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Abstract. We study the metrizability of weak topologies when restricted to the unit sphere
of some equivalent norm on a Banach space, and its relationships with other geometrical
properties of norms. In case of dual Banach space X∗ we prove that there exists a dual
norm such that its unit sphere is weak∗ metrizable if and only if (BX∗ , w∗) is a descriptive
compact, which provides a complete characterization.

1. Introduction

The norm topology and the weak topology of a normed space (X, ‖·‖) are very different
when X is infinite dimensional. Nevertheless, these topologies may agree on very represen-
tative subsets of X, as for instance its unit sphere SX = {x ∈ X : ‖x‖ = 1}. This is the so
called Kadec property, which is easily checkable in Hilbert spaces and some classical spaces
as `p for p ∈ [1,+∞) (see [2] and [3]). We will deal with a more general property. Given
F ⊂ X∗ a subspace of the topological dual of X, the topology on X of pointwise convergence
on F is denoted σ(X,F ). We are mainly interested in norming subspaces F , that is, if

‖x‖F = sup{|x∗(x)| : x∗ ∈ F, ‖x∗‖ ≤ 1}

is an equivalent norm on X. As expected, the norm of X is said to σ(X,F )-Kadec if the norm
topology and the σ(X,F )-topology agree on SX . Kadec properties are related to geometric
properties of the norm. The norm is said to be locally uniformly rotund (LUR) if given
x ∈ X and (xn)n∈N ⊂ X, then limn ‖xn − x‖ = 0 whenever

lim
n
‖xn‖ = lim

n

∥∥∥∥xn + x

2

∥∥∥∥ = ‖x‖

or equivalently, limn (2‖xn‖2 + 2‖x‖2 − ‖xn + x‖2) = 0 (see Lemma 2.2). It is not difficult
to check that LUR norms are both strictly convex (or rotund) and Kadec. Moreover, if a
LUR norm is σ(X,F )-lower semicontinuous (lsc) for some norming subspace F ⊂ X∗, then
it is σ(X,F )-Kadec and every point x ∈ SX is σ(X,F )-denting point of the unit ball BX ,
that is, x is contained in σ(X,F )-open slices on BX of arbitrarily small diameter. Recall
that an open slice of some set A ⊂ X is a nonempty set of the form A ∩H where H is an
open halfspace. Note that if F is closed, then the σ(X,F )-open halfspaces are exactly the
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halfspaces defined by elements from F .

All these notions are tightly related through renoming. The following theorem contains
early results of S. Troyanski [15], the linear topological characterization of LUR renormability
from [6] and their generalizations for weaker topologies [12].

Theorem 1.1. Let X a Banach space and F ⊂ X∗ a norming subspace. The following
statements are equivalent:

(i) X admits an equivalent σ(X,F )-lsc LUR norm;
(ii) X admits an equivalent rotund norm and an equivalent σ(X,F )-Kadec norm;

(iii) X admits an equivalent norm such that every point of SX is σ(X,F )-denting in BX ;
(iv) there is a sequence (An)n∈N ⊂ X of sets such that for every x ∈ X and every

ε > 0 there is a σ(X,F )-open halfspace H containing x and some n ∈ N such that
‖ · ‖- diam(An ∩H) < ε.

Let us say that in the case of a dual Banach space with its weak∗ topology the correspond-
ing result is stronger: in statement (ii) we may remove the existence of a rotund norm (see
[12]). Both in [7, Problem 3] and in [8, Question 6.4], it was asked if, in the case of F = X∗

(i.e. σ(X,F ) is the weak topology), it is possible to add to the equivalences of Theorem 1.1
the following condition:

(?) X admits an equivalent rotund norm and an equivalent norm with a metrizable unit
sphere for the weak topology.

We were not able to prove the above conjecture, but we have managed to prove some
results in that direction. Particularly, we have considered the study of the metrizability of
(SX , σ(X,F )) as our main goal. The first of our results is a characterization in the spirit of
the Kadec renorming characterization [11].

Theorem 1.2. Let X a Banach space and F ⊂ X∗ a norming subspace. The following
statements are equivalent:

(i) X admits a σ(X,F )-lsc equivalent norm such that (SX , σ(X,F )) is metrizable;
(ii) there is a metric d on X whose topology is finer than σ(X,F ) and a sequence

(An)n∈N ⊂ X of convex σ(X,F )-closed sets such that for every x ∈ X and every
ε > 0 there is a σ(X,F )-neighborhood U of x such that d- diam(An ∩ U) < ε.

Compare with Theorem 1.1 and note that we require the convexity of the sets of the
sequence (An)n∈N. In the characterization of Kadec renorming [11] it is not known if con-
vexity can be removed. If the sets (An)n∈N are not convex in statement (ii) we can produce
a σ(X,F )-lsc “gauge function” F : X → [0,+∞) such that the σ(X,F )-topology and the
d-topology agree on the sets {x ∈ X : F (x) = r} with r ∈ [0,+∞).

We found that the metrizabilty of spheres is tightly related to this generalization of the
LUR property. Let τ be a topology on the normed space X, then a norm on X is said to be
τ -locally uniformly rotund (τ -LUR) if given x ∈ X and (xn)n∈N ⊆ X we have τ -limn xn = x,
whenever

lim
n

(2‖x‖2 + 2‖xn‖2 − ‖x+ xn‖2) = 0.
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Clearly, when τ is the norm topology we retrieve the notion of LUR norm. The second
named author proved the following characterization of σ(X,F )-LUR renormability in [10]
that compares to 1.2.

Theorem 1.3. Let X a Banach space and F ⊂ X∗ a norming subspace. The following
statements are equivalent:

(i) X admits an equivalent σ(X,F )-lsc and σ(X,F )-LUR;
(ii) there is a metric d on X whose topology is finer than σ(X,F ) and a sequence of sets

(An)n∈N ⊂ X such that for every x ∈ X and every ε > 0 there is a σ(X,F )-open
halfspace H containing x such that d- diam(An ∩H) < ε.

Following the proof of this result in [10], we may check that the metric d plays a technical
role in the construction of a particular kind of network and its relation with the σ(X,F )-
topology does not go on beyond the “convexification” of the sets (An)n∈N made implicitly
with slice localization principles. In the case of the weak topology, it was established in [7]
that a w-LUR Banach space is LUR renormable. Dual w∗-LUR norms in dual Banach spaces
has been studied, but we will discuss this later in relation with our results in the dual case.

Let us pass to our second main result. We want to discuss the conditions that give the
metrizability of the unit sphere together with a basis made of slices. Note that the condition
in statement (i) is stronger than the σ(X,F )-LUR property.

Theorem 1.4. Let X a normed space and F a norming subspace in X∗. The following facts
are equivalent:

(i) X admits an equivalent σ(X,F )-lsc norm with the following property: let x ∈ X and
(xn)n∈N, (yn)n∈N ⊆ X, we have σ(X,F )-limn yn = x, whenever

lim
n

(2‖x‖2 + 2‖xn‖2 − ‖x+ xn‖2) = lim
n

(2‖xn‖2 + 2‖yn‖2 − ‖xn + yn‖2) = 0;

(ii) X admits an equivalent σ(X,F )-lsc such that (SX ,σ(X,F )) is metrizable by a metric
d such that for every x ∈ SX and every ε > 0 there exists a σ(X,F )-open halfspace
H such that x ∈ H and d- diam(H ∩ SX) < ε;

(iii) X admits both an equivalent σ(X,F )-lsc and σ(X,F )-LUR norm and an equivalent
σ(X,F )-lsc norm ‖·‖ such that (S‖·‖, σ(X,F )) is metrizable.

We will see in the proof that statement (i) implies that the sphere (SX , σ(X,F )) of a norm
satisfying the property in (i) is actually metrizable. Statement (ii) above can be modified
to an equivalent one assuming that the metric d is defined on X, generates a topology finer
than σ(X,F ) and d- diam(H ∩BX) < ε. In other words, saying that any point of SX is a
sort of denting point of BX with respect to d.

The description of the results for dual Banach spaces requires some special topological
definitions. Let N be a family of subsets of a topological space (X, τ). The family is said to
be isolated if it is discrete in its union endowed with the relative topology, or in other words,
if for every N ∈ N we have

N ∩
⋃

M∈N\{N}

M
τ

= ∅.
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If there is a decomposition N =
⋃∞
n=1 Nn such that every family Nn is isolated, then the

family N is said to be σ-isolated. A family N of subsets of X is said to be a network if every
open set is a union of members of N.

Definition 1.5. A compact Hausdorff space K is said to be a descriptive compact space if
its topology has a σ-isolated network.

Descriptive topological spaces and spaces having a σ-isolated network (the definition dif-
fers of the compact case) were introduced and first studied by Hansell in [5]. Descriptive
compact spaces has been studied in relation with renorming theory in [9] and [13]. Exam-
ples of descriptive compact spaces are the metrizable ones (trivially), Eberlein and Gul’ko
compacta and scattered compacta K with K(ω1) = ∅.

In the case of dual Banach space and the weak∗ topology we can prove a stronger result
which completes the characterization [13, Theorem 1.3] and provides a complete answer to
the weakly metrization of spheres in that case.

Theorem 1.6. Let X∗ a dual Banach space. The following condition are equivalent:

(i) (BX∗ , w∗) is a descriptive compact;
(ii) there is a metric d on X∗ whose topology is finer than the weak∗ topology and a

sequence (An)n∈N ⊂ X of w∗-closed sets such that for every x∗ ∈ X∗ and every ε > 0
there is a w∗-neighborhood U of x∗ and n ∈ N such that d- diam(An ∩ U) < ε;

(iii) X∗ admits an equivalent dual w∗-LUR norm;
(iv) X∗ admits an equivalent dual norm such that (SX∗ , w∗) is metrizable;
(v) X∗ admits an equivalent dual norm with the following property: let x∗ ∈ X∗ and

(x∗n)n∈N, (y∗n)n∈N ⊆ X∗, we have w∗-limn y
∗
n = x∗, whenever

lim
n

(2‖x∗‖2 + 2‖x∗n‖
2 − ‖x∗ + x∗n‖

2) = lim
n

(2‖x∗n‖
2 + 2‖y∗n‖

2 − ‖x∗n + y∗n‖
2) = 0.

In particular, by [13, Theorem 1.3] we may deduce that K is a descriptive compact if and
only if C (K)∗ admits a dual norm such that (SC (K)∗ , w

∗) is metrizable.

A systematic study of properties close to weakly metrizability of unit spheres under
renormings was carried out in the Ph.D. Thesis of the first named author, done under the
advising of the second and third named authors. This paper contains an excerpt of those re-
sults with some improvements on the statements and simplifications on their proofs achieved
after the thesis defense.

We believe that our notation is mostly standard and we have already introduced almost
all the symbols that we will need. Just one remark. When we speak about some equivalent
norm of the space X, as after a renorming, the symbols BX and SX stand for the unit ball
and unit sphere in that norm. Only if there is some confusion, as dealing with a second
equivalent norm 9 · 9, then we will use B9·9 or S9·9.

2. Proofs and further consequences

The proof of our first main result follows ideas from [11] for Kadec renorming.
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Proof of Theorem 1.2. (i)⇒(ii) Let ρ be a metric defined on SX that metrizes the sphere
(SX , σ(X,F )). Define a metric d on X by

d(x, y) = max

{
ρ

(
x

‖x‖
,
y

‖y‖

)
, |‖x‖ − ‖y‖|

}
if x, y 6= 0 and d(x, y) = ‖x‖ + ‖y‖ otherwise. It is elementary to check that the topology
of d is finer than σ(X,F ), and coarser than the ‖·‖-topology. We define the sequence of sets
(An) as a renumbering of the countable family {rBX : r ∈ Q+}. Note that statement (ii) is
clearly satisfied for x = 0. If x 6= 0, take r = ‖x‖ and observe that on the sphere r SX the
topologies of d and σ(X,F ) agree. Given ε > 0 we may take a σ(X,F )-open neighborhood
U of x such that d- diam(rBX ∩U) < ε. Indeed, in order to see that we may suppose that
r = 1. Find V σ(X,F )-open neighborhood of x such that ρ- diam(r SX ∩V ) < ε and find now
δ > 0 and W another σ(X,F )-open neighborhood of x such that W + δBX ⊂ V and define
U = W \ (1 − δ) BX which will have the required property. Now, a standard perturbation
argument (see [11, Lemma 1] for instance) allows us to find r < s ∈ Q and U ′ such that
d- diam(sBX ∩U ′) < ε.

(ii)⇒(i) Without loss of generality we may assume that F is 1-norming, i.e. ‖·‖ = ‖·‖F . In
particular, we may consider X as a subspace of F ∗. Recall that in this case the σ(X,F )-
topology is actually the restriction to X of the weak∗ topology on F ∗. Firstly we claim that
the sets (An) can be taken in such a way that the point x is in the norm interior after a
suitable change of the sequence of sets and the metric d by another one. To see that, recall
that the topology of d has a σ-discrete basis B =

⋃∞
n=1 Bn. For B ∈ B consider the w∗-open

sets
UB =

⋃
{U : U is w∗-open and An ∩ U ⊂ B}

Clearly Hn = {UB ∩ An
w∗

: B ∈ Bn} is a disjoint family of relatively w∗-open subsets of

An
w∗

since two open sets that meet in An
w∗

, they must meet in An. Now we may write
UB =

⋃∞
m=1 UB,m with UB.m a w∗-open and ‖x− y‖ > 2/m if x ∈ UB,m and y 6∈ UB. Observe

now that the family

Bn,m = {UB,m ∩ (An
w∗

+m−1 BF ∗) : B ∈ Bn}
is disjoint for every n,m ∈ N. There exists a pseudometric ρ making clopen all the sets of
the family Bn,m and of diameter less or equal than 2−n−m. Indeed, define ρn,m(x, y) = 1 if
there is some B ∈ Bn,m such that #(B∩{x, y}) = 1 and ρn,m(x, y) = 0 otherwise. Then take
ρ(x, y) =

∑
n,m∈N 2−n−mρn,m(x, y). The restriction of ρ to X is a metric because it separates

points, and its topology is finer than the weak∗-topology. Note that the sets

An,m = X ∩ (An
w∗

+m−1 BF ∗)

are σ(X,F )-closed, any x ∈ An satisfying the property of the statement is an interior point
of some An,m and

{UB,m ∩ An,m : B ∈ Bn, n,m ∈ N}
is a network for the topology of ρ, which completes the proof of the claim.
Now we return to the notation of the begining, with sets (An) having nonempty interior and a
metric on X called d. Take xn an interior point of An and let fn be the Minkowski functional
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of An − xn, which is convex and σ(X,F )-lsc. Consider the symmetric convex σ(X,F )-lsc
function

Γ(x) = ‖x‖+
∞∑
n=1

an(fn(x− xn) + fn(xn − x))

where the coefficients an > 0 ensure the uniform convergence of the series on bounded sets
and such that Γ(0) < 1. The set {x ∈ X : Γ(x) ≤ 1} is the unit ball of an equivalent
σ(X,F )-lsc norm 9 · 9. Suppose that a net (x$)$∈Ω ⊂ S9·9 is σ(X,F )-converging to some
x ∈ S9·9. Note that Γ(x$) = Γ(x) = 1. A standard argument of lower semicontinuity shows
that lim$ fn(x$ − xn) = fn(x − xn) for every n ∈ N. Fix ε > 0 and take n ∈ N and a
σ(X,F )-open U such that x ∈ A◦n ∩ U and d- diam(An ∩ U) < ε, where A◦n is the norm
interior of An. We have fn(x − xn) < 1 since x ∈ A◦n, so for $ large enough we also have
fn(x$−xn) < 1. In particular, x$ ∈ An. For $ large we have x$ ∈ U , therefore d(x$, x) < ε.
This shows that the net (x$)$∈Ω converges to x in the d-topology. Since the d-topology is
finer than σ(X,F ), this concludes the proof. �

Remark 2.1. If we know that the metric d is σ(X,F )-lsc then we can remove the hypoth-
esis of the sets An being σ(X,F )-closed because the σ(X,F )-closure does not increase the
d-diameter. In fact, that is the idea used in the characterization of σ(X,F )-Kadec renorma-
bility, when d is the norm (see [11]).

The next lemma contains some facts about convexity which are useful in renorming theory.
The easy proofs are left to the reader.

Lemma 2.2. Given f : X → [0,+∞) convex, the following inequalities hold:

0 ≤ (f(x)− f(y))2

4
≤ f(x)2 + f(y)2

2
− f

(
x+ y

2

)2

;(2.1)

(
f(x) + f(y)

2
− f

(
x+ y

2

))2

≤ f(x)2 + f(y)2

2
− f

(
x+ y

2

)2

;(2.2)

min{f(z) : z ∈ [x, y]} ≥ min{f(x), f(y)} − 2

(
f(x) + f(y)

2
− f

(
x+ y

2

))
.(2.3)

The following definition is used by topologists in metrization theory and generalized metric
spaces, see [4, Definition 9.1].

Definition 2.3. Let S a nonempty set. A function ρ : S×S → [0,+∞) is called a symmetric
if ρ(x, y) = ρ(y, x) for every x, y ∈ S and ρ(x, y) = 0 if, and only if, x = y.

If a set S has a symmetric ρ, then we can define a topology τρ on S in the following way:
U ∈ τρ if, and only if, for every x ∈ U there exists ε > 0 such that

Bρ(x, ε) := {y ∈ S | ρ(x, y) < ε} ⊆ U.

Observe that without an additional assumption (such as the triangle inequality for ρ), we
cannot assume Bρ(x, ε) to be a neighborhood of x. When such a condition happens, then ρ
is called a semimetric. Observe that thanks to (2.1) of Lemma 2.2

ρ(x, y) := 2‖x‖2 + 2‖y‖2 − ‖x+ y‖2
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defines a symmetric on X if and only if ‖·‖ is strictly convex. We will see that this symmetric
plays a major role along the proofs of the results.

Proposition 2.4. Let A ⊂ X be a convex cone such that (SX ∩A, σ(X,F )) is metrizable
and any x ∈ SX ∩A has a local base for the σ(X,F )-topology made of slices. Then there
exists an equivalent σ(X,F )-lsc norm ‖·‖A on X such that σ(X,F )-limn yn = x whenever
the points x, xn, yn are in A and satisfy

lim
n

(2‖x‖2
A + 2‖xn‖2

A − ‖x+ xn‖2
A) = lim

n
(2‖xn‖2

A + 2‖yn‖2
A − ‖xn + yn‖2

A) = 0.

Proof. Let d the metric defined on SX ∩A. We may assume that the metric extends to a

pseudometric on A \ {0} by d(x, y) := d
(

x
‖x‖ ,

y
‖y‖

)
. Let H be the collection of σ(X,F )-open

halfspaces of X and

Hn =
{
H ∈ H : H ∩BX ∩A 6= ∅ and d- diam(H ∩BX ∩A) < 2−n

}
.

Consider for n ∈ N the sets

Bn = coσ(X,F )
(

(BX r
⋃
Hn) ∪ 2−1 BX

)
where we are taking

⋃
Hn =

⋃
H∈Hn

H. We claim that the following holds: if the segment
[x, y] ⊂ (BX ∩A) \Bn, then d(x, y) < 21−n. Indeed, define sets

Ln = {z ∈ [x, y] : ∃H ∈ Hn such that [x, z] ⊂ H},

Rn = {z ∈ [x, y] : ∃H ∈ Hn such that [z, y] ⊂ H}.
By definition of Bn, we have Ln ∪Rn = [x, y] as any z ∈ [x, y] is contained in some H ∈ Hn

and either [x, z] ⊂ H or [z, y] ⊂ H. Note that Ln and Rn are nonempty and relatively open.
Therefore, there is some z ∈ Ln ∩Rn and so d(x, y) ≤ d(x, z) + d(z, y) < 21−n. Consider now
the equivalent σ(X,F )-lsc norm on X defined by

‖x‖2
A = ‖x‖2 +

∞∑
n=1

2−n(fn(x)2 + fn(−x)2)

where fn are the Minkowski functionals of the sets Bn defined previously.
Consider (xn)n∈N, (yn)n∈N ⊆ A and x ∈ A such that

lim
n

(2‖xn‖2
A + 2‖yn‖2

A − ‖xn + yn‖2
A) = lim

n
(2‖xn‖2

A + 2‖x‖2
A − ‖xn + x‖2

A) = 0.

If x = 0, the proof is trivial. Otherwise, without loss of generality we may assume that
‖x‖ = 1 since that multiplies all the sequences by the same factor. Moreover, we may
assume that ‖xn‖ = ‖yn‖ = 1 because this modifies the former sequences by adding norm
null sequences. By (2.1) of Lemma 2.2 we obtain, for every k ∈ N,

lim
n

fk(xn)2 + fk(yn)2

2
− fk

(
xn + yn

2

)2

= lim
n

fk(xn)2 + fk(x)2

2
− fk

(
xn + x

2

)2

= 0.

Since x ∈ SX ∩
⋃
Hk, for every k ∈ N, then fk(x) > 1 and assumptions above implies,

together with Lemma 2.2 that there exists Nk ∈ N such that min{fk(x), fk(xn), fk(yn)} >
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1 + δ for some δ > 0 and every n ≥ Nk. By (2.2) of Lemma 2.2, we may suppose that Nk is
large enough to guarantee that

max

{
fk(xn) + fk(yn)

2
− fk

(
xn + yn

2

)
,
fk(xn) + fk(x)

2
− fk

(
xn + x

2

)}
<
δ

2

for every n ≥ Nk. By (2.3) of Lemma 2.2, we have

[x, xn] ∪ [xn, yn] ⊂ (BX ∩A) \Bk

and so we deduce d(x, yn) ≤ d(x, xn) + d(xn, yn) < 22−k for n ≥ Nk. Together with ‖yn‖ =
‖x‖ = 1, that implies σ(X,F )-limn yn = x. �

We are now ready to prove the main theorem.

Proof of Theorem 1.4. (ii)⇒(i) Apply Proposition 2.4 with A = X.

(i)⇒(iii) Clearly the norm is σ(X,F )-LUR. We claim that the σ(X,F )-topology on the unit
sphere is symmetrized by the symmetric

ρ(x, y) = 2‖x‖2 + 2‖y‖2 − ‖x+ y‖2.

Indeed, if x ∈ SX the definition of σ(X,F )-LUR norm implies that every σ(X,F )-neighborhood
of x contains a “ball” of the form Bρ(x, r) for some r > 0. On the other hand, Bρ(x, r) is a
σ(X,F )-neighborhood of x. Just take a σ(X,F )-open halfspace H containing x and disjoint
with (1 − r) BX . Thus, if y ∈ SX ∩H then x+y

2
6∈ (1 − r) BX , that is, ‖x+ y‖ > 1 − r.

Therefore, SX ∩H ⊂ Bρ(x, r). The metrization of the unit sphere is now consequence of the
following metrization result of Arhangel’skǐı (1966), see [1] and [4, Theorem 9.14]:

Let (X, τ) be a topological space symmetrizable with respect to a symmetric ρ such that τ -
limn yn = x whenever x ∈ X, (xn)n∈N, (yn)n∈N ⊆ X are such that limn ρ(x, xn) = 0 and
limn ρ(xn, yn) = 0. Then X is metrizable.

(iii)⇒(ii) Let ‖·‖R a σ(X,F )-lsc and σ(X,F )-LUR norm on X and let ‖·‖M another σ(X,F )-
lsc norm such that its unit sphere (S‖·‖M , σ(X,F )) is metrized by a metric ρ. Consider the

norm ‖·‖2 = ‖·‖2
R + ‖·‖2

M and the metric

d(x, y) = ρ

(
x

‖x‖M
,

y

‖y‖M

)
.

It is easy to check that ‖·‖ shares the properties of ‖·‖R and ‖·‖M , with respect to d, which
easily gives statement (ii). �

We will consider the Radon positive measures M+(K) on a Hausdorff compact K. Note
that M+(K) is identified with a positive cone in C (K)∗.

Proposition 2.5. Let K be a descriptive compact space. There exists a strictly convex dual
norm 9 · 9+ on C (K) such that the weak∗ topology is metrizable on S9·9+ ∩M+(K).

Proof. The arguments for the proof of this results relies completely on the techniques devel-
oped in [13] which are scattered along that paper. In [13, Lemma 3.1] there is the description
of a network N =

⋃∞
n=1 Nn where each Nn is a family of disjoint relatively open subsets of



WEAKLY METRIZABILITY OF SPHERES 9

some closed set An ⊂ K. This network plays an important role in the construction of norms
and metrics on C (K)∗ with special properties. Define the metric on M+(K) by

d(µ, ν) = |µ(K)− ν(K)|+
∞∑
n=1

2−n
∑
N∈Nn

|µ(N)− ν(N)|.

The convergence of the series is ensured since each family Nn is disjoint and so the series is
dominated by the total variation of the measures. Now [13, Lemma 3.2] implies that the d-
topology is finer than the weak∗ topology on M+(K). The converse (restricted to the sphere)
requires the norm constructed in the proof of [13, Theorem 3.3]. We will sketch the steps of
the construction skipping some details. For every n ∈ N define a function Fn on C (K)∗ by

Fn(µ)2 =
∑
N∈Nn

|µ|(N)2.

For m,n ∈ N define a seminorm ‖·‖m,n on C (K)∗ by the formula

‖µ‖2
m,n = inf

{
m−1Fn(ν)2 + ‖µ− ν‖2 : supp(ν) ⊂ An

}
.

Finally, define an equivalent norm 9 · 9+ on C (K)∗ by

9µ92
+ = ‖µ‖2 +

∑
m,n∈N

2−m−n‖µ‖2
m,n +

∑
n∈N

2−n|µ|(K \ An)2 +
∑
n∈N

2−n|µ|(K \ A′n)2

where A′n = An \
⋃
N∈Nn

N . In order to see that the weak∗ topology and d coincides on
S9·9+ ∩M+(K) take a weak∗ converging sequence w∗-limn µn = µ with 9µn9+ = 9µ9+ = 1.
Note that in such a case limn 9µn + µ9+ = 2, so the hypothesis of a claim inside the proof
of [13, Theorem 3.3] is fulfilled. The claim says that (µn) converges to µ in the norm of the
space `1(Nk) for any k ∈ N, that is,

lim
n

∑
H∈Nk

|µn(H)− µ(H)| = 0.

Since we also have limn µn(K) = µ(K), we deduce limn d(µn, µ) = 0 as we wanted. �

Proof of Theorem 1.6. (i) ⇔ (ii) is just an equivalent definition of descriptiveness (put to-
gether [13, Lemma 2.1] and [13, Lemma 2.2]).

(i) ⇔ (iii) is proved in [13, Theorem 1.3].

(iv) ⇒ (i) is proved in [13, Lemma 2.5].

(v) ⇒ (iv) (and (iii) as well) follows from Theorem 1.4.

To close the cycle of implications we will prove (i) ⇒ (v). Assume that BX∗ is a descriptive
compact. Proposition 2.5 with Proposition 2.4 and Choquet’s Lemma [3] provide us with
a dual renorming ‖·‖∗ such that given {µ}, (µn), (νn) ⊂ M+(BX∗), then w∗-limn νn = µ
whenever

lim
n

(2‖µn‖2
∗ + 2‖νn‖2

∗ − ‖µn + νn‖2
∗) = lim

n
(2‖µn‖2

∗ + 2‖µ‖2
∗ − ‖µn + µ‖2

∗) = 0.(2.4)
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Let T : C (BX∗)∗ → X∗ be the barycentric map, which is linear and w∗-w∗-continuous.
Define an equivalent dual norm 9 · 9 on X∗ by

9x∗92 = inf{
∥∥µ1
∥∥2

∗ +
∥∥µ2
∥∥2

∗ : µ1, µ2 ∈M+(BX∗), T (µ1 − µ2) = x∗}.
We claim that 9 ·9 satisfies statement (iv). Suppose that we are given x∗ ∈ X∗ and (x∗n)n∈N,
(y∗n)n∈N ⊆ X∗, such that

lim
n

(2 9 x∗ 92 +2 9 x∗n 92 − 9 x∗ + x∗n9
2) = lim

n
(2 9 x∗n 92 +2 9 y∗n 92 − 9 x∗n + y∗n9

2) = 0;

The infimum in the definition of 9 · 9 is attained, so we may find measures

{µ1, µ2}, (µ1
n), (µ2

n), (ν1
n), (ν2

n) ⊂M+(BX∗)

such that
9x∗92 =

∥∥µ1
∥∥2

∗ +
∥∥µ2
∥∥2

∗ and x∗ = T (µ1 − µ2);

9x∗n9
2 =

∥∥µ1
n

∥∥2

∗ +
∥∥µ2

n

∥∥2

∗ and x∗n = T (µ1
n − µ2

n);

9y∗n9
2 =

∥∥ν1
n

∥∥2

∗ +
∥∥ν2

n

∥∥2

∗ and y∗n = T (ν1
n − ν2

n).

An application of Lemma 2.2 gives easily that conditions (2.4) are fulfilled for µ1, (µ1
n), (ν1

n)
and µ2, (µ2

n), (ν2
n). Now observe that

lim
n
y∗n = lim

n
T (ν1

n − ν2
n) = lim

n
T (ν1

n)− lim
n
T (ν2

n) = T (µ1)− T (µ2) = x∗

which concludes the proof of the theorem. �

Remark 2.6. Once we know that the sphere (SX∗ , w∗) is metrizable, we can deduce that it
is metrizable by a complete metric since SX∗ = BX∗ \

⋃∞
n=1(1− n−1) BX∗ is a Gδ-subset of

a compact space (BX∗ , w∗).

We will describe an alternative argument that is useful in the context of dual Banach
spaces. Let X be a locally convex space. Denote by V(x) a local base of the topology at
x ∈ X and by H the family of open halfspaces of X. Let δ : P(X)→ [0,+∞] be a “diameter
function”, which here means a requirement of monotonicity, that is, δ(A) ≤ δ(B) if A ⊂ B.
Given A ⊂ X and ε > 0 denote

〈A〉′ε = {x ∈ A : ∀U ∈ V(x), δ(A ∩ U) ≥ ε};
[A]′ε = {x ∈ A : ∀H ∈ V(x) ∩H, δ(A ∩H) ≥ ε}.

Note that [A]′ε is convex if A is so. These operations can be iterated, for instance [A]k+1
ε =

[[A]kε ]
′
ε and [A]ωε =

⋂∞
n=1[A]nε . Finally, let Ext(A) denote the set of extreme points of a convex

set A ⊂ X. With this notation we have the following result, already proved in [14, Lemma
2.10].

Proposition 2.7. If A ⊂ X is compact and convex, then Ext([A]ωε ) ⊂ 〈A〉′ε.

If we assume (iii) of Theorem 1.6, we can prove (iv) using Proposition 2.7 with the following
idea. Without loss of generality, the metric can be extended to a metric d′ defined in BX∗ .
Then ([BX∗ ]n2−m)n,m∈N is a countable family of symmetric convex sets that can be used in the
same fashion that the sets Bn in the proof of Proposition 2.4. However, it is more interesting
to apply this idea to the characterization of existence of dual strictly convex renorming
through symmetrics.
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Theorem 2.8. Let X∗ be a dual Banach space. The following statements are equivalent:

(i) X∗ admits an equivalent dual strictly convex norm;
(ii) X∗ admits an equivalent dual norm and a symmetric ρ on SX∗ such that every point

x∗ ∈ SX∗ admits a relative weak∗ neighbourhood of small ρ-diameter.

Proof. (i) ⇒ (ii) If X∗ is endowed with a dual rotund norm, then we already know that the
symmetric ρ(x∗, y∗) = 4 − ‖x∗ + y∗‖2 (or ρ(x∗, y∗) = 2 − ‖x∗ + y∗‖) does the job even with
weak∗-open slices as neighborhoods.
(ii) ⇒ (i) Assume that ρ is a symmetric on SX∗ and define δ(A) = ρ-diam(SX∗ ∩A). Note
that the hypothesis implies that SX∗ ∩〈BX∗〉′ε = ∅. Consider the sets

Bn,m = cow
∗
([BX∗ ]n2−m ∪ 2−1 BX∗)

and their Minkowski’s functionals fn,m. Define an equivalent dual norm 9 · 9 as

9x∗92 = ‖x∗‖2 +
∑
n,m

2−n−mfn,m(x∗)2.

We claim that 9 · 9 is strictly convex. We will arrive to a contradiction, so assume that for
some points x∗ 6= y∗ ∈ X∗ we have

2 9 x∗ 92 +2 9 y∗ 92 − 9 x∗ + y∗92 = 0.

Then by Lemma 2.2 we also have

2‖x∗‖2 + 2‖y∗‖2 − ‖x∗ + y∗‖2 = 0;

2fn,m(x∗)2 + 2fn,m(y∗)2 − fn,m(x∗ + y∗)2 = 0.

for every n,m ∈ N. Without loss of generality, we may assume that ‖x∗‖ = ‖y∗‖ = 1. Fix
m ∈ N such that

2−m < min

{
ρ

(
x∗,

x∗ + y∗

2

)
, ρ

(
y∗,

x∗ + y∗

2

)}
.

Let n ∈ N the maximum of the set {k ∈ N : fk,m(x∗) = 1}, which by Proposition 2.7 exists
and is finite. Then we have

fn,m(x∗) = fn,m(y∗) = fn,m

(
x∗ + y∗

2

)
= 1;

fn+1,m(x∗) = fn+1,m(y∗) = fn+1,m

(
x∗ + y∗

2

)
= α > 1.

In particular, x∗+y∗

2
∈ Bn,m \ Bn+1,m, so there is H ∈ H such that x∗+y∗

2
∈ H and δ(Bn,m ∩

H) < 2−m. Since either x∗ ∈ Bn,m ∩H or y∗ ∈ Bn,m ∩H, this leads to a contradiction. �
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