 ≤ (a/b)φ(t) independently of the renorming and so for every
t ∈ (0, 1]. We deduce that φ(t) is equivalent to NX(t)−1 as desired.

Proof of Corollary 1.3. For any s ∈ (0, 1) and 0 < t < s, take n ∈ N the integer
part of log t

log s . We have sn+1 ≤ t and so

NX(t) ≤ NX(sn+1) ≤ NX(s)n+1 ≤ NX(s)NX(s)
log t
log s = c t

log(NX (s))

log s .

If p > pX , a suitable choice of s provides that NX(t) ≤ c t−p for t ∈ (0, s), and
thus NX(t) ≤ c t−p for every t ∈ (0, 1) just taking a larger c > 0. If the infimum
is attained at some s ∈ (0, 1), the previous estimation gives that NX(t) ≤ c t−pX

for t ∈ (0, 1]. On the other hand, if we have

pX ≤
log(NX(t))

log(1/t)

for every t ∈ (0, 1), a simple computation gives us that NX(t) ≥ t−pX . Conse-
quently, t−pX is a decreasing multiplicative function equivalent to NX(t).
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Proposition 4.3 The function MX(t) is an isomorphic invariant of X equivalent
to NX(t) and MX(t)−1 satisfies the ∆2 condition at zero.

Proof. The combination of Theorem 3.8 and Lemma 4.1 give for some 2-equivalent
norm ||| · ||| and constants

NX(16t) ≤ a δ|||·|||(16t) ≤ a bMX(t)

and so NX(t) ≤ a bNX(1/16)MX(t). Since we always have MX(t) ≤ NX(t), we
obtain the equivalence. Observe now

MX(t) ≤ NX(t) ≤ NX(1/2)NX(2t) ≤ cMX(2t)

which is equivalent to the ∆2 condition of MX(t)−1.

5 Further applications

This final section gathers together several scattered results related to superreflex-
ive Banach spaces or their uniformly convex renormings.

Lower bounds for NX . A submultiplicative function is bounded above by power
functions. A bound from below also has some interesting consequences. In our
next lemma we consider the plane R2 with the Euclidean norm.

Lemma 5.1 If ε > 0, then MR2(ε) ≥ ε−2/8.

Proof. Given r ∈ [1/4, 1/2] observe that
√

(r + 2ε2)2 − r2 > ε, and so

rBR2 ⊂
[
(r + 2ε2)BR2

]′
ε
.

It follows that (1/4)BR2 ⊂ [(1/2)BR2 ]nε if n ∈ N satisfies that n2ε2 ≤ 1/4. On the

other hand, it is obvious that [(1/2)BR2 ]
MR2 (ε)
ε ⊂ (1/4)BR2 .

This last result is related to the well known approximate upper bound ε2/8 for
any modulus of convexity, which is often presented in literature as a consequence
of the celebrated Dvoretzky’s Theorem or Nördlander’s estimation, see [3].

Proposition 5.2 If X has dimension bigger than one, then NX(ε) ≥ c ε−2 for
some c > 0. In particular, we have pX ≥ 2.

Proof. It is clear that NX(ε) ≥ NY (ε) for any subspace Y ⊂ X. If Y has dimen-
sion 2, then NY (ε) is equivalent to ε−2 by the previous lemma.

Relation with the dentability index. A simple geometric argument gives the
following inequality

Dz(BX , ε) ≤MX(ε/2)

for a superreflexive Banach space X and ε > 0. However, it seems more compli-
cated to control MX(ε) or NX(ε) by means of Dz(BX , ε) using a direct argument.
Lancien [19] proved the next result.
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Theorem 5.3 (Lancien) Let X be a superreflexive Banach space, then there
exists an equivalent norm ||| · ||| and a c > 0 such that for every ε > 0 we have

δ|||·|||(ε) ≥
c ε2

Dz(BX , ε/8)2
.

This result together Theorem 3.8 implies that

NX(ε) ≤ C ε−2Dz(BX , ε)
2

for some constant C > 0 and every ε ∈ (0, 1]. We believe that this bound can be
improved. Unfortunately we do not know how to adapt the “shift argument” to
the hypothesis Dz(BX , ε) < +∞ to provide an alternative approach to Lancien’s
Theorem.

Extension of UC norms. The next result solves Problem IV.4 of [5] for the
extension of uniformly convex norms.

Theorem 5.4 Let X be a superreflexive space and Y ⊂ X a subspace. Suppose
that Y has a uniformly convex norm ‖ · ‖Y (resp. with modulus of power type).
Then there exists an equivalent uniformly convex norm on X (resp. with modulus
of power type) such that its restriction to X is ‖ · ‖Y .

Proof. Fix ε > 0 and η = δ‖·‖Y (ε). We may assume that the norm ‖ · ‖ of
X is the convex hull of B ∪ BY , where B is an equivalent ball on X such that
B ∩ Y ⊂ (1− η)BY . Clearly the restriction of ‖ · ‖ to Y is ‖ · ‖Y . Let J ⊂ X∗ be
the set of norm one functionals which attains its maximum on BY . Take f ∈ J
and G = {x ∈ X : f(x) > 1− η}. Observe that diam(A) ≤ ε where A = BY ∩G.
Consider the convex set

D = {(1− λ)y + λz : y ∈ A, z ∈ BX \G,λ ∈ [ε, 1]}.

Reasoning as in our proof of Theorem 1.1, we get that diam(BX ∩H) ≤ 5ε, where
H = {x ∈ X : f(x) > 1− ηε}. If we take

C = BX \
⋃
f∈J

{x ∈ X : f(x) > 1− ηε}

then we have C ∩ Y = (1− ηε)BY and [BX ]′5ε ⊂ C. Take C0 = BY , C1 = C and
Cn = [C1 |(1−ηε)BX ]n−1

5ε for n ≥ 2. We will have Cn ⊂ (1− ηε
2 )BX for n = NX(5ε)

The norm ||| · ||| provided by the proof of Lemma 4.1 with this sequence of sets sat-
isfies that |||y||| = c‖y‖Y for some c > 0 and every y ∈ Y . The combination of these
norms for different values of ε (see Lemma 4.2) produces a uniformly convex norm
on X such that its restriction to Y is a multiple of ‖ · ‖Y . If ‖ · ‖Y has modulus
of power type, then we can take η = a εp1 for some a, p1 > 0. We also know that
NX(ε) ≤ b ε−p2 for some b, p2 > 0. Repeating the computations of Lemma 4.1 we
obtain a lower bound for the modulus of the form c εp1+p2 . The norm ||| · ||| given by
Lemma 4.1 can be done with modulus of convexity of power type any p > p1+p2.
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Generalized cotype. Following [10], a function φ(t) is a generalized cotype of
the space X if there exist constants a, b > 0 such that

∑n
k=1 φ(‖xk‖) ≤ b whenever

x1, . . . , xn ∈ X satisfy ∫ 1

0

‖
n∑
k=1

rk(t)xk‖ dt ≤ a

where (rk(t)) are the Rademacher functions, see [7]. Note that this last inequality
implies ‖xk‖ ≤ a for 1 ≤ k ≤ n. A remarkable result of Figiel and Pisier [11]
establishes that any modulus of convexity is a generalized cotype.

Proposition 5.5 1 The function NX(t)−1 is a generalized cotype of X.

Proof. We say that a finite sequence of vectors (xk)nk=1 is γ-delimited if it satisfies∫ 1

0

‖
n∑
k=1

rk(t)xk‖ dt ≤ γ.

This notion can be easily extended to infinite sequences. Denote by S(γ) the set of
all the γ-delimited (finite or infinite) sequences in X. Note that all the elements
of a γ-delimited sequence are norm bounded by γ. Consider the numbers (cn)
defined by

cn = sup{
n∑
k=1

NX(‖xk‖)−1 : {x1, . . . , xn} ∈ S(1)}.

If the sequence (cn) is bounded then the statement is true. We shall proceed
by contradiction, so assume that limn cn = +∞. For j ∈ N, find nj ∈ N such
that cnj > NX(2−j) and {xj,1, . . . , xj,nj} ∈ S(1) such that

∑nj
k=1 NX(‖xj,k‖)−1 >

NX(2−j) and so we have
∑nj
k=1 NX(‖2−jxj,k‖)−1 > 1 by the submultiplicativity

of NX . Arrange all the vectors {2−jxj,k : j ∈ N, 1 ≤ k ≤ nj} into a sequence (xn).
Note that (xn) ∈ S(1) and

∑∞
n=1 NX(‖xn‖)−1 = +∞. Moreover, without loss of

generality, assume that all xn 6= 0 and (‖xn‖) is not increasing. Take ξ ∈ (0, 1].
The submultiplicativity of NX implies that

∑∞
n=1 NX(ξ‖xn‖)−1 = +∞. Now,

find θn > 0 such that
∑∞
n=1 θn = +∞ and

∑∞
n=1 NX(ξ‖xn‖) θn < +∞. Apply

Lemma 4.2 to find a 2-equivalent norm ||| · ||| such that δ|||·|||(8ξ‖xn‖) ≥ k θn for
some k > 0 and every n ∈ N. By construction we have

∞∑
n=1

δ|||·|||(16ξ |||xn|||) ≥
∞∑
n=1

δ|||·|||(λnξ |||xn|||) = +∞

where λn|||xn||| = 8‖xn‖. Since ξ > 0 can be taken as small as desired, we arrive
to a contradiction with the afore mentioned result of Figiel and Pisier [11] stating
that a modulus of convexity is a generalized cotype.

When this paper was almost finished, Prof. S. Troyanski brought our attention
to the work of T. Figiel on superreflexive latices and the use of generalized cotype
functions in uniformly convex renorming. We believe that a full understanding

1The statement is false and the proof is wrong.



Finite slicing in superreflexive Banach spaces 20

of the connections between our “coordinate-free approach” and Figiel’s results on
spaces with bases would be an interesting research line in future developments.

A topological setting. All the results in this paper are established for a super-
reflexive Banach space, but it is possible to adapt them to special sets in general
Banach spaces. In our paper [24] we have studied the class of finitely dentable
convex sets. A bounded convex closed set A ⊂ X of a Banach space is finitely
dentable if Dz(A, ε) < +∞ for every ε > 0. We proved that these sets are
weakly compact subsets of X and uniformly Eberlein compacta when considered
in its weak topology. The techniques of Section 3 and ideas from [24, 26] can be
combined to prove the following.

Proposition 5.6 Let A ⊂ X be a finitely dentable bounded convex closed set.
Then there exists a B ⊂ X bounded convex symmetric which is also finitely
dentable, satisfying that A ⊂ B and for every ε > 0 there is θ > 0 such that

[B]′ε ⊂ (1− θ)B.

We are not giving the proof of this result, but the reader can compare it with
[26, Theorem 1.1]. Note that from a topological point of view, a compact with
Szlenk index at most ω is just a descriptive compactum, that is, a compact space
having a σ-isolated network, see [26]. This notion is a kind of covering property,
related to paracompactness, that has been used in the characterization of locally
uniformly convex renorming of Banach spaces (see the book [22] for missing defi-
nitions account of results and bibliography). The application of these techniques
to uniform convexity has been studied in [8].
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