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Abstract. We show that in a super-reflexive Banach space, the condi-
tionality constants kN (B) of a quasi-greedy basis B grow at most like
O(logN)

1�" for some 0 < " < 1. This extends results by the third-
named author and Wojtaszczyk [13], where this property was shown for
quasi-greedy bases in Lp for 1 < p < 1. We also give an example of a
quasi-greedy basis B in a reflexive Banach space with kN (B) ⇡ logN .

1. Introduction

Let (X, k · k) be a Banach space with a Schauder basis B = {e

j

}

1
j=1

, which
we shall assume semi-normalized, i.e., c

1

 ke

j

k  c
2

for all j, for some con-
stants c

2

� c
1

> 0. For x 2 X we write the corresponding series expansion
in terms of the basis B as x =

P1
j=1

a
j

(x)e
j

.
Associated with B, for each finite A ⇢ N we consider the projection

operators

x 2 X 7�! S
A

(x) :=
X

j2A

a
j

(x)e
j

,

and define the sequence

k
N

= k
N

(B,X) := sup

|A|N

��S
A

��, N = 1, 2, . . .

Notice that B is unconditional if and only if k
N

= O(1). In general, k
N

may grow as fast as O(N), and this sequence may be used to quantify the
conditionality of the basis B in X. It is a consequence of a classical result
of Gurarii-Gurarii [14] and James [18] that if X is a super-reflexive Banach
space (i.e., every Banach space finitely representable in X is reflexive), then

k
N

= O(N1�"

), for some 0 < " < 1.

In this paper we shall be interested in bases B which are quasi-greedy [20,
28], that is, their expansions converge when the summands are rearranged
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in decreasing order. More precisely, for any choice of greedy operators

(1.1) x 2 X 7�! G
N

(x) =
X

j2⇤N(x)

a
j

(x)e
j

,

where ⇤

N

(x) is a set of cardinality N such that

min

j2⇤N (x)

|a
j

| � max

j /2⇤N (x)

|a
j

| ,

it holds that G
N

(x) ! x, for all x 2 X. We refer to [25] for background
and applications of quasi-greedy bases in the study of non-linear N -term
approximation in Banach spaces.

It follows from a result of Dilworth, Kalton and Kutzarova [6, Lemma
8.2] that quasi-greedy bases cannot be “too conditional” in the sense that
they satisfy the estimate

(1.2) k
N

(B,X) = O(logN).

See also [9, 12]. Moreover, there are examples of quasi-greedy bases in certain
Banach spaces for which the logarithmic growth is actually attained ([12,
§6]).

More recently, it was noticed in [13] that (1.2) can be improved to k
N

=

O(logN)

1�" for some 0 < " < 1, at least when X = L
p

and 1 < p < 1.
The purpose of this note is to show that this improvement continues to
hold for any super-reflexive Banach space, while it is not necessarily true
for reflexive spaces.

Theorem 1.1. Let X be a super-reflexive Banach space, and B = {e

j

}

1
j=1

a quasi-greedy basis. Then there exists 0 < " = "(B,X) < 1 such that

k
N

(B,X) = O(logN)

1�".

Theorem 1.2. There exists a reflexive Banach space X and a quasi-greedy
basis B = {e

j

}

1
j=1

such that

k
N

(B,X) ⇡ logN, N = 2, 3, . . .

In fact the result holds for the infinite direct sum X = (�

1
n=1

`n
1

)

p

, where
1 < p < 1.

We note that bounds on the sequence (k
N

) are useful in N -term ap-
proximation. In particular, if B is an almost-greedy basis, i.e., quasi-greedy
and democratic (see [7]) in X, then (k

N

) quantifies the performance of the
greedy algorithm versus the best N -term approximation. More precisely, if
⌃

N

= {

P
�2⇤ c�e� : Card⇤  N}, we have the following:



CONDITIONALITY OF QUASI-GREEDY BASES IN SUPER-REFLEXIVE SPACES 3

Corollary 1.3. Let B = {e

j

}

1
j=1

be an almost-greedy basis in a super-
reflexive Banach space X. Then there exists 0 < " = "(B,X) < 1 and c > 0

such that for all x 2 X and N = 2, 3, . . .,

kx�G
N

xk  c (logN)

1�"

dist(x,⌃
N

),

where dist(x,⌃
N

) = inf{kx� yk : y 2 ⌃

N

}.

This is a direct consequence of Theorem 1.1 and [26, Thm 2.1] (or [12,
Thm 1.1]).

We conclude by recalling some examples of super-reflexive Banach spaces.
This notion, introduced by James in [18], has several equivalent formula-
tions, one of which being the existence of an equivalent norm which is either
uniformly convex or uniformly smooth [18, 11]. In particular, this is the case
for Lp

(µ) with 1 < p < 1 over any measure space, but also for most exam-
ples of reflexive Banach spaces arising in harmonic and functional analysis.
Here we list some of them:

(i) Bochner-Lebesgue spaces L
p

(µ,X) over any measure space are uni-
formly convex if X is uniformly convex and 1 < p < 1, [10]. As a conse-
quence, a space L

p

(µ,X) and its subspaces inherit the super-reflexivity from
X. That covers the classical families of Sobolev, Besov and Triebel-Lizorkin
spaces in Rn for a wide range of parameters, exactly the ones making them
reflexive. The isomorphic embedding into a space of the form L

p

(µ, L
q

(⌫))

comes from their very definition, see [27], but it is also possible to show
isomorphisms with the help of special bases, see for instance [4] for certain
Sobolev and Besov spaces.

(ii) Orlicz spaces satisfying Luxemburg’s characterizations of reflexivity
[23] are super-reflexive; see [1]. We note that Luxembourg assumptions on
the measure cover the most usual cases, as Orlicz sequence spaces or function
spaces on Rn with the Lebesgue measure.

(iii) Super-reflexivity has also been studied in Lorentz-type spaces, where
its characterization is very close to reflexivity, see for instance [15, 19, 16].

(iv) Uniformly non-square Banach spaces are also super-reflexive. These
spaces, introduced by James in [17], are those that satisfy

sup{min{kx+ yk, kx� yk} : kxk = kyk = 1} < 2.

(v) Super-reflexivity is preserved as well by certain operations to produce
new spaces such as finite products, quotients, ultrapowers and interpolation
spaces. In fact, if one of the spaces of the interpolation pair is super-reflexive
then all the intermediate spaces are super-reflexive, either with the real [2]
or the complex method [5].
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2. Proof of Theorem 1.1

All we shall need below from the space X is the existence of an equivalent
norm ||| · ||| in X which is uniformly convex. That such a norm exists in
any super-reflexive space is a classical result of Enflo, see [11]. For more
properties of super-reflexive Banach spaces see [3] or [24].

For simplicity, we assume that the original norm k · k in X is uniformly
convex. There is no loss of generality in this assumption since the property of
B being quasi-greedy is preserved under equivalent norms in X and k

N

(B, k·

k)  Ck
N

(B, ||| · |||) with C independent of N .
Recall that a norm k · k is uniformly convex in X if for every " > 0 there

is some � > 0 such that

(2.1) kxk = kyk = 1 and 1�

���
x+ y

2

��� < � =) kx� yk < ".

We denote by �(") the largest � such that (2.1) holds, and call the mapping
" 7! �(") the modulus of convexity of the norm.

The proof of Theorem 1.1 will partly follow the scheme developed in [13,
§5]. We shall denote  = (B,X) > 0 the smallest constant such that for
all x 2 X and N = 1, 2, . . . ,

(2.2) max

�
kG

N

xk, kx�G
N

xk
 

  kxk,

for all operators G
N

as in (1.1). The existence of such constant is actually
equivalent to the quasi-greediness of B (see [28, Thm 1]).

We will write x < y when x =

P
j2A x

j

e

j

and y =

P
k2B y

k

e

k

have
disjoint supports (i.e., A \ B = ;) and min

j2A |x
j

| � max

k2B |y
k

|.
We first establish the following lemma, which is the analogue of [13,

Lemma B.2.ii]. The proof is based on a result that can be found in Beauzamy’s
textbook [3, p. 190].

Lemma 2.1. Let X be equipped with a uniformly convex norm with modulus
of convexity �(·), and let B be a quasi-greedy basis with constant . Then,
for each 1 < p < 1, there exists a constant � = �(p,, �) < 2

p�1 such that

(2.3)
��x+ y

��p
 �

⇣
kxkp + kykp

⌘
, 8 x < y.

Proof. In Proposition 1 of [3, p.190] it is stated that if X is uniformly convex,
���
x+ y

2

���
p



⇣
1� �

p

� kx�yk
max{kxk,kyk}

�⌘
kxkp + kykp

2

, 8 x, y 2 X,

for every p > 1 and a suitable function �
p

with the property �
p

(") � c
p

�(")

for some c
p

> 0 depending only on p (see pp. 193–194). Therefore we have,

kx+ ykp 
⇣
1� c

p

�
� kx�yk
max{kxk,kyk}

�⌘
2

p�1

�
kxkp + kykp

�
, 8 x, y 2 X.
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Notice that the quasi-greediness assumption yields

kx� yk �

1


max

�
kxk, kyk

 
,

whenever x < y. Since �(") is an increasing function we deduce

kx+ ykp 
�
1� c

p

�(1/)
�
2

p�1

�
kxkp + kykp

�
.

Take � =

�
1 � c

p

�(1/)
�
2

p�1. Since �(1/) > 0 we conclude � < 2

p�1 as
desired. ⇤

Remark 2.2. One could give a different proof of (2.3) using a weak paral-
lelogram inequality

(2.4) |||x+ y|||p + ⌘ |||x� y|||p  2

p�1

�
|||x|||p + |||y|||p

�
, x, y 2 X,

for some ⌘ > 0, and arguing as in [13, Lemma B.2.ii]. It is a known result
of Pisier [24, Thms 3.1 and 3.2] that every super-reflexive space posseses
an equivalent norm ||| · ||| with the property (2.4), at least for some p < 1.
We have preferred the give version of Lemma (2.1), since it is valid for all
1 < p < 1, and does not depend on the deeper result of Pisier.

Iterating this result one easily proves the following (see [13, Lemma 2.4]).

Lemma 2.3. With the assumptions of Lemma 2.1, if x
1

< x
2

< . . . < x
m

have pairwise disjoint supports, then

(2.5)
��x

1

+ . . .+ x
m

��p
 �dlog2 me

mX

j=1

kx
j

k

p,

where � < 2

p�1 is the same constant as in (2.3).

We are now in the position to prove Theorem 1.1. To that end we must
show that for A ⇢ N with |A| = N � 2, and every x =

P
i

a
i

e

i

2 X we have

(2.6) kS
A

(x)k  C (logN)

1�"

kxk,

for a suitable 0 < " < 1 (independent of x and N) to be determined. By
scaling we may assume that max

i

|a
i

| = 1, so that by (2.2),

kxk �

1


kG

1

xk �

c
1


.

Let m = dlog

2

Ne, so that 2m�1 < N  2

m. For ` = 1, . . . ,m, we define

F
`

= {j : 2

�` < |a
j

|  2

�(`�1)

} and F
m+1

= {j : |a
j

|  2

�m

}.

Next write A as a disjoint union of the sets A
`

= A \ F
`

, ` = 1, . . . ,m + 1.
Clearly

(2.7) kS
Am+1xk 

X

i2Am+1

|a
i

|ke

i

k  c
2

2

�mN  c
2



c
2

c
1

kxk.
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For the other terms we appeal to Lemmas 5.2 and 5.3 in [12], which use the
quasi-greedy property and the fact that A

`

⇢ {j : 2

�` < |a
j

|  2

�(`�1)

}

to obtain
kS

A`
xk  C kxk,

for a positive constant C (independent of x and `). Lemma 2.3 gives

(2.8)

�����

mX

`=1

S
A`
x

�����

p

 �dlog2 me
mX

`=1

kS
A`
xkp  Cp �dlog2 me m kxkp.

Now we can write

�log2 m m = 2

log2 m log2 � m = m1+log2 �
= mp↵,

if we set ↵ = (1 + log

2

�)/p. Notice that ↵ < 1 since � < 2

p�1, by Lemma
2.1. Thus, combining (2.7) with (2.8) we obtain

kS
A

xk  C 0 m↵

kxk  C 00
(logN)

↵

kxk,

which implies (2.6) if we set

" = 1� ↵ = 1� (1 + log

2

�)/p > 0.

Notice that " only depends on p,  and the modulus of convexity �(·). ⇤

3. Proof of Theorem 1.2

The construction in the proof below is a variation of a standard procedure
(cf. [28, Corollary 5] and [8]) that was communicated to one of the authors
by P. Wojtaszczyk.

Proof. Let 1 < p < 1. Take a Banach space (E, k · kE) with a basis BE =

{x

j

}

1
j=1

such that k
N

(BE,E) ⇡ logN , N = 2, 3, . . . (see e.g. [12, §6] or
[13, §3.4]). For each n = 1, 2, . . . , let E

n

= span {x

1

, . . . ,x
n

}, and consider
the Banach space X = (�

1
n=1

E
n

)

p

consisting of all vectors of the form x =

{

P
n

j=1

c
n,j

x

j

}

1
n=1

for which the norm given by

kxk =

0

@
1X

n=1

�����

nX

j=1

c
n,j

x

j

�����

p

E

1

A
1/p

is finite. Being the `
p

-sum of finite dimensional spaces, X is clearly reflexive.
It is straightforward to verify that the natural basis BX = [

1
n=1

{x

1

, . . . ,x
n

}

of X satisfies (BX,X) = (BE,E), as defined in (2.2), so the basis is
quasi-greedy. The same applies to the identity k

N

(BX,X) = k
N

(BE,E),
N = 1, 2, . . . and the first statement of the theorem follows.
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To see the second statement, take the basic sequence {x

n

}

1
n=1

in `
1

con-
structed by Lindenstrauss in [21]. This sequence is defined as

x

n

= e

n

�

1

2

(e

2n+1

+ e

2n+2

), n = 1, 2, . . . ,

where {e

j

}

1
j=1

denotes the canonical basis of `
1

. {x
n

}

1
n=1

is a conditional
quasi-greedy basic sequence [8] with k

N

⇡ logN [12]. In this case, the
space E

n

verifies that the Banach-Mazur distance between E
n

and `n
1

is
uniformly bounded above by 2 as proved by Lindenstrauss and Pełczyński
in [22, Example 8.1]. We infer that (�

1
n=1

E
n

)

p

is isomorphic to (�

1
n=1

`n
1

)

p

as wished. ⇤
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