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Abstract

A Banach space X admits an equivalent strongly uniformly Gâteaux
norm if and only if it contains the dense range of a super weakly compact
operator, which is equivalent to say that X is generated by a convex
super weakly compact set. Moreover, if X is strongly generated by a
convex super weakly compact set, then there is an equivalent norm on X
such that its restriction to any reflexive subspace of X is both uniformly
convex and uniformly Fréchet.

1 Introduction

The notion of weakly compactly generated Banach space (WCG) is the first
and most remarkable attempt to generalize separable Banach spaces keeping
quite a few good structural, geometrical and topological properties. Recall
that a Banach space X is WCG if there exists a weakly compact K ⊂ X such
that span(K) = X. The deep impact of WCG spaces in Banach space theory
began with the seminal paper [1], and nowadays the amount of material is
overwhelming, see [36] for an account of properties of WCG Banach spaces
in the frame of non separable Banach space theory. Let us recall that we are
dealing only with real Banach spaces and any operator here is always linear
and bounded. As usual, if X is a Banach space, then BX and SX denote
its unit ball and its unit sphere respectively. The well known Davis-Figiel-
Johnson-Pelczynski interpolation theorem [10], see also [18, Theorem 13.22],
gives easily the following characterization of WCG Banach spaces.

Theorem 1.1. For a Banach space X the following are equivalent:

(a) X is weakly compactly generated;
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(b) there exists a weakly compact operator T : Z → X with dense range;

(c) there exists a reflexive space Z and operator T : Z → X with dense
range.

In other words, WCG is the same that “weakly compact operator gen-
erated” or “reflexive generated”. Recent results depend on the possibility of
changing reflexivity in (c) by a stronger condition, as superreflexivity or Hilbert,
leading to the classes of superreflexive-generated Banach spaces and Hilbert-
generated Banach spaces. In particular, we have in mind the paper [17] where
several particular classes of “space-generated” properties are involved with
smoothness conditions on equivalent renormings. We shall need the following
notions.

Definition 1.2. The norm of the Banach space (X, ‖ · ‖) is said uniformly
Gateaux (UG) smooth if for every h ∈ X

sup{‖x+ th‖+ ‖x− th‖ − 2 : x ∈ SX} = o(t) when t→ 0.

Given a bounded set H ⊂ X, the norm is said H-UG smooth if

sup{‖x+ th‖+ ‖x− th‖ − 2 : x ∈ SX , h ∈ H} = o(t) when t→ 0.

Finally, we say that the norm is strongly UG smooth if it is H-UG smooth for
some bounded and linearly dense subset H ⊂ X.

To our knowledge, the most representative result showing different classes
of space generation and its relationships is the following result of M. Fabian,
G. Godefroy, P. Hájek and V. Zizler.

Theorem 1.3 (Theorem 1 of [17]). For a Banach space X consider the asser-
tions:

(i) X is Hilbert-generated.

(ii) X is superreflexive-generated.

(iii) X is generated by the `2-sum of superreflexive spaces.

(iv) X admits an equivalent strongly UG smooth norm.

(v) X is WCG and admits an equivalent UG smooth norm.
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(vi) X is a subspace of a Hilbert-generated space.

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi). Moreover, no one of these
implications can be reversed in general.

Our aim is to study the suitable “ideal-generated” or “subset-generated”
version of superreflexive-generated Banach spaces, that is, in the spirit of (b) or
(a) from Theorem 1.1. For this purpose we shall need the operator version of
superreflexivity. Among several equivalent definitions, we shall give one based
on ultrapowers. An operator T : X → Y induces an operator between the
ultrapowers of the spaces T U : XU → Y U for a free ultrafilter U on an index
set.

Definition 1.4. An operator T : X → Y is said to super weakly compact if
T U is weakly compact for any ultrafilter U (equivalently, a free ultrafilter on
N). The class of all super weakly compact operators is denoted Wsuper.

We are following the notation of [13]. Note that Wsuper is an operator
ideal and that sort of Enflo’s renorming theorem for operator yields that it
coincides with the uniformly convexifying operators studied by B. Beauzamy in
[2, 3, 4]. See also [19, Theorem 5.1] for some more characterizations. Moreover,
Wsuper lies strictly between the compact and the weakly compact operators,
and like them, it is a symmetric ideal as well, that is, T ∈Wsuper if and only
if T ∗ ∈ Wsuper. Clearly, the identity map of a superreflexive Banach space is
a natural example of super weakly compact operator. We can give now the
definition that gives the title to this paper.

Definition 1.5. A Banach space is said super weakly compactly generated (su-
per WCG) if there exist a Banach space Z and a super weakly compact operator
T : Z → X such that T (Z) is dense in X.

It is proved in [33, Proposition 4.6] that an operator T : Z → X is super
weakly compact if and only if T (BX) is finitely dentable (see Definition 2.1).
In [8] the authors introduced the suggestive notion of super weakly compact set
(see Definition 2.3) which is, for closed bounded convex sets, equivalent to be-
ing finitely dentable (see Theorem 2.4). Therefore, following this terminology,
our result [33] says that X is super WCG if and only if there is K ⊂ X convex
super weakly compact such that span(K) = X. In other words, in this setting
“ideal-generated” and “subset-generated” essentially coincide.
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The ideal Wsuper has not the factorization property [2, p. 122], see also
Remark 3.11. In particular, that means that there are super WCG Banach
spaces which are not superreflexive-generated. It is natural to wonder how the
class super WCG is related to the six classes in Theorem 1.3. The answer is
the following.

Theorem 1.6. A Banach space X is super WCG if and only if it admits an
equivalent strongly UG smooth norm.

Our technique to prove this result depends essentially on the symmetry
of the ideal Wsuper, as it was already used in our paper [33] to explore the
topological properties of convex finitely dentable sets.

A stronger notion of generation for Banach spaces is necessary in order to
transfer properties from a super weakly compact generator to all the weakly
compact subsets.

Definition 1.7. We say that a Banach space X is strongly generated by a
subset K ⊂ X if for any weakly compact H ⊂ X and ε > 0 there is n ∈ N
such that H ⊂ nK + εBX .

This definition admits “space-generated” and “ideal-generated” variations
in a quite obvious way. Banach spaces strongly generated by a weakly com-
pact subset are called strongly WCG Banach spaces, and denoted SWCG (or
βWCG). Their interesting properties have been studied by G. Schlüchtermann
and R. F. Wheeler [34], see also [24]. For instance, if X is SWCG then it is
weakly sequentially complete, and so the subspaces of X either contain `1 or
are reflexive, by Rosenthal’s theorem. Here we shall consider Banach spaces
strongly generated by a convex super weakly compact subset. That has been
considered in [9, Definition 4.3] too.

Definition 1.8. We say that X is strongly super weakly compactly generated,
denoted S 2WCG if there is a convex super weakly compact set K ⊂ X that
strongly generates X.

In spite of the length of the name, the notion of S2WCG has very natu-
ral examples. It is well known that L1(µ) for a finite measure µ is strongly
Hilbert-generated and so it is S2WCG. Moreover, if X is superreflexive then the
Lebesgue-Bochner space L1(µ,X) is strongly superreflexive generated. Indeed,

4



we may assume that µ is a probability. If H ⊂ L1(µ,X) is weakly compact,
then it is uniformly integrable, that is, the sequence defined by

an = sup{
∫
‖f‖≥n

‖f‖ dµ : f ∈ H}

is converging to 0. The decomposition 1‖f‖≥nf+1‖f‖<nf for f ∈ H shows that
H ⊂ anBL1(µ,X) +nBL2(µ,X) where L2(µ,X) is identified with a subset of X by
its continuous injection into L1(µ,X). That finishes the proof since L2(µ,X)
is superreflexive [32].

Theorem 1.9. Let X be a S 2WCG Banach space. Then there is an equivalent
norm on X such that its restriction to any reflexive subspace of X is both
uniformly convex and uniformly Fréchet.

This result extends qualitatively renorming results done for the spaces
L1(µ) [14, 26] and L1(µ,X) with X superreflexive [20]. Note that in [21] it is
established that for a strongly superreflexive generated Banach space there is
a renorming which is uniformly Fréchet on its reflexive subspaces. Example
3.10 shows that the class of S2WCG Banach spaces is strictly larger than the
class of strongly superreflexive generated Banach spaces.

The structure of the paper is the following. The second section is of ex-
pository character. We shall give an account of the properties of super weakly
compact sets which are relevant for the results of the paper, as several char-
acterizations in the convex case (Proposition 2.4) coming from [33] and [8].
We also describe the relationships with the uniformly convexifying operators
of Beauzamy which are extremely useful for the proofs. The third section is
devoted to renorming results in the super WCG and S2WCG spaces, including
the proof of the main results. We believe that our notation is totally standard
and can be found in reference books of Banach space theory as [7, 11, 18] for
instance.

2 Super weak compactness

Maybe the most interesting example of a super property is the superreflexivity.
A Banach space X is superreflexive if any ultrapower XU is reflexive for U
any free ultrafilter. Enflo’s famous result [15] states that X is superreflexive
if and only if it has an equivalent uniformly convex renorming. Beauzamy [2]
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extended the notion of superreflexivity to operators, under the name of “op-
erateurs uniformément convexifiants”. An operator T : Z → X is uniformly
convex if given ε > 0 there is δ > 0 such that ‖T (x) − T (y)‖ < ε whenever
‖x‖ = ‖y‖ = 1 and ‖x+ y‖ > 2− δ. An operator T : Z → X is said uniformly
convexifying if it becomes uniformly convex after a suitable renorming of Z.
Of course, uniformly convexifying operators coincide with the super weakly
compact operators [19].

A localized version of superreflexivity for subsets was introduced in [33]
using as a reference previous work of G. Lancien from his Ph.D. Thesis [28, 29].
Let C be a closed bounded convex set of a Banach space X and let ρ be a metric
defined on X (the norm metric, for instance). We say that C is ρ-dentable if
for any nonempty convex closed subset D ⊂ C and ε > 0 it is possible to find
an open halfspace H intersecting D such that ρ-diam(D ∩ H) < ε. If C is
ρ-dentable we may consider the following “derivation”

[D]′ε = {x ∈ D : ρ-diam(D ∩H) > ε, ∀H ∈ H, x ∈ H}

Here H denotes the set of all the open halfspaces of X. Clearly, [D]′ε is what
remains of D after removing all the slices of ρ-diameter less or equal than
ε. Consider the sequence of sets defined by [C]0ε = C and, for every n ∈ N,
inductively by

[C]nε = [[C]n−1
ε ]′ε

Such a process can be extended to transfinite ordinal numbers in a quite natural
way, and for any dentable set the process finishes at the empty set. However,
we are only interested in sets for which the iteration process is finite.

Definition 2.1. The subset C ⊂ X is said to be ρ-finitely dentable if for every
ε > 0 there is n ∈ N such that [C]nε = ∅, where the set derivation is made with
respect to ρ. If ρ is the norm metric, then we simply say that C is finitely
dentable. The first n ∈ N such that [C]nε = ∅ is called the index of ε-dentability
and it is denoted Dz(C, ε).

The motivation is the following result of Lancien [29] (see also [30]): X is
superreflexive if and only if BX is finitely dentable. Moreover, if X is uniformly
convex then Dz(BX , ε) ≤ 1 + δX(ε)−1 where δX is the modulus of convexity of
X. Note that Pisier’s celebrated renorming result [32] implies that for a super-
reflexive space X there exists c > 0 and p ≥ 2 such that Dz(BX , ε) ≤ c ε−p for
every ε > 0. Part of our paper [33] is devoted to the study of the properties of
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finitely dentable sets in Banach spaces. The most relevant properties are that
convex finitely dentable sets are weakly compact and uniform Eberlein with
respect to the weak topology. Another interesting fact is that they character-
ize the super weak compactness of operators in the following sense, see [33,
Proposition 4.6].

Proposition 2.2. A linear operator T : X → Y is super weakly compact
(equivalently, uniformly convexifying) if and only if T (BX) is finitely dentable.

This result, as stated, suggests that “finitely dentable” is not the best
name. In [8] the authors introduced the notion of super weakly compact set
and proved for that kind of sets several results which remind the properties
of finitely dentable sets established in [33]. See also [9] and some references
therein showing that super weakly compactness has became a subject of ac-
tive research. They say that a closed bounded convex set K is super weakly
compact if any subset of a Banach space which is finitely representable in K
is weakly compact. Finite representability for sets is done in a similar fashion
as the one for Banach spaces, see [6] or [18] for instance. However, it is easy
to give a shorter equivalent formulation using ultrapowers.

Definition 2.3. A subset K ⊂ X is said super weakly compact if KU is a
weakly compact subset of XU for any free ultrafilter U .

The relation of equivalence here is the same as in the case of Banach spaces,
that is, (xi)i∈I ∼ (yi)i∈I if and only if limi,U ‖xi − yi‖ = 0. Note that it
is enough to consider free ultrafilters on N since the weak compactness is
separably determined by the Eberlein-Šmulyan theorem [18, Theorem 3.109].
We shall need some assorted definitions. A convex set C ⊂ X is said to have
the finite tree property if there exists ε > 0 such that C contains ε-separated
dyadic trees of arbitrary height. A function f : C → R defined on a convex
subset C ⊂ X is said uniformly convex if for every ε > 0 there is δ > 0 such
that ‖x− y‖ < ε whenever x, y ∈ C are such that

f(x) + f(y)

2
− f(

x+ y

2
) < δ.

The most typical convex function on a Banach space, its norm ‖ · ‖, cannot be
an uniformly convex function (neither a strictly convex function), so we shall
modify the definition for norms. We say that a norm ‖ · ‖ is uniformly convex
on some bounded convex set K ⊂ X if f(x) = ‖x‖2 is a uniformly convex
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function on K. Note that a space X is uniformly convex if and only if its norm
is uniformly convex (in the former sense) on BX , equivalently on any bounded
convex subset K ⊂ X.

As we announced in the introduction, super weak compactness coincide
with finite dentability for bounded closed convex subsets of a Banach space.
The following result establishes the equivalence between both properties and
several others studied in [8] and [33].

Proposition 2.4. Let X be a Banach space and K ⊂ X a bounded closed
convex subset. The following conditions are equivalent:

(i) K is super weakly compact;

(ii) K is finitely dentable;

(iii) K does not have the finite tree property;

(iv) there is a reflexive Banach space Z and a super weakly compact operator
T : Z → X such that K ⊂ T (BZ);

(v) there is an uniformly convex function f : K → R;

(vi) there is an equivalent norm ||| · ||| on X which is uniformly convex on K.

Proof. The equivalence (i)⇔(v) is [8, Main Theorem], and the equivalence
(i)⇔(iii) is [8, Theorem 2.14]. On the other hand, the equivalences (ii)⇔(v)⇔(vi)
follow from [33, Theorem 2.2] applied to the identity map on K. Finally,
(iv)⇒(ii) is consequence of Proposition 2.2 and (ii)⇒(iv) is contained in [33,
Theorem 1.3]. The equivalent interpolation result stated as [8, Theorem 4.8]
also gives (i)⇒(iv).

Note that if a bounded closed convex subset K ⊂ X does not have the
finite tree property, then there is ε > 0 such that KU contains an infinite
ε-separated dyadic tree for any free ultrafilter U on N (just follow the ideas
in [6, p. 228]), and therefore KU is not weakly compact. That means that
super weak compactness for closed convex sets can be checked just by one free
ultrafilter on N.

Property (vi) suggests to reproduce arguments involving uniformly convex
norms for super weakly compact sets. For the next two examples we shall
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need a couple of definitions. It is said that a subset K has the Banach-Saks
property if every sequence (xn) ⊂ K has a subsequence (xnk

) such that its

Cesàro averages k−1
∑k

j=1 xkj are norm converging to some point of X. A
bounded convex set K ⊂ X is said to have normal structure if every non
singleton convex subset H ⊂ K has a nondiametral point x ∈ H, that is,
sup{‖y − x‖ : y ∈ H} < diam(H).

Proposition 2.5. Convex super weakly compact sets of Banach spaces have
the Banach-Saks property.

Proof. It is possible to adapt the proof of Kakutani’s theorem as presented
in [12, p. 78], but it is easier to use that a super weakly compact operator has
the Banach-Saks property [5].

Proposition 2.6. If K ⊂ X is convex super weakly compact set, then there is
a renorming of X such that K has normal structure.

Proof. We follow the ideas from the proof of [7, Proposition A.9]. By Propo-
sition 2.7 (3) the set H = K −K is a convex super weakly compact set. By
Theorem 2.4 (vi) there is a norm ‖·‖ of X which is uniformly convex on H. Let
S ⊂ K be a convex subset containing at least two different points u, v ∈ S.
Take d = diam(S) and for ε = ‖u − v‖ find δ > 0 witnessing the uniform
convexity of ‖ · ‖2 on H. Put x = (u+ v)/2 and observe that for any z ∈ S we
have

δ ≤ ‖u− z‖
2 + ‖v − z‖2

2
− ‖x− z‖2 ≤ d2 − ‖x− z‖2

since u − z, v − z, x − z ∈ H and the uniform convexity of ‖ · ‖2. Therefore
‖x−z‖ ≤

√
d2 − δ < d for every z ∈ S and thus x is a nondiametral point of S.

Note that the normal structure implies the fixed point property for non ex-
pansive mappings. In [9], the authors produce a renorming having the super
fixed point property.

Observe that the Proposition 2.4 requieres the hypothesis of convexity, and
implicitly our main results Theorem 1.6 and Theorem 1.9 too. Actually, we do
not know if the closed convex hull of a super weakly compact is again super
weakly compact, that is, a sort of Krein’s theorem. We know that the answer
is negative for finite dentability [33, Example 4.9] and it is also negative for
the somehow related property of Banach-Saks [31].
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In order to make this paper more self-contained, we include the following
proposition which gathers [33, Proposition 4.4] and [33, Lemma 4.2] formulated
here in terms of super compactness. This results also can be found in [8]
(Proposition 3.10, Corollary 3.11 and Lemma 4.5).

Proposition 2.7. “Stability properties of convex super weakly compact sets”.

1. The image of a convex super weakly compact set through an operator is
again super weakly compact.

2. The product of convex super weakly compact sets in a finite direct sum
of Banach spaces is super weakly compact.

3. The sum and the convex hull of two convex super weakly compact sets is
again super weakly compact. In particular, the absolute convex hull of a
convex super weakly compact is super weakly compact.

4. Let K ⊂ X be such that for every ε > 0 there is a convex super weakly
compact set Hε such that K ⊂ Hε + εBX . Then K is super weakly
compact.

3 Renormings in super WCG spaces

The most remarkable result in renorming of WCG spaces is Troyanski’s theo-
rem [35] (see also [11] for generalizations) that ensures the existence of equiva-
lent locally uniformly convex norms. As super weakly compact sets are exactly
the sets supporting uniformly convex functions, we may expect that renorm-
ings for super WCG should be “more uniform”. Actually, uniformity only
extends to certain family of weakly compact sets which satisfies a local version
of Definition 1.7.

Definition 3.1. Let K,H ⊂ X be subsets and suppose moreover that K is
absolutely convex. We say that H is strongly generated by K if for every ε > 0
there is n ∈ N such that H ⊂ nK + εBX .

This definition is necessary since there are scenarios where the strongly
generated subsets are known. For instance, consider a SWCG Banach X space
and a probability measure space (Ω,Σ, µ). Then [27, Theorem 1] says that
there exists a symmetric weakly compact K ⊂ L1(µ,X) that strongly gener-
ates any weakly compact decomposable set of L1(µ,X). A set H ⊂ L1(µ,X)

10



is called decomposable if 1Af + 1Ω\Ag ∈ H whenever f, g ∈ H and A ∈ Σ.

We shall begin with an improvement of statement (vi) of 2.4.

Theorem 3.2. Let K ⊂ X be an absolutely convex super weakly compact.
There is an equivalent norm ||| · ||| on X such that its restriction to convex sets
strongly generated by K is uniformly convex.

Proof. Without loss of generality we may assume that K = T (BZ) where
T : Z → X is an uniformly convex operator and Z is reflexive by Theorem 2.4
(iv). Consider the sequence of equivalent norms on X

‖x‖2
k = inf{‖x− T (z)‖2 + k−1‖z‖2 : z ∈ Z}.

Note that the infimum is actually attained since Z is reflexive. Fix H a subset
strongly generated by K. Note that limk ‖x‖k = 0 uniformly on H. We claim
that the norm ||| · ||| on X defined by ||| · |||2 =

∑∞
k=1 2−k‖ · ‖2

k has the desired
property. Fix ε > 0 and suppose that (xn), (yn) ⊂ H are such that

lim
n

(2|||xn|||2 + 2|||yn|||2 − |||xn + yn|||2) = 0.

Convexity of the norm implies that

lim
n

(2‖xn‖2
k + 2‖yn‖2

k − ‖xn + yn‖2
k) = 0

for any k ∈ K. Fix k ∈ N such that ‖x‖k < ε for every x ∈ H and find
(zn), (wn) ⊂ Z such that

‖xn‖2
k = ‖xn − T (zn)‖2 + k−1‖zn‖2,

‖yn‖2
k = ‖yn − T (wn)‖2 + k−1‖wn‖2.

Note that the sequences (zn), (wn) are bounded. For the sum of the points we
have

‖xn + yn‖2
k ≤ ‖xn + yn − T (zn + wn)‖2 + k−1‖zn + wn‖2

and so, using the convexity of the squared norm, we obtain that

k−1(2‖zn‖2 + 2‖wn‖2 − ‖zn + wn‖2) ≤ 2‖xn‖2
k + 2‖yn‖2

k − ‖xn + yn‖2
k.

Therefore
lim
n

(2‖zn‖2 + 2‖wn‖2 − ‖zn + wn‖2) = 0
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which implies that limn ‖T (zn) − T (wn)‖ = 0 by the uniform convexity of T .
Take an N ∈ N such that ‖T (zn)− T (wn)‖ < ε if n ≥ N . Then we have

‖xn − yn‖ ≤ ‖xn − T (zn)‖+ ‖T (zn)− T (wn)‖+ ‖yn − T (wn)‖ < 3ε

for n ≥ N . That shows limn ‖xn − yn‖ = 0 as we wanted.

Remark 3.3. The formula used for the norm is a transfer trick well known for
locally uniformly rotund renorming (LUR) [23], see also [11, Theorem II.2.1].
In particular, if X is super WCG the norm provided by Theorem 3.2 is LUR.

Dual WCG Banach spaces admit equivalent dual LUR norms [23], see also
[11]. We have the following.

Proposition 3.4. Let X be a dual Banach space generated by a super weakly
compact convex set K. There is an equivalent dual norm ||| · ||| on X such that
its restriction to convex sets strongly generated by K is uniformly convex.

Proof. Let ‖ · ‖ be a dual norm on X. We construct ||| · ||| as in Theorem 3.2.
We only need to check that it is w∗-lower semicontinuous which is easy using
the fact that the infimum in the definition of ‖ · ‖k is attained.

This is another observation about dual renormings.

Lemma 3.5. Suppose that X is a dual Banach space and T : X → Y is super
weakly compact and w∗-w-continuous. Then there is an equivalent dual norm
on X such that T becomes uniformly convex.

Proof. Suppose that X is endowed with a (non dual) norm such that T is

uniformly convex. We claim that the norm |||.||| on X having BX
w∗

as the unit
ball makes T also uniformly convex. Given ε > 0 there is δ > 0 such that
x, y ∈ BX and ‖x+y

2
‖ > 1 − δ implies ‖T (x) − T (y)‖ < ε. As a consequence,

if H is a halfspace such that H ∩ (1− δ)BX = ∅ then diam(T (H ∩ BX)) ≤ ε.

Take x, y ∈ X with |||x||| = |||y||| = 1 and |||x+ y||| > 2− 2δ, that is, x, y ∈ BX
w∗

and x+y
2
6∈ (1 − δ)BX

w∗

. Take H a w∗-open halfspace with x+y
2
∈ H and

H ∩ (1 − δ)BX
w∗

= ∅. Observe that ‖x − y‖ ≤ 2 diam(H ∩ BX
w∗

). Now, by
the w∗-w-continuity of T we have

T (H ∩BX
w∗

) ⊂ T (H ∩BX)
w

= T (H ∩BX)
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As diam(T (H ∩BX)) = diam(T (H∩BX)) ≤ ε, we get that ‖T (x)−T (y)‖ ≤ 2ε
and so the uniform convexity of T with respect to |||.|||.

Given H ⊂ X, the seminorm on X∗ of uniform convergence on H is denoted
pH , that is, pH(x∗) = sup{|x∗(x)| : x ∈ H}. The following Šmulyian’s criterion
for H-UG norms is contained in the proof of [17, Theorem 4] and it is analogous
to [11, Theorem II.6.7].

Lemma 3.6. Let X be a Banach space and H ⊂ X a bounded subset. The
norm on X is H-UG if and only if pH(x∗n−y∗n) = 0 whenever (x∗n), (y∗n) ⊂ SX∗

are such that limn ‖x∗n + y∗n‖ = 2.

Lemma 3.7. Suppose that X is K-UG smooth and H is strongly generated by
K, then X is H-UG smooth as well.

Proof. Let (x∗n), (y∗n) ⊂ SX∗ such that limn ‖x∗n + y∗n‖ = 2. Fix ε > 0 and find
m ∈ N such that H ⊂ mK + εBX . By Lemma 3.6, take N ∈ N such that
pK(x∗n − y∗n) < ε/m for n ≥ N . It is easy to see that pH(x∗n − y∗n) < 3ε for
n ≥ N , and thus the norm of X is H-smooth, again by Lemma 3.6.

This result is [9, Theorem 4.5] with small changes. Let us remark that it
is a natural consequence of the symmetry of Wsuper, as we already sketched in
the proof of [33, Corollary 4.8].

Theorem 3.8. Let K ⊂ X be an absolutely convex super weakly compact set.
There is an equivalent norm ‖ · ‖ on X such that its H-UG smooth for any
H ⊂ X bounded and strongly generated by K.

Proof. Take T : Z → X a super weakly compact operator where Z is reflexive
such that K ⊂ T (BZ) (see Proposition 2.4 (iv)). Then the adjoint T ∗ : X∗ →
Z∗ is super weakly compact as well. By Lemma 3.5 we may renorm X∗ with
a dual norm ‖ · ‖ such that T ∗ is uniformly convex. Moreover, we may assume
that X is endowed with the induced predual norm. We claim that this norm
is K-UG smooth. Indeed, applying Lemma 3.6, take (x∗n), (y∗n) ⊂ SX∗ are such
that limn ‖x∗n + y∗n‖ = 2. Since T ∗ is uniformly convex, we have

0 = lim
n
‖T ∗(x∗n)− T ∗(y∗n)‖ = lim

n
sup{|T ∗(x∗n − y∗n)(z)| : z ∈ BZ}

= lim
n

sup{|(x∗n − y∗n)(T (z))| : z ∈ BZ} ≥ lim
n

pK(x∗n − y∗n).
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Therefore, limn pK(x∗n−y∗n) = 0 and the norm on X is K-UG as desired. Now,
by Lemma 3.7 the norm ‖ · ‖ built on X is H-UG smooth for every H ⊂ X
strongly generated by K.

Remark 3.9. If T : Z → X is super weakly compact and K = T (BZ),
then the fact that T ∗ is super weakly compact implies that (BX∗ , w∗) is finitely
dentable with respect to the seminorm pK, see [33, Corolary 4.8]. In [22]
the authors develop the duality between smoothness of renormings of X and
indices of dentability of (BX∗ , w∗). In fact, [22, Theorem 5] can be used to
provide another proof of Theorem 3.8 as it is done in [9]

Proof of Theorem 1.6. If X is generated by an absolutely convex super
weakly compact K, Theorem 3.8 implies that X has an equivalent K-UG
smooth renorming. Suppose now that X is strongly UG smooth, so there is
K ⊂ X total such that the norm is K-UG smooth. Lemma 3.6 implies that
we may suppose K to be absolutely convex and closed. By [17, Lemma 1],
K is weakly compact (see also [18, Proposition 14.18]). Use the Davis-Figiel-
Johnson-Pelczynski interpolation theorem to find a reflexive Banach space Z
and a operator T : Z → X such that T (BZ) ⊂ 2nK + 2−nBX for every n ∈ N,
see the proof of [18, Theorem 13.22]. Note that T (BZ) is strongly generated
by K, and so X is T (BZ)-UG smooth by Lemma 3.7. Now note that Lemma
3.6 implies that

0 = lim
n

pT (BZ)(x
∗
n − y∗n) = lim

n
sup{|(x∗n − y∗n)(T (z))| : z ∈ BZ}

= lim
n

sup{|T ∗(x∗n − y∗n)(z)| : z ∈ BZ} = lim
n
‖T ∗(x∗n)− T ∗(y∗n)‖

whenever (x∗n), (y∗n) ⊂ SX∗ are such that limn ‖x∗n + y∗n‖ = 2, that is, T ∗ is
uniformly convex. Therefore T is a super weakly compact operator and so X
is super WCG.

Proof of Theorem 1.9. By Theorem 3.2 we know that there is an equivalent
norm ‖ · ‖1 on X such that its restriction to any reflexive subspace of X is
uniformly convex. On the other hand, by Theorem 3.8 there is an equivalent
norm ‖ · ‖2 on X such that given a reflexive subspace Y ⊂ X, then ‖ · ‖2

is BY -UG smooth. In particular, the restriction of ‖ · ‖2 to Y is uniformly
Fréchet. Our aim is to show that the norms ‖ · ‖1 and ‖ · ‖2 can be “averaged”
in Asplund’s sense, see [11, II.4]. Let P denote the set of equivalent norms
on X endowed with the distance ρ(p, q) = sup{|p(x) − q(x)| : ‖x‖ = 1}. The
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metric space (P, ρ) is a Baire space [11, p. 52].
We claim that the norms sharing the property of ‖ · ‖1 is a residual subset of
(P, ρ). For any p ∈ P consider the set

G(p, j) = {q ∈ P : sup{|p(x)2 + j−1‖x‖2
1 − q(x)2| : ‖x‖ = 1} < j−2}.

By construction G(p, k) is open in (P, ρ) and Gk =
⋃
p∈P

⋃
j≥kG(p, k) is dense.

We will show that any q ∈
⋂∞
k=1Gk is uniformly convex restricted to any

Y ⊂ X reflexive. Suppose that (xn), (yn) ⊂ BY are such that

lim
n

(2q(xn)2 + 2q(yn)2 − q(xn + yn)2) = 0.

Given k ∈ N then q ∈ G(p, k) for some p ∈ P and j ≥ k. Using convexity we
deduce that

j−1(2‖xn‖2
1 + 2‖yn‖2

1 − ‖xn + yn‖2
1) < 8j−2 + 2q(xn)2 + 2q(yn)2 − q(xn + yn)2.

Taking limits as n→∞ we have

j−1 lim sup
n

(2‖xn‖2
1 + 2‖yn‖2

1 − ‖xn + yn‖2
1) ≤ 8j−2.

That is, lim supn(2‖xn‖2
1 + 2‖yn‖2

1 − ‖xn + yn‖2
1) ≤ 8j−1 ≤ 8k−1. Since k ∈ N

was arbitrary, we have limn(2‖xn‖2
1+2‖yn‖2

1−‖xn+yn‖2
1) = 0, and the uniform

convexity of ‖ · ‖1 implies that limn ‖xn − yn‖ = 0. Therefore q is uniformly
convex on Y as desired.
In order to show that the set of norms sharing the property of ‖·‖2 is a residual
subset of (P, ρ) too it is enough to work on the set of equivalent dual norms
on X∗ because the duality map is a homeomorphism.
By Lemma 3.6 it is enough to show that there is a residual set of equivalent
dual norms |||.||| on X∗ such that limn pBY

(x∗n − y∗n) = 0 whenever Y ⊂ X is
reflexive and (x∗n), (y∗n) ⊂ BX∗ are such that

lim
n

(2|||x∗n|||2 + 2|||y∗n|||2 − |||x∗n + y∗n|||2) = 0.

It is obvious that the same argument as the one used before for ‖ · ‖1 will be
give the desired result. Now, the intersection of two residual sets in the Baire
space (P, ρ) is nonempty, thus there exists norms sharing the properties of ‖·‖1

and ‖ · ‖2.
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The following example shows that there exist S2WCG Banach spaces which
are not superreflexive generated. Note that such spaces cannot be reflexive
because a reflexive S2WCG Banach space is superreflexive, and they must be
nonseparable since separable Banach spaces are Hilbert generated.

Example 3.10. Let (pk) be an enumeration of (1, 2] ∩Q. Then the space

X =

(
∞∑
k=1

`pk(ω1)

)
1

is S2WCG, but X is not superreflexive generated.

Proof. We claim that K =
⊕∞

k=1 2−kB`pk (ω1) is super weakly compact. In-

deed, observe that K ⊂
⊕n

k=1 2−kB`pk (ω1) + 2−nBX for every n ∈ N. Since⊕n
k=1 2−kB`pk (ω1) is finite sum of convex super weakly compact subsets it is

again super weakly compact by Proposition 2.7 (2). Now Proposition 2.7 (4)
implies that K is super weakly compact.
Let H ⊂ X be weakly compact, and let πk be the projection on the k-th
summand of X. We claim that for every ε > 0 there is n ∈ N such that

sup{
∞∑

k=n+1

‖πk(x)‖ : x ∈ H} ≤ ε. (1)

Indeed, assume that for some ε > 0 the property does not hold. Then we can
find x1 ∈ H, n1 ∈ N and wk ∈ `pk(ω1)∗ with ‖wk‖ = 1 for k ≤ n1 such that

n1∑
k=1

wk(πk(x1)) > ε and
∞∑

k=n1+1

‖πk(x1)‖ < ε/2.

Find now x2 ∈ H, n2 > n1 and and wk ∈ `pk(ω1)∗ with ‖wk‖ = 1 for n1 < k ≤
n2 such that

n2∑
k=n1+1

wk(πk(x2)) > ε and
∞∑

k=n2+1

‖πk(x2)‖ < ε/2.

Repeating inductively this argument we get a sequences (xk) ⊂ H, (nk) ⊂
N and norm one functionals wk ∈ `pk(ω1)∗ satisfying analogous estimations.
Consider the operator T : X → `1 defined by T (x) = (wk(πk(x)))∞k=1. Since `1
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has the Schur property, we have that T (H) is a norm compact subset of `1. On
the other hand, by the previous construction we have ‖T (xk)− T (xj)‖ > ε/2
for k 6= j, and thus T (H) cannot be norm compact. This contradiction proves
the claim.
Now we are ready to show that K strongly generates X. Let H ⊂ X be a
weakly compact subset and ε > 0. Take n ∈ N such that inequality (1) is
satisfied. If m > 0 is such that πk(H) ⊂ m2−kB`pk (ω1) for every k ≤ n, then
H ⊂ mK + εBX .
In order to prove the second statement, consider the space

Y =

(
∞∑
k=1

`pk(ω1)

)
2

.

The identity map J : X → Y is an operator with dense range. If X were
superreflexive generated, then Y would be superreflexive generated too. But
Y is not superreflexive generated since this space is the example given in [17]
showing the non reversibility of (ii)⇒(iii) in Theorem 1.3.

Remark 3.11. The construction given in Example 3.10 easily implies that
Wsuper does not have the factorization property. Let us give a hint of how to
obtain separable examples of that fact with similar ideas but without using the
deep results from [17]. Taking a suitable direct sum of `p spaces with p→ +∞
we will get a reflexive Banach space X and super weakly compact convex subset
K ⊂ X such that

sup{εpDz(K, ε) : ε ∈ (0, 1)} = +∞

for every p > 1. In particular, K 6⊂ T (BZ) for any superreflexive space Z and
operator T : Z → X.

We want to finish this paper with a reflection on an alternative meaning
for the sentence “super WCG”: What are the Banach spaces X such that their
ultraproducts XU are WCG? We believe that such class of Banach spaces
might be very restrictive as the next partial result hints.

Proposition 3.12. Let X be a Banach space, let K be a convex weakly compact
set and let U be a free ultrafilter on N. Assume that KU is weakly compact and
generates XU , then X is superreflexive.
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Proof. First note that K is a super weakly compact and by Proposition 2.7
(3) we may assume that K is absolutely convex taking conv(K ∪ (−K)). We
claim that BX is strongly generated by K. Assume the contrary, so there is
ε > 0 such that for every n ∈ N we can find xn ∈ BX \ (nK + εBX). By
construction, the element (xn) ∈ XU satisfies ‖(xn) − (yn)‖ ≥ ε for every
(yn) ∈

⋃∞
m=1mK

U which is a contradiction. Now BX is weakly compact since
it is strongly generated by a weak compact. Moreover BX is super weakly
compact by Proposition 2.7 (4), and thus X is supereflexive.

Acknowledgements. I am indebted with Professor Richard Aron for the
support provided for the publication of this paper. I would like to thank the
anonymous referee for the careful reading of the manuscript and the valuable
suggestions made. This research was partially supported by the grants of Min-
isterio de Economı́a y Competividad MTM2014-57838-C2-1-P; and Fundación
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