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Abstract. The uniform structure of a descriptive normed space (X, ‖ · ‖)
always admits a description with an (F )-norm ‖ · ‖1 such that weak and norm
topologies coincide on

{x ∈ X : ‖x‖1 = ρ}
for every ρ > 0.

1. Introduction

Paracompactness is a generalization of the concept of compactness and it be-
longs to the class of concepts related with covering properties of topological
spaces. On the other hand, the concept of full normality can be regarded as
belonging to another genealogy of concepts, the separation axioms which include
regularity, normality and many other properties. Stone’s theorem says that those
two concepts, belonging to different categories, coincide for Hausdorff topological
spaces, see Chapter V in [22]. In particular, the fact that every metrizable space
is paracompact is going to be a fundamental tool when looking for convex renorm-
ing properties of a Banach space. Indeed, the use of Stone’s theorem has been
extensively considered in order to build new techniques to construct equivalent
locally uniformly rotund norms on a given normed space X, [7], [19], [21]. The
σ-discreteness of the basis for the metric topologies gives the necessary rigidity
condition that appears in all the known cases of existence of such a renorming
property. It is our aim here to study the impact of Stone’s theorem for Kadec
renormings.

Throughout this paper (X, ‖·‖) will denote a normed space and X∗ its dual.
With BX and SX (resp. BX∗ and SX∗) we will denote the unit ball and the unit
sphere of X (resp. X∗). If Z is a subspace of X∗, we shall denote by ‖·‖Z the
norm-continuous seminorm given by

‖x∗∗‖Z = sup
f∈BX∗ ∩Z

|x∗∗(f)|

for x∗∗ ∈ X∗∗. We say that Z is norming if ‖·‖Z is an equivalent norm on X. If
‖·‖Z coincides with ‖·‖ on X we say that Z is 1-norming. We shall denote by
σ(X,Z) the topology on X of pointwise convergence on Z, but in the particular

Date: Received: 3 October 2014; Revised: 24 March 2015; Accepted: ?????.
∗ Corresponding author.
2010 Mathematics Subject Classification. 46A16, 46B03, 46B20, 46B26, 54E35.
Key words and phrases. quasinorm, (F)-norm, Kadec norm, descriptive Banach space, net-

work, p-convexity.
1



2 S. FERRARI, L. ONCINA, J. ORIHUELA, M. RAJA

cases of the weak and the weak-star topologies we shall use w and w∗ respectively.
If τ is a topology on a normed space X, we say that a norm ‖·‖ on X is

• rotund, or strictly convex, if for every x, y ∈ X the condiction ‖x‖ =
‖y‖ =

∥∥x+y
2

∥∥ implies x = y. Geometrically this means that SX has no
non-trivial line segments, or equivalently, every point of SX is an extreme
point of BX .
• τ -Kadec if the norm and the τ topologies coincide on the unit sphere. If
τ = w we shall say that ‖·‖ is Kadec.
• τ -locally uniformly rotund (τ -LUR, for short), if given a point x and a

sequence (xn)n∈N in X we have limn→∞ xn = x in the τ topology whenever

lim
n→∞

(
2‖x‖2 + 2‖xn‖2 − ‖x+ xn‖2) = 0.

If τ is the norm topology we will say that ‖·‖ is locally uniformly rotund
(LUR, for short).

It is a known result that a space X admits an equivalent LUR norm if, and only
if, it admits an equivalent Kadec norm and an equivalent rotund norm (see [32]
and [28]).

If we have a Kadec norm ‖·‖ on the normed space X the identity map from
(SX , w) to (X, ‖·‖) is continuous. If we have a subset C of the normed space
X, a normed space Y and a map φ : (C,w) → (Y, ‖·‖), then φ is said to be
piecewise continuous if there is a countable cover C =

⋃
n∈NCn such that each

one of the restrictions φ|Cn is weak to norm continuous. A norm pointwise limit
of a sequence of piecewise continuous maps is called a σ-continuous map, see
[21] for an account of results around this notion and references. In a normed
space (X, ‖·‖) with a Kadec norm the identity map in X, from the w to the
norm topology, is σ-continuous, and Stone’s Theorem can be applied to the norm
topology to get that the norm topology has a network N that can be written as a
countable union of subamilies, N =

⋃
n∈NN n, where each one of the subfamilies

N n is a discrete family in its union (isolated, for short)⋃
N n :=

⋃
{N |N ∈ N n}

endowed with the w topology, i.e. for every x ∈
⋃
N n there exists a w neighbor-

hood V of x such that

card {N ∈ N n |N ∩ V 6= ∅} = 1,

see Theorem 1.5 in [7]. No example is known of Banach space with this kind
of network, which is called descriptive Banach space, and without an equivalent
Kadec norm, see chapter 3 in [21].

In the classical theory of Banach spaces, not only normed spaces were con-
sidered, but also those spaces on which a metric is defined which is compatible
with the vector space operations, see chapter 3 in Banach’s book [1]. Indeed, the
uniform structure of a metrizable topological vector space is described with the
following notion, [15, p. 163]:

Definition 1.1. An (F )-norm in a vector space X is function ‖·‖ : X → [0,+∞)
such that:
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(1) x = 0 if, and only if, ‖x‖ = 0;
(2) ‖λx‖ ≤ ‖x‖, if |λ| ≤ 1 and x ∈ X;
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ X;
(4) limn ‖λxn‖ = 0, if limn ‖xn‖ = 0 for every (xn)n∈N ⊆ X and λ ∈ R;
(5) limn ‖λnx‖ = 0, if limn λn = 0 for every (λn)n∈N and x ∈ X.

The space X is said to be (F )-normed. The sets {x ∈ X : ‖x‖ < ε}, for
ε > 0 form a basis of neighborhoods of the origin for the topology determined
by the (F )-norm. A basis of the uniformity associated is formed with the sets
{(x, y) ∈ X ×X : ‖x− y‖ < ε}, for ε > 0.

Banach called a complete (F )-normed space an (F )-space, after Fréchet, see
Chapter III in [1].

In this paper we shall prove the following result:

Theorem 1.2 (Kadec F-renorming). Let (X, ‖·‖) be a normed space with a norm-
ing subspace Z in X∗. Then the following conditions are equivalent:

(1) There is a norm-equivalent σ(X,Z)-lower semicontinuous and σ(X,Z)-
Kadec (F )-norm ‖ · ‖0 on X, i.e. an (F )-norm ‖ · ‖0 such that σ(X,Z)
and norm topologies coincide on the unit “sphere” {x ∈ X | ‖x‖0 = 1},
and the topology determined by the (F )-norm ‖ · ‖0 on X coincides with
the topology of the norm ‖·‖.

(2) The normed space X is σ(X,Z)-descriptive; i.e. there are isolated families
Bn for the σ(X,Z)-topology, n = 1, 2, · · · such that for every x ∈ X and
every ε > 0 there is n ∈ N and a set B ∈ Bn with the property that x ∈ B
and that ‖·‖- diam(B) < ε.

(3) The norm topology admits a basis B =
⋃
n∈N Bn such that each one of the

families Bn is σ(X,Z)-isolated and norm discrete.

In Section 3 the equivalence (1) ⇔ (2) is established. Section 4 takes care of
(2)⇔ (3).

Prior estimates were first obtained by the fourth named author in Theorem
1 of [27] when he constructed a positively homogeneous symmetric function F :
X → [0,+∞), with ‖ · ‖ ≤ F (·) ≤ 3‖ · ‖, such that the weak and norm topologies
coincide on {x ∈ X : F (x) = 1}. The norm continuity of Raja’s function F
does not follow immediately from his construction and it was asked by different
people if it actually could be done. In an unpublished note of Raja appears
a construction to make F continuous when dealing with topologies of the form
σ(X,Z), let us transcript it here:

Lemma 1.3. Let X be a normed space with an 1-norming subspace Z ⊂ X∗.
Assume that X is σ(X,Z)-descriptive. Then there exists a symmetric homoge-
neous σ(X,Z)-lower semicontinuous and norm continuous function Φ on X with
‖ · ‖ ≤ Φ(·) ≤ 3‖ · ‖ such that the topologies of the norm and σ(X,Z) coincide on
the set S = {x ∈ X |Φ(x) = 1}.

Proof. We may identify X isometrically as a subspace of Z∗. In this way the
σ(X,Z) topology is induced on X by the w∗-topology of Z∗. In this proof the

closed balls will always be referred to Z∗, that is: B[x, ε] := B(x, ε)
w∗

.
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We shall build a norm continuous function with the same properties of F ,
the function constructed in [27, Theorem 1]. Our task will be to add the norm
continuity to the other properties of F , so we will use it in the proof. Let K
be the w∗-closure of the star-shaped set {x ∈ X |F (x) ≤ 1}. It is easy to verify
that K is also star-shaped. Let qn be the Minkowski functional of K + B[0, 1/n]
for n ≥ 2. As this set is w∗-closed, qn is w∗-lower semicontinuous. It is easy to
realize that qn is also symmetric and verifies the inequality(

1− 1

n

)
‖·‖ ≤ qn(·) ≤ 3‖·‖.

We claim that every qn is norm continuous. Indeed, it is clear that qn is norm
lower semicontinuous. By homogeneity it is enough to show that the set

Un := {z∗ ∈ Z∗ | qn(z∗) < 1}

is norm open. Take z∗ ∈ Un, we know qn(z∗) < 1, then take λ ∈ (0, 1) such
that qn(z∗) < λ2. This implies that z∗ ∈ λ2K + B[0, λ2/n]. In particular z∗ ∈
K + B(0, λ/n) which is norm open and contained in K + B[0, 1/n].

Let us consider the function

Φ(z∗) = ‖z∗‖+
∑
n≥2

2−nqn(z∗)

which is homogeneous, symmetric, w∗-lower semicontinuous, norm continuous
and satisfies ‖·‖ ≤ Φ(·) ≤ 3‖·‖. We claim that Φ has the Kadec property at the
points of X, that is, if (z∗ω) is a net w∗-converging to x ∈ X such that Φ(z∗ω)
converges to Φ(x), then (z∗ω) is norm convergent to x. Clearly, we may assume
x 6= 0, and by homogeneity of F also assume that F (x) = 1. If (z∗ω) is a net as
above, using the lower semicontinuity in a standard way we obtain that qn(z∗ω)
converges to qn(x) for each n. As qn(x) < F (x) = 1, for ω large qn(z∗ω) < 1 and
thus z∗ω ∈ K + B[0, 1/n]. Given any ε > 0 it is possible to take a σ(X,Z)-open
neighborhood U of x such that U ∩ {x ∈ X |F (x) ≤ 1} has diameter less than ε.
We may assume that U is w∗-open in Z∗ and passing to closure we obtain that
diam(U ∩ K) ≤ ε. By [27, Lemma 1], given ε > 0 there is r > 0 and another
w∗-neighborhood V of x such that diam(V ∩ (K+B(0, r))) < ε. If we take n ≥ 2
such that 1/n < r, then

diam(V ∩ {z∗ ∈ Z∗ | qn(z∗) ≤ 1}) < ε.

For ω large enough, z∗ω ∈ V by the w∗-convergence and qn(z∗ω) < 1, so

z∗ω ∈ V ∩ {z∗ ∈ Z∗ | qn(z∗) ≤ 1}

and this implies ‖z∗ω − x‖ < ε. Now is clear that the restriction of Φ to X will
satisfy all the properties required and this ends the proof of the lemma. �

Our new construction in this paper provides the triangle inequality for the
F -norm which turns out to be a Lipschitz function with respect to the metric
associated with it, thus uniformly continuous for the original norm. From the
above proof and having in mind Theorem 4 in [10] it is not clear that Φ should
have to be uniformly continuous.
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Our results in this paper answer Question 6.2 in [21]. Main ideas are pro-
vided by a Decomposition Lemma 3.3, together with extended versions of the
Connection Lemma 3.2 in [25] given by Theorem 3.5.

Nevertheless the following question remains open:

Problem 1.4. Is it possible to convexify the construction in Theorem 1.2 in order
to get an equivalent σ(X,Z)-lower semicontinuous norm 9 ·9 on X such that the
σ(X,Z) and norm topologies coincide on the unit sphere {x ∈ X |9x9 = 1}?

Note that a norm on X such that the σ(X,Z) and norm topologies coincide
on its unit sphere is necessarily σ(X,Z)-lower semicontinuous. As a matter of
fact, all the statements of isometric nature involving the σ(X,Z)-topology in
this paper will include the hypothesis of σ(X,Z)-lower semicontinuity. Moreover,
when handling topological non-isometric statements we will always assume that
the norm is σ(X,Z)-lower semicontinuous. Indeed, changing the norm of X by
an equivalent one do not alter the validity of the statement. Let us remark that
a consequence is that the norming subspace Z ⊂ X∗ can be supposed 1-norming
without loss of generality together any non-isometric topological statement in-
volving the σ(X,Z)-topology.

2. p-convex constructions

In this section we shall prove some results regarding generalized convexity that
shall be used in what follows. First of all let us recall the following definition,
[15, p. 160]:

Definition 2.1. Let A be a subset of a vector space X and p ∈ (0, 1]. A is said
to be p-convex if for every x, y ∈ A and τ, µ ∈ [0, 1] such that τ p + µp = 1 we
have τx + µy ∈ A. We denote by cop(A) the p-convex hull of a set A, i.e. the
smallest p-convex set of X containing A.

Notice that the p-convex hull of a set A can be represented explicitly as

cop(A) = {
n∑
i=1

τixi : (xi)
n
i=1 ⊂ A, τi ≥ 0,

n∑
i=1

τ pi = 1}.

It is easy to check that τx ∈ cop(A) whenever τ ∈ (0, 1] and x ∈ A if p ∈ (0, 1).
If we have a p-convex and absorbent subset A in a vector space X, we define its
p-Minkowski functional as

pA(x) := inf {λp |λ > 0, x ∈ λA}.
The p-convexity of A implies that pA(x+y) ≤ pA(x)+pA(y) and pA(λx) = λppA(x)
for λ > 0. Moreover, if A is balanced as well, then pA is a p-seminorm in the
terminology of [15, p. 160]. The usual Minkowski functional is defined as usual:

qA(x) := inf {λ |λ > 0, x ∈ λA}
and we obviously have qA(x) = pA(x)1/p for every x ∈ X. The functional qA is a
quasinorm and we have that qA(x+ y) ≤ 2(1/p)−1(qA(x) + qA(y)).

We shall now study some fundamental properties of the functions whose epi-
graph is a p-convex set.
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Definition 2.2. A real function φ from a vector space X is said to be p-convex
(resp. to satisfy the p-property), for p ∈ (0, 1], if

φ(τx+ µy) ≤ τφ(x) + µφ(y) (resp. φ(τx+ µy) ≤ τ pφ(x) + µpφ(y))

whenever τ ≥ 0, µ ≥ 0 and τ p + µp = 1.

The following observations are easily checked :

• the epigraph of φ is p-convex if and only if φ is p-convex;
• the sum of non-negative p-convex functions is p-convex as well;
• if φ is convex and φ(0) = 0, then φ is p-convex for every p ∈ (0, 1];
• if φ is p-convex and non-negative, then φ(0) = 0 and φ satisfies the p-

property;
• If φ is p-convex for 0 < p < 1 and non-negative, then φ is q-convex for

any 0 < q ≤ p.

The following lemma will provide an idea of how the p-convex hull of some set
looks like specially when p is close to 0.

Lemma 2.3. Let (X, ‖·‖) be a normed space, A ⊂ BX and p ∈ (0, 1). Then

{λx | 0 < λ ≤ 1, x ∈ A} ⊆ cop(A)

and

cop(A) ⊆ {λx | 0 < λ ≤ 1, x ∈ A}+ B[0, p(1− p)1/p−1].

As a consequence, if A ⊂ X is closed and bounded, then⋂
p∈(0,1)

cop(A) = {λx | 0 < λ ≤ 1, x ∈ A}.

Proof. First note that if 0 < λ1 < λ2 and λ1x, λ2x ∈ cop(A), then λx ∈ cop(A) for
every λ ∈ [λ1, λ2]. Now, if x ∈ A then n1−1/px ∈ cop(A) for every n ∈ N because
n−1/px+ · · ·+n−1/px with n addends is a p-convex combination of elements from
A. The fact that limn→∞ n

1−1/p = 0 finishes the proof of the first set inclusion.
Any point of cop(A) is of the form τ1x1 + · · · + τnxn where x1, . . . , xn ∈ A,
τ1, . . . , τn ∈ [0, 1] and τ p1 + · · · + τ pn = 1. Suppose that τi = max{τ1, . . . , τn}. We
want to estimate the distance d = ‖τ1x1 + · · · + τnxn − τixi‖. Without loss of
generality, we may suppose that τ1 ≥ τ2 ≥ · · · ≥ τn, therefore

d = ‖τ2x2 + · · ·+ τnxn‖ ≤ τ2 + · · ·+ τn

It is easy to see that the maximum value of the term on the right-hand side is
attained when τ1 = τ2 = · · · = τk > τk+1 ≥ τk+2 = 0 for some k ∈ {1, . . . , n}.
Observe that k = τ−p1 (1− τ pk+1) and so

τ1 + τ2 + · · ·+ τn = kτ1 + τk+1 = τ 1−p
1 − τ 1−p

1 τ pk+1 + τk+1 ≤ τ 1−p
1 .

Therefore, we have τ2 + · · ·+ τn ≤ τ 1−p
1 − τ1. This last expression, as a function

of τ1 ∈ [0, 1], attains its maximum at τ1 = (1− p)1/p. An easy computation gives
us that d ≤ τ2 + · · ·+ τn ≤ p(1− p)1/p−1 as desired.
The consequence follows easily from these facts: {λx | 0 < λ ≤ 1, x ∈ A}∪{0} is
closed and limp→0+ p(1− p)1/p−1 = 0. �
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Finally, we shall show two inequalities and facts about functions which satisfy
the p-property that shall be needed.

Proposition 2.4. Suppose that φ satisfies the p-property for some p ∈ (0, 1],
then for every x, y ∈ X,

τ pµp(φ(x)− φ(y))2 ≤ τ pφ(x)2 + µpφ(y)2 − φ(τx+ µy)2

whenever τ p + µp = 1 and τ ≥ 0, µ ≥ 0.

Proof. We have

τ pφ(x)2 + µpφ(x)2 − φ(τx+ µy)2 ≥ τ pφ(x)2 + µpφ(x)2 − (τ pφ(x) + µpφ(y))2

= (τ p − τ 2p)φ(x)2 + (µp − µ2p)φ(y)2 − 2τ pµpφ(x)φ(y)

= τ p(1− τ p)φ(x)2 + µp(1− µp)φ(y)2 − 2τ pµpφ(x)φ(y) = τ pµp(φ(x)− φ(y))2.

�

Corollary 2.5. For a p-seminorm ‖·‖p on the vector space X we have

(‖x‖p − ‖y‖p)
2 ≤ 2‖x‖2

p + 2‖y‖2
p − ‖x+ y‖2

p.

Proof. A p-seminorm is a nonnegative function that satisfies the p-property to
which we apply the former lemma for τ = µ = (1/2)1/p. �

We follow with a p-version of fact II.2.3 of [3].

Proposition 2.6. (1) If ‖·‖p is a p-seminorm on X and xj, x ∈ X then the
following are equivalent:
(a) limj ‖xj‖p = ‖x‖p and limj

∥∥x+xj
21/p

∥∥
p

= ‖x‖p;
(b) limj(2‖x‖2

p + 2‖xj‖2
p − ‖x+ xj‖2

p) = 0

(2) If αn > 0, ‖·‖pn is a pn-seminorm on X for some sequence (pn) ⊆ (0, 1)
and

lim
j

(
2F 2(x) + 2F 2(xj)− F 2(x+ xj)

)
= 0,

where F 2(x) =
∑

n∈N αn‖x‖
2
pn

, then for every n ∈ N

lim
j

(2‖x‖2
pn

+ 2‖xj‖2
pn
− ‖x+ xj‖2

pn
) = 0.

Proof. Both can be derived from Corollary 2.5. �

We are now going to state a version of Proposition 2.1 in [25] for the p-convex
case. These distance functions will be an essential tool in our reasoning.

Proposition 2.7. Let X be a normed space and Z a norming subspace in the
dual space X∗. If C is a w∗-compact and p-convex subset of X∗∗, 0 < p ≤ 1, and
we define for x ∈ X

ϕ(x) := inf
c∗∗∈C

‖x− c∗∗‖Z
Then ϕ is a p-convex, σ(X,Z)-lower semicontinuous and 1-Lipschitz from X to
[0,+∞). We call such a function the Z-distance to the set C.
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Proof. The fact that C is p-convex implies that ϕ is a p-convex function. Indeed,
let us take x, y ∈ X and fix 0 ≤ τ, µ ≤ 1 with τ p + µp = 1, and ε > 0. If we
choose c∗∗x and c∗∗y such that

‖x− c∗∗x ‖Z ≤ ϕ(x) + ε and
∥∥y − c∗∗y ∥∥Z ≤ ϕ(y) + ε,

then ∥∥τx+ µy − (τc∗∗x + µc∗∗y )
∥∥
Z
≤ ‖τx− τc∗∗x ‖Z +

∥∥µy − µc∗∗y ∥∥Z
≤ τ(ϕ(x) + ε) + µ(ϕ(y) + ε) ≤ τϕ(x) + µϕ(y) + (τ + µ)ε ≤ τϕ(x) + µϕ(y) + ε

because τ + µ ≤ τ p + µp = 1. Since τc∗∗x + µc∗∗y ∈ C we have

ϕ(τx+ µy) ≤ τϕ(x) + µϕ(y) + ε

for every ε > 0 and 0 ≤ τ, µ ≤ 1 with τ p + µp = 1.
Let us prove the lower semicontinuity of ϕ. Fix r ≥ 0 and take a net {xα |α ∈ A}

in X with ϕ(xα) ≤ r for every α ∈ A and let x ∈ X be the σ(X,Z)-limit of the
net {xα |α ∈ A}. We will see that ϕ(x) ≤ r too. Firstly note that the net
{xα |α ∈ A} is necessarily bounded. Indeed, the triangular inequality implies
that ‖xα‖Z ≤ r+ supc∗∗∈C ‖c∗∗‖Z and of course supc∗∗∈C ‖c∗∗‖Z < +∞. Let us fix
an ε > 0 and choose c∗∗α ∈ C such that ‖xα − c∗∗α ‖ ≤ r+ ε for every α ∈ A. Since
C is w∗-compact we can find a cluster point (x∗∗, c∗∗) of the net {(xα, c∗∗α ) |α ∈ A}
in X∗∗×X∗∗ for the topology σ(X∗∗, X∗) on every factor, since {xα |α ∈ A} was
bounded. Then we have that x∗∗ does coincide with x when both linear function-
als are restricted to Z and thus for every f ∈ BX∗ ∩Z

f(x∗∗ − c∗∗) = f(x− c∗∗) ≤ r + ε

and so ϕ(x) ≤ r+ ε. Since the reasoning is valid for every ε > 0 we get ϕ(x) ≤ r
as required.

The Lipschitz condition follows from the triangle inequality of the seminorm

‖·‖Z onX∗∗. Indeed, for every x, y ∈ X and c∗∗ ∈ Cσ(X∗∗,X∗)
we have ‖x− c∗∗‖Z ≤

‖x− y‖Z + ‖y − c∗∗‖Z , thus ϕ(x) ≤ ‖x− y‖Z + ϕ(y). If we interchange x and y
we see that

|ϕ(x)− ϕ(y)| ≤ ‖x− y‖Z
which also implies 1-Lipschitz with respect to the norm of X as ‖ · ‖Z ≤ ‖ · ‖. �

Remark 2.8. Note that if B ⊂ X is σ(X,Z)-closed, then the Z-distance to the
weak∗-closure of B in X∗∗ is positive on X \B. Indeed, B is in particular weakly
closed, so if C ⊂ X∗∗ is the weak∗-closure of B, then B = C ∩X.

Looking for the “scalpel parameter” measuring a rigidity condition involved in
our renormings we introduce the following:

Definition 2.9. Let (X, ‖·‖) be a normed space, Z be a norming subspace in X∗

and 0 < p ≤ 1. A family B := {Bi | i ∈ I} of subsets in the normed space X is
said to be p-isolated for the σ(X,Z)-topology when for every i ∈ I

Bi ∩ cop
⋃
{Bj | j 6= i, j ∈ I}

σ(X,Z)

= ∅.
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Let us observe that by the Hahn-Banach theorem, the definition of 1-isolated
family corresponds to the notion of σ(X,Z)-slicely isolated, see [25]. We now
state the following interplay result describing this new concept as a biorthogonal
system of sets and p-convex functions:

Theorem 2.10. Let (X, ‖·‖) be a normed space and Z be a norming subspace in
X∗. Let B := {Bi | i ∈ I} be an uniformly bounded family of subsets of X. The
following are equivalent:

(1) The family B is p-isolated for the σ(X,Z)-topology;
(2) There exists a family

L := {ϕi : X → [0,+∞) | i ∈ I}
of p-convex and σ(X,Z) lower semicontinuous functions such that for
every i ∈ I

{x ∈ X |ϕi(x) > 0} ∩
⋃
j∈I

Bj = Bi.

(3) There exists a family

L := {ψi : X → [0,+∞) | i ∈ I}
of p-convex and σ(X,Z)-lower semicontinuous functions and numbers 0 ≤
α ≤ β such that for every i, j ∈ I

ψi(Bi) > β ≥ α ≥ ψi(Bj).

Proof. Let us assume that the family B is σ(X,Z) p-isolated. Applying Proposi-
tion 2.7 we may consider ϕi to be the Z-distance to

cop
⋃
{Bj : j 6= i, j ∈ I}

σ(X∗∗,X∗)

for every i ∈ I. Consider on X∗∗ the topology σ(X∗∗, Z). This topology is
not Hausdorff in general, but it is coarser than the topology generated by the
seminorm ‖ · ‖Z . In particular, the ‖ · ‖Z-distance to a σ(X∗∗, Z)-closed subset
of X∗∗ from outer points is strictly positive. Our hypothesis on the p-isolated
character of the family B tells us that when a point x belongs to the set Bi of
the family B, then there is a σ(X,Z)-open subset W 3 x such that

W ∩ cop
⋃
{Bj | j 6= i, j ∈ I} = ∅.

There is a σ(X∗∗, Z)-open set W̃ such that W = X ∩ W̃ . We have

cop
⋃
{Bj | j 6= i, j ∈ I} ⊂ X∗∗ \ W̃

and so

cop
⋃
{Bj | j 6= i, j ∈ I}

σ(X∗∗,X∗)

⊂ cop
⋃
{Bj | j 6= i, j ∈ I}

σ(X∗∗,Z)

⊂ X∗∗ \ W̃ .

After the previous considerations, that implies ϕi(x) > 0. Clearly we also have
ϕj(x) = 0 for every j ∈ I with j 6= i.

Condition (2) clearly implies (3) with α = β = 0.
Finally, if we assume (3), given a family L := {ψi : X → [0,+∞) | i ∈ I} of

p-convex and σ(X,Z)-lower semicontinuous functions such that the conditions in
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3 are satisfied we will have, by the p-convexity of the function ψi, that ψi(y) ≤ α
for every y ∈ cop

⋃
{Bj | j 6= i, j ∈ I} and also, by the lower semicontinuity of

ψi, for every y ∈ cop
⋃
{Bj | j 6= i, j ∈ I}

σ(X,Z)
. Therefore, for every i ∈ I and

x ∈ Bi we have x /∈ cop
⋃
{Bj | j 6= i, j ∈ I}

σ(X,Z)
and this finishes the proof of

the σ(X,Z)-p-isolated property of the family B. �

3. Construction of a Kadec F -norm

The following concept is a crucial one in the study of locally bounded topolog-
ical vector spaces, see [15, p. 159]:

Definition 3.1 (Quasinorm). A quasinorm in a vector space X is a function
q : X → [0,+∞) such that:

(1) x = 0 if, and only if, q(x) = 0;
(2) q(αx) = |α|q(x) for every α ∈ R and x ∈ X;
(3) there exists k ≥ 1 such that q(x+ y) ≤ k(q(x) + q(y)) for every x, y ∈ X.

We begin to deal first with the construction of a Kadec quasinorm from where
the F -norm will follow. Our approach is based on the network property that
characterizes descriptive Banach spaces, see theorems 1.2 and 1.5 in [7].

Let us summarize facts in the following:

Theorem 3.2 (Kadec quasi-renorming). Let (X, ‖·‖) be a normed space with an
1-norming subspace Z in X∗. Then the following conditions are equivalent:

(1) There is a sequence (An) of subsets of X such that for every ε > 0 and
x ∈ X there is some integer p together with a σ(X,Z)-open set W such
that x ∈ Ap ∩W and ‖·‖-diam(Ap ∩W ) < ε

(2) For every ε > 0 there is an equivalent σ(X,Z)-lower semicontinuous
quasinorm qε(·) on X such that
(a) (1− ε)‖x‖ ≤ qε(x) ≤ (1 + ε)‖x‖ for every x ∈ X.
(b) qε(x+ y) ≤ 1+ε

1−ε(qε(x) + qε(y)) for every x, y ∈ X
(c) σ(X,Z) coincides with the norm topology on the “unit sphere”

{x ∈ X : qε(x) = 1}.

(3) The normed space X is σ(X,Z)−descriptive; i.e. there are isolated fami-
lies for the σ(X,Z)-topology

{Bn |n = 1, 2, . . .}

in X such that for every x ∈ X and every ε > 0 there is n ∈ N and a set
B ∈ Bn with the property that x ∈ B and that ‖·‖- diam(B) < ε.

(4) There is a metric d on X generating a topology finer than the weak topology
on X and such that the identity map from (X, σ(X,Z)) into (X, d) is σ-
continuous.

(5) There exists a network N for the σ(X,X∗) topology that can be written
as a countable union of subfamilies, N =

⋃
n∈NN n, where each one of the

subfamilies N n is σ(X,F )-isolated.
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The former theorem is a strong reformulation of the conditions used by Raja
to construct a Kadec function F in every normed space X with countable cover
by sets of small local diameter. Our different approach here will permit the
construction of a Kadec F -norm as well as to show a precise connection between
metrization theory and Kadec renormability in next section. Our proof is based
on two fundamental lemmata. The first is a decomposition lemma and shows how
to decompose an isolated family of sets into countable many pn-isolated families;
the second one is a connection lemma between the existence of a p-isolated family
and the Kadec property.

Lemma 3.3 (Decomposition lemma). Let (X, ‖·‖) be a normed space, Z be a
norming subspace in X∗. Let B be a uniformly bounded and isolated family of
sets for the σ(X,Z) topology. Then for every B ∈ B we can write

B =
∞⋃
n=1

Bn

in such a way that, for every n ∈ N fixed, the family {Bn |B ∈ B} is σ(X,Z)-qn-
isolated for some qn ∈ (0, 1]. The sequence (qn) can be taken to be nonincreasing
and with limit 0.

Proof. Without loss of generality we may assume that Z is 1-norming, so the
closed balls B[0, r] are σ(X,Z)-closed for any radius r > 0. Given a neighborhood
W of the origin in the σ(X,Z)-topology let us define the width of W as:

wd(W ) := sup {δ > 0 |B(0, δ) ⊆ W}.
Without lose of generality we may assume that B is contained in the unit ball of
X. Set An,k := B[0, k

4n
] \B[0, k−1

4n
] and denote by U the family of all convex and

σ(X,Z)-open neighborhoods of the origin in X. The isolated family B for the
σ(X,Z)-topology can be decomposed as follows

B =
⋃
n∈N

⋃
k≤4n

Bn,k

where

Bn,k :=
{
x ∈ B ∩ An,k

∣∣ ∃W ∈ U ,wd(W ) > n−1, (x+W ) ∩B′ = ∅ ∀B′ ∈ B \ {B}
}
.

We will see that the family {Bn,k |B ∈ B} is q-isolated whenever q satisfies the
inequality

q(1− q)1/q−1 <
1

4n
which clearly implies the statement of the lemma after reindexing the sets. The
statement about the sequence (qn) can be derived from the fact that the term on
the left-hand side has limit 0 as q goes to 0. In order to show the q-isolatedness
of {Bn,k |B ∈ B}, fix a point x ∈ Bn,k. By the definition of the set there is a open
neighborhood of the origin W in the σ(X,Z)-topology, with B(0, 1/n) ⊆ W , and
(x+W ) ∩B′ = ∅ for every B′ ∈ B \ {B}. In particular we see that

(x+
1

4
W ) ∩ ((B′ + B(0,

3

4n
)) = ∅
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for every B′ ∈ B \ {B}. Now we claim that

((x+
1

4
W ) \B[0,

k − 1

4n
]) ∩ coq

⋃
{B′ ∩ An,k |B′ ∈ B \ {B}} = ∅

which implies the desired σ(X,Z)-q-isolatedness as the first set is a σ(X,Z)-open
neighborhood of x. Indeed, if suppose that y ∈ coq

⋃
{B′ ∩ An,k |B′ ∈ B \ {B}}.

Then, for some B′ ∈ B \{B} there are x′ ∈ B′ ∩An,k and λ ∈ [0, 1] such that y ∈
λx′+B[0, 1

4n
] by Lemma 2.3. Since y 6∈ B(0, k−1

4n
) we have λx′ 6∈ B[0, k−2

4n
]. Since

x′ ∈ An,k, we get ‖x′ − λx′‖ ≤ 2
4n

. Therefore y ∈ x′ + B(0, 3
4n

) ⊂ B′ + B(0, 3
4n

)

which is incompatible with y ∈ x+ 1
4
W . �

The following variant of Deville’s master lemma was proved, for sequences,
by Haydon (see Proposition 1.2 of [8]) to construct Kadec norms is spaces C(Υ)
where Υ is a tree. The following net version has been used in [2]; we will use it here
to describe the connection between Haydon’s approach and Stone’s discreteness:

Lemma 3.4 (see lemma 5.3 of [2]). Let X be a topological space, S be a set and
ϕs, ψs : X → [0,+∞) lower semicontinuous functions such that

sup
s∈S

(ϕs(x) + ψs(x)) < +∞

for every x ∈ X. Define

ϕ(x) = sup
s∈S

ϕs(x), θm(x) = sup
s∈S

(
ϕs(x) + 2−mψs(x)

)
, θ(x) =

∑
m∈N

2−mθm(x).

Assume further that {xσ}σ∈Σ is a net converging to x ∈ X and θ(xσ) → θ(x).
Then there exists a finer net {xγ}γ∈Γ and a net {iγ}γ∈Γ ⊆ S such that

lim
γ∈Γ

ϕiγ (xγ) = lim
γ∈Γ

ϕiγ (x) = lim
γ∈Γ

ϕ(xγ) = sup
s∈S

ϕs(x)

and

lim
γ∈Γ

(ψiγ (xγ)− ψiγ (x)) = 0.

We can now state the connection lemma between Haydon’s approach and
Stone’s discreteness in the following:

Theorem 3.5 (p-connection). Let (X, ‖·‖) be a normed space and Z be a norming
subspace in X∗. Let B := {Bi | i ∈ I} be an uniformly bounded and p-isolated
family of subsets of X for the σ(X,Z)-topology and some p ∈ (0, 1]. Then there is
an equivalent σ(X,Z)-lower semicontinuous quasinorm, with p-power a p-norm,
‖·‖B on X such that: for every net {xα |α ∈ A} and x in X with x ∈ Bi0 for
i0 ∈ I, the conditions σ(X,Z)- limα xα = x and limα ‖xα‖B = ‖x‖B imply that

(1) there exists α0 ∈ A such that xα is not in cop
⋃
{Bi | i 6= i0, i ∈ I}

σ(X,Z)

for α ≥ α0;
(2) for every positive δ there exists αδ ∈ A such that

x, xα ∈ (co (Bi0 ∪ {0}) + B(0, δ))
σ(X,Z)

whenever α ≥ αδ.
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Proof. Without loss of generality we may assume that Z is 1-norming. Let us fix
the index i ∈ I and define the function ϕi as the Z-distance to the set

cop
⋃
{Bj | j 6= i, j ∈ I}

σ(X∗∗,X∗)

.

Recall that ϕi is 1-Lipschitz, p-convex and σ(X,Z)-lower semicontinuous thanks
to Proposition 2.7. Let us set Di := co (Bi ∪ {0}), Dδ

i := Di + B(0, δ), where

B(0, δ) := {x ∈ X | ‖x‖Z < δ},

for every δ > 0 and i ∈ I. We shall denote by pδi the Minkowski functional of the

convex body Dδ
i

σ(X,Z)
which is obviously sublinear, Lipschitz and σ(X,Z)-lower

semicontinuous. Then, for x ∈ X we define the σ(X,Z)-lower semicontinuous
norms ψi with the formula

ψi(x) =
∑
n∈N

1

n2n
p

1/n
i (x)

for every x ∈ X. It is well defined and σ(X,Z)-lower semicontinuous. Indeed,

since B(0, δ) ⊂ Dδ
i

σ(X,Z)
we have for every x ∈ X, and δ > 0, that pδi (δx/‖x‖Z) ≤

1, thus δpδi (x) ≤ ‖x‖Z and hence the above series converge. Note that this also
gives that ψi is 1-Lipschitz. We are now in position to apply Lemma 3.4 to get
an equivalent quasinorm ‖·‖B on X such that the condition limα ‖xα‖B = ‖x‖B
together with σ(X,Z)- limα xα = x for a net {xα |α ∈ A} and x in X imply the
existence of a finer net {xβ}β∈B and a net (iβ)β∈B in I satisfying these conditions

(1) limβ ϕ(xβ) = limβ ϕiβ(x) = limβ ϕiβ(xβ) = supi∈I ϕi(x);
(2) limβ(ψiβ(xβ)− ψiβ(x)) = 0.

Indeed, using the definitions in Haydon’s Lemma 3.4 we introduce the functions:

θm(x) := sup
{
ϕi(x) + 2−mψi(x)

∣∣ i ∈ I};

θ(x) := ‖x‖Z +
∑
m∈N

2−m(θm(x) + θm(−x)).

Note that θm is p-convex, σ(X,Z)-lower semicontinuous and 2-Lipschitz. That
gives us that θ is a symmetric, p-convex, σ(X,Z)-lower semicontinuous and 5-
Lipschitz function such that limα θ(xα) = θ(x) together with σ(X,Z)- limα xα = x
imply the conditions 1 and 2 above by Haydon’s lemma. Since B is a uniformly
bounded family, the ‖·‖Z-1-Lipschitz functions {ϕi, ψi : i ∈ I} are uniformly
bounded on bounded sets, thus there is ρ > 0 such that BX ⊂ {x ∈ X | θ(x) ≤ ρ}

The Minkowski functional of the p-convex set

D := {x ∈ X | θ(x) ≤ ρ}

provide us with the quasinorm ‖·‖B we are looking for. Theorem 6.4.4, p.107
of[10] tells us that its p-power ‖·‖pB is uniformly continuous and so an equivalent
p-norm on X with

‖·‖B ≤ ‖·‖ ≤ ρ‖·‖B.
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Let us take a net {xα |α ∈ (A,�)} and x in X with ‖x‖B = 1 verifying that
limα ‖xα‖B = ‖x‖B and such that x is the σ(X,Z)-limit of the net (xα). We
claim that

lim
α
θ(xα) = ρ

Indeed, for every α ∈ A we can write xα = (1 + ηα)yα where 1 + ηα > 0 and
θ(yα) = ρ. Notice that limα∈A ηα = 0 since limα ‖xα‖B = ‖x‖B = 1 . Thus
limα ‖xα − yα‖ = limα ηα‖yα‖ = 0 by the boundness of D, and limα θ(xα) =
limα θ(yα) = ρ since θ is Lipschitz.

Our hypothesis on the p-isolated character of the family B gives us that

x /∈ cop
⋃
{Bi | i 6= i0, i ∈ I}

σ(X,Z)

whenever x ∈ Bi0 , and so ϕi0(x) > 0 but ϕi(x) = 0 for all i ∈ I with i 6= i0, see
Theorem 2.10.

From the condition 1 above there exists β0 such that iβ = i0 and ϕi0(xβ) > 0
for all β ≥ β0, from where the conclusion 1 of the theorem will follow. Moreover,
the condition 2 above implies that limβ(ψiβ(xβ)−ψiβ(x)) = 0, thus limβ ψi0(xβ) =
ψi0(x). Then we have

ψi0(x) =
∑
n∈N

1

n2n
p

1/n
i0

(x) ≤
∑
n∈N

1

n2n
lim inf

β
p

1/n
i0

(xβ) ≤ lim inf
β

∑
n∈N

1

n2n
p

1/n
i0

(xβ)

= lim
β

∑
n∈N

1

n2n
p

1/n
i0

(xβ) = lim
β
ψi0(xβ) = ψi0(x) =

∑
n∈N

1

n2n
p

1/n
i0

(x)

where the first inequality comes from the lower semicontinuity and the second
one is just Fatou’s Lemma for positive series. It now follows for every positive
integer n

lim inf
β

p
1/n
i0

(xβ) = p
1/n
i0

(x).

If we fix a positive number δ and we set the integer q such that 1/q < δ, since

x ∈ D
1/q
i0

we have that p
1/q
i0

(x) < 1 because D
1/q
i0

is norm open and therefore,

for every β ∈ B there is γβ ≥ β such that p
1/q
i0

(xγβ) < 1, thus xγβ ∈ Dδ
i0

σ(X,Z)
,

and indeed xγβ ∈ (co(Bi0 ∪ {0}) + B(0, δ))
σ(X,Z)

. The proof is over since our
reasoning is valid for any subnet of the original one {xα |α ∈ A}. �

Remark 3.6. The following observations will be useful.

(1) For every α > 1 it is possible to construct the former quasinorm ‖·‖B such
that:

‖x‖Z ≤ ‖x‖B ≤
4 + α

α
‖x‖Z

for every x ∈ X.
(2) If ε ∈ (0, 1) is fixed, we can select α > 1 large enough, then we see that

‖·‖Z ≤ ‖·‖B ≤ (1 + ε)‖·‖Z .
Consequently the quasinorm constructed verifies:

‖x+ y‖B ≤ (1 + ε)(‖x‖B + ‖y‖B)
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for all x, y ∈ X.

Proof. Only (1) needs some explanation. Recall that θ is 5-Lipschitz with respect
to ‖·‖Z . That clearly implies θ(x) ≤ 5 whenever ‖x‖Z ≤ 1. Consider the function

θα(x) := θ(x) + (α− 1)‖x‖Z
which can be understood as a modification on the very definition of θ using α‖·‖
instead of ‖·‖. We have θα(x) ≤ 4 + α if ‖x‖Z ≤ 1, and θα(x) ≤ 4 + α implies
that ‖x‖Z ≤

4+α
α

. Consider the set

Dα = {x ∈ X | θα(x) ≤ 4 + α}.
The previous inequalities implies that

BX ⊂ Dα ⊂ 4 + α

α
BX .

Let ‖·‖B,α be the Minkowski functional of α
4+α

Dα. Then ‖·‖B,α has all the prop-

erties of ‖·‖B and, moreover,

‖·‖Z ≤ ‖·‖B,α ≤
4 + α

α
‖·‖Z

as we wanted. �

We are able now to prove Theorem 3.2.

Proof of Theorem 3.2. We will prove the equivalence of all the statements.

(3) ⇒ (2) The decomposition Lemma 3.3 says that we have a decomposition of
the sets in the family Bn obtaining families Bmn , m = 1, 2, . . . , with Bmn being
qn,m-isolated for all m,n = 1, 2, . . .. Therefore it is not a restriction to renumber
the sequence and to assume that the given family Bn is already pn-isolated for
n = 1, 2, . . . . We can now consider the equivalent quasinorms ‖·‖Bn constructed
using the p-connection Theorem 3.5 for every one of the families Bn. We shall
define now an equivalent quasinorm on X with the expression:

9x9 :=
∑
n∈N

cn‖x‖Bn

for every x ∈ X, where the sequence (cn)n∈N is chosen accordingly for the con-
vergence of the series. That is possible since we may, and do assume, that the
following inequality holds

(1− δ)‖x‖Z ≤ ‖x‖Bn ≤ (1 + δ)‖x‖Z
for fixed δ > 0, for all n ∈ N, after Remark 3.6.

Let us start by proving the Kadec property. Take a net {xα |α ∈ (A,�)} and
x with

lim
α∈A

9xα9 = 9x 9 and σ(X,Z)− lim
α∈A

xα = x.

Then we CLAIM:
lim
α∈A
‖xα‖Bq = ‖x‖Bq

for every positive integer q.
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Indeed, by the σ(X,Z)-lower semicontinuity of the quasinorms ‖·‖Bq , the series
definition gives that ∑

n∈N

cn‖x‖Bn ≤
∑
n∈N

lim inf
α∈A

cn‖xα‖Bn

≤ lim inf
α∈A

∑
n∈N

cn‖xα‖Bn = lim
α∈A

∑
n∈N

cn‖xα‖Bn =
∑
n∈N

cn‖x‖Bn

and then

lim inf
α∈A

‖xα‖Bq = ‖x‖Bq
for every q ∈ N. Since this argument can be performed for every subnet, we easily
see that limα∈A ‖xα‖Bq exists and thus our claim is proved.

Now, given ε > 0 let us consider the positive integer q such that for some
B ∈ Bq we have x ∈ B and ‖·‖- diam(B) < ε/2. Theorem 3.5 tells us that there
is some αε/2 such that

xα ∈ co(B ∪ {0}) + B(0, ε/2)
σ(X,Z)

whenever α � αε/2. We have that ‖·‖- dist(xα, Ix) ≤ ε for α � αε/2 where Ix
is the segment joining x with the origin, and so there are numbers r(α,ε) ∈ [0, 1]
such that ∥∥xα − r(α,ε)x

∥∥ ≤ ε

for every α � αε/2. Now we consider the directed set A×(0, 1] with the product or-
der where in the interval (0, 1] we consider the order of ε decreasing to 0. Then we
can consider the subset D :=

{
(α, ε) ∈ A× (0, 1]

∣∣α � αε/2
}

which is a directed

set with the induced order. Then for the net of numbers
{
r(α,ε)

∣∣ (α, ε) ∈ D} there
is a subnet map σ : B → D, for some directed set (B,�), such that r := limβ rσ(β)

exists by the compactness of the unit interval [0, 1]. Let us denote with σ the
composition of the map σ with the projection from A× (0, 1] onto A, which is a
subnet map too, and we have:

‖·‖- lim
β∈B

xσ(β) = rx.

The hypothesis limα∈A 9xα9 = 9x9 together the norm continuity of the quasi-
norm tells us that 9rx9 = 9x9 6= 0 and so r = 1, which means that the proof
is over because the former reasoning is valid for every subnet of the given net.
Then

‖·‖- lim
α∈A

xα = x.

Moreover

‖x+ y‖Bn ≤
1 + δ

1− δ
(
‖x‖Bn + ‖y‖Bn

)
we see that

9x+ y9 ≤ 1 + δ

1− δ
(9x 9 + 9 y9)

and we have constructed the required quasinorm qδ(·) := 9 · 9.
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(2)⇒ (4) Proposition 2.46 in [21] can be applied to the identity map on X and the
radial set

{
x ∈ X

∣∣ q1/2(x) = 1
}

to get the fact that id : (X, σ(X,Z))→ (X, ‖·‖)
is σ-continuous.

(4)⇒ (3) The identity map from (X, d) to (X, ‖·‖) is σ-continuous. Indeed, any
d-convergent sequence is weakly convergent, so its limit must be in the closed
convex hull of the sequence and therefore the hypothesis of Corollary 2.20 of [21]
are satisfied, what gives us the σ-continuity. The identity map from (X, σ(X,Z))
to (X, ‖·‖) is σ-continuous as well by the transitive property [21, Corollary 2.41].
Now we apply Proposition 2.7 from [21] to get our conclusion.

(3)⇔ (1) Propositions 2.7 and 2.38 in [21] show the equivalence.

(4) ⇒ (5) The use of Stone’s Theorem will give the proof. Indeed, as described
in Proposition 2.7 of [21], our hypothesis implies we will have σ(X,Z)-isolated
families Nm for m = 1, 2, . . . such that, for every x ∈ X and every ε > 0 there
is some integer p and some set N ∈ Np such that x ∈ N ⊂ Bd(x, ε). Such se-
quence of families provides a network for the d-topology and thus a network for
any coarser topology, and in particular for the weak topology.

(5)⇒ (4) For every n ∈ N let us define, for (x, y) ∈ X×X, ρn(x, y) = 0 if both x
and y belongs to the same set of Nn, and ρn(x, y) = 1 otherwise. It follows that
ρn is a semi-metric on X. We now define

ρ(x, y) :=
∞∑
n=1

1

2n
ρn(x, y),

for all (x, y) ∈ X × X, which provides us a metric on X generating a topology
finer than the weak topology and such that the identity map from (X, σ(X,Z))
into (X, ρ) is σ-continuous. Indeed, the family of finite intersections of sets in
N is a basis for the ρ-topology which is σ-isolated in the topology σ(X,Z).
Proposition 2.7 in [21] concludes that the identity map from (X, σ(X,Z)) into
(X, ρ) is σ-continuous. �

Now we can prove first two equivalences in our main Theorem 1.2:

Corollary 3.7. Let (X, ‖·‖) be a normed space with a norming subspace Z in
X∗. Then the following conditions are equivalent:

(1) There is a norm equivalent σ(X,Z)-lower semicontinuous and σ(X,Z)-
Kadec F-norm ‖ · ‖0 on X, i.e. an F-norm ‖ · ‖0 such that the σ(X,Z)
and norm topologies coincide on the unit “sphere” {x ∈ X | ‖x‖0 = 1}, and
such that the topology determined by the F-norm ‖·‖0 on X coincides with
the topology of the norm ‖·‖

(2) There are isolated families Bn for the σ(X,Z)-topology, n = 1, 2, · · · such
that for every x ∈ X and every ε > 0 there is n ∈ N and a set B ∈ Bn
with the property that x ∈ B and that ‖·‖- diam(B) < ε.
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Proof. Statement (2) here corresponds with (3) in Theorem 3.2. Observe that
if we had taken the pn-norm ‖·‖pnBn instead of the quasinorm ‖·‖Bn in the proof
(3)⇒ (2) above , then the function

‖x‖0 :=
∑
n∈N

an‖x‖pnBn

where an are again chosen accordingly for the uniform convergence of the series on
bounded sets, would be a norm equivalent σ(X,Z)-lower semicontinouos Kadec
F-norm and the proof (2)⇒ (1) follows. Indeed, properties of F -norm are derived
by the ones of the p-norms together with the uniform convergence of the series
on bounded sets. For the reverse implication take Aq := {x ∈ X | ‖x‖0 ≤ q}
for every positive rational number q. It follows that this countable family of
subsets of X satisfies statement (1) of Theorem 3.2 because limα ‖xα‖0 = ‖x‖0

and σ(X,Z)−limα xα = x implies that ‖·‖−limα xα = x for any net {xα : α ∈ A}.
Indeed, it now follows that given x ∈ X and ε > 0, there are rational numbers
q1 < ‖x‖0 < q2 and some σ(X,Z)-neighborhood of the origin W such that, the
set {y ∈ Aq2 ∩ (x + W ) : ‖y‖0 > q1} is a relatively σ(X,Z)-open subset of Aq2
containing x with norm diameter at most ε. �

Remark 3.8. Note that we have an alternative argument to Lemma 1.3 of the In-
troduction leading to uniform continuity. Indeed, both F -norms and quasinorms
are norm uniformly continuous functions, as any F -norm is a Lipschitz function
as well as the quasinorms constructed in Theorem 3.4.

4. Kadec meets Bing-Nagata-Smirnov-Stone

Acording to Corollary 3.7 we have proved the equivalence between the existence
of a Kadec F -norm and the existence of a network for the norm topology which
is σ-isolated for the weak topology. What we add in this Section is that it
is always possible to do it with a σ-discrete basis B =

⋃∞
n=1 Bn of the norm

topology such that every family Bn is isolated in the weak topology, thus proving
the equivalence (1) ⇔ (2) ⇔ (3) of our main Theorem 1.2. This result links
Stone’s Theorem 4.4.1, Nagata-Smirnov metrization Theorem 4.4.7 and Bing’s
metrization Theorem 4.4.8 in p.349–353 of [16] with the norm topology of a
normed space with Kadec F -norm.

Let us begin with the following fattening lemma. Our Theorem 2.10 gives the
tool for the proof. It follows the same arguments as the convex case done in
Proposition 2.4 of [25]. We include the proof for completeness.

Lemma 4.1. Let X be a normed space with a norming subspace Z ⊆ X∗. Given
a uniformly bounded and σ(X,Z)-p-isolated family A := {Ai | i ∈ I} of subsets in
X there exist decompositions Ai =

⋃
n∈NA

n
i with

A1
i ⊆ A2

i ⊆ · · · ⊆ Ani ⊆ An+1
i ⊆ · · · ⊆ Ai

for every i ∈ I and such that the families{
Ani + B‖·‖Z (0, 1/4n)

∣∣ i ∈ I}
are σ(X,Z)-p-isolated and norm discrete for every n ∈ N.
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Proof. Without loss of generality we may assume that Z is 1-norming. Let us

denote by ϕi the Z-distance to the set cop
⋃
{Aj | j 6= i}

σ(X∗∗,X∗)
. Theorem 2.10

gives us the scalpel to split up the sets of the family using these p-convex functions.
Indeed, let us define Ani := {x ∈ Ai |ϕi(x) > 1/n} and we have Ai =

⋃
n∈NA

n
i .

Recall that ϕi is 1-Lipschitz, therefore if x ∈ Ani + BZ(0, 1/4n) then we have
ϕi(x) > 3/4n. On the other hand, if x ∈ Anj + BZ(0, 1/4n) with j 6= i then
ϕi(x) ≤ 1/4n again by the Lipschitz property. This means that the family{

Ani + B‖·‖Z (0, 1/4n)
}
i∈I

verifies the condition (3) of Theorem 2.10 with the functions (ϕi)i∈I and constants
α = 1/4n, β = 3/4n. Thus it is σ(X,Z)-p isolated as we wanted to prove.
Moreover, the former family is discrete for the norm topology. In order to see
that, fix δ ∈ (0, 1/4n). Then for any z ∈ X we have that

B‖·‖Z (z, δ) ∩
⋃
i∈I

{
Ani + B‖·‖Z (0, 1/4n)

}
has non empty intersection with at most one member of the family, otherwise we
will easily arrive to a contradiction with the 1-Lipschitz property of the functions
(ϕi)i∈I . Indeed, if x ∈ Ani + BZ(0, 1/4n) and y ∈ Anj + BZ(0, 1/4n) with i 6= j
then ϕi(x) ≤ 1/4n and ϕi(y) ≥ 3/4n. If x, y ∈ B‖·‖Z (z, δ), then we would have
ϕi(y)− ϕi(x) ≥ 1/2n > 2δ ≥ ‖y − x‖Z , which is a contradiction. �

Now we can prove the following

Proposition 4.2. Let X be a normed space and Z a norming subspace in the dual
space X∗. Let us assume the space X admits an equivalent σ(X,Z)-lower semi-
continuous and σ(X,Z)-Kadec F -norm (or quasinorm). Then the norm topology
admits a network

N =
⋃
n∈N

N n

where each one of the families N n is σ(X,Z)-pn-isolated, for some pn ∈ (0, 1], and
it consists of sets which are difference of a σ(X,Z)-closed set and a σ(X,Z)-closed
pn-convex subset of X. Moreover, there is δn ↘ 0 such that N n + B‖·‖Z (0, δn) is
norm discrete and σ(X,Z)-isolated for every n ∈ N.

Proof. By Theorem 3.2 we have network M =
⋃
n∈NMn of the norm topology

such that every one of the families Mr := {Mr,i | i ∈ Ir} are σ(X,Z)-isolated.
The decomposition Lemma 3.3 provide us with a decomposition of the sets in
the family Mr producing families Mn

r , n = 1, 2, . . . with Mn
r being qr,n-isolated

for all r, n = 1, 2, . . .. We see that it is not a restriction to renumber sequences
and assume that the given family Mr is already pr-isolated for r = 1, 2, . . . and
0 < pr ≤ 1. Let us perform another decomposition as follows:

Denote by ϕr,i the Z-distance to

copr {Mr,j | j 6= i, j ∈ Ir}
σ(X∗∗,X∗)

and define

Nn
r,i :=

{
x ∈Mr,i

σ(X,Z)
∣∣∣∣ϕr,i(x) >

3

4n

}
.
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The fact that each one of the families N n
r :=

{
Nn
r,i

∣∣ i ∈ Ir} is σ(X,Z)-pr-isolated
follows from Theorem 2.10. Indeed, the pr-convexity of the functions ϕr,i tell
us that ϕr,j(y) = 0 for every y ∈ copr(Mr,i) and j 6= i, j ∈ Ir. The lower

semicontinuity finally gives us ϕr,j(y) = 0 for every y ∈ Mr,i
σ(X,Z)

. Moreover,

each one of the sets Nn
r,i is the difference of the σ(X,Z)-closed set Mr,i

σ(X,Z)
and

the σ(X;Z)-closed and pr-convex set {x ∈ X |ϕr,i(x) ≤ 3/4n}.
We claim that

⋃
r,n∈NN

n
r is the network we are looking for. Indeed, given

x ∈ X there is r ∈ N and i ∈ Ir such that x ∈ Mr,i ⊆ x + BZ(0, ε). Then for
n ∈ N big enough we have

x ∈ Nn
r,i ⊂Mr,i

σ(X,Z) ⊆ x+ BZ [0, ε] (4.1)

since x + BZ [0, ε] is σ(X,Z)-closed set. Moreover, as the function ϕr,i is 1-
Lipschitz, we have here that ϕr,i(z) > 3/4n − µ whenever z ∈ Nn

r,i + BZ(0, µ);
and ϕr,i(z) ≤ µ whenever z ∈ Nn

r,j + BZ(0, µ) with j 6= i, j ∈ Ir. Let us choose
δn such that 0 < 2δn < 3/4n − δn, then we have that the sets in the family{
Nn
r,i + BZ(0, δn)

∣∣ i ∈ Ir} are disjoint norm open sets and they form a norm
discrete and σ(X,Z)-pr-isolated family by Theorem 2.10 again. �

We are now able to complete proof of equivalences in our main Theorem 1.2:

Proof of (1)⇔ (2)⇔ (3) in Theorem 1.2. From the network constructed in the
previous proposition we continue with the same notations and observe that when
we add open balls of small radius the network provided above will become the
basis of the norm topology we are looking for in statement (3) of Theorem 1.2.
Indeed, we complete inclusion (4.1) arguing that

x ∈ Nn
r,i + BZ(0, δn) ⊂Mr,i

σ(X,Z)
+ BZ(0, δn) ⊆ x+ BZ(0, 2ε)

if we take the integer n large enough. So the family⋃
n,r∈N

{
Nn
r,i + BZ(0, δn)

∣∣ i ∈ Ir}
is a basis of the norm topology with the required properties. The converse follows
from statement (3) in Theorem 3.2 �

5. Some Applications for C (K) spaces

Let us recall the following definition related to descriptiveness (see [11]):

Definition 5.1. Let (X, τ) be a topological space and let d be a metric on X.
It is said that X has countable cover by sets of small local diameter (d-SLD, for
short) if for every ε > 0 there exists a decomposition

X =
⋃
n∈N

Xε
n

such that for each n ∈ N every point of Xε
n has a relatively non-empty τ neigh-

borhood of d-diameter less than ε.
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In other words (X, τ) has d-SLD if, and only if the identity map from (X, τ)
into (X, d) is σ-continuous. If (X, τ) is of the kind C p(K) or a Banach space
endowed with its weak topology, then X has ‖·‖-SLD if and only if the normed
space X is τ -descriptive, see [24] and Chapter 3 in[21].

In the paper [9] it is shown that for every compact totally ordered space K
the space C (K) has a pointwise-Kadec renorming. For an arbitrary product of
compact linearly ordered spaces the same is true by [2]. Lexicographic products
provide a wide class of examples of compact spaces K such that C(K) has a
pointwise Kadec equivalent norm but not equivalent LUR norm. It is unknown
whether the existence of a pointwise-Kadec renorming for each of C (K) and
C (L) implies the existence of such a renorming for C (K×L). If L belongs to the
class of spaces obtained by closing the class of compact metrizable spaces under
inverse limits of transfinite continuous sequences of retractions, then C (K × L)
has a pointwise-Kadec renorming was a main result in [2]. Ribarska and Babev
have proved in [29] that the function space C (K × L) has an equivalent LUR
norm provided that both C (K) and C (L) are LUR renormable. An analogous
result holds for LUR norms which are pointwise lower semicontinuous. The main
result in [30] is the following:

Theorem 5.2. If K and L are Hausdorff compacta such that C p(K) admits a
pointwise Kadec norm and C p(L) has ‖·‖-SLD, then C p(K × L) has ‖·‖-SLD.

Actually Ribarska observed that the theorem is possible to be proved with
the following hypothesis, instead of the existence of a pointwise Kadec norm:
there exists a nonnegative, homogeneous, norm continuous and pointwise lower
semicontinuous function F on C p(K) with ‖h‖ ≤ F (h) ≤ 2‖h‖, whenever h ∈
C (K) and such that the norm and the pointwise topology coincide on the set
S = {h ∈ C (K) |F (h) = 1}. Using Lemma 1.3 or Remark 3.8 for Theorem 3.2
we arrive to the following result:

Theorem 5.3. If K and L are Hausdorff compacta such that both C p(K) and
C p(L) have ‖·‖-SLD, then C p(K × L) has ‖·‖-SLD.

We shall continue proving more permanence results for the class of compact
Hausdorff spaces K such that C p(K) has ‖·‖-SLD. In that context, Theorem 5.3
is the starting point. Similar results are going to be valid for the class of com-
pact Hausdorff spaces K such that C (K) has an equivalent LUR norm. Thus
by property (R) we shall denote one of the following three properties: “having
‖·‖-SLD with the pointwise topology”, “having an equivalent LUR norm” or
“having an equivalent pointwise lower semicontinuous LUR norm”. The follow-
ing generalizes Corollary 8 of [18]:

Theorem 5.4. Let K be a compact space and let Kn ⊆ K be compact subsets such
that every space C (Kn) has the property (R). If there is a lower semicontinuous
metric d on K such that

K =
⋃
n∈N

Kn

d

,

then C (K) has the property (R).
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Proof. We shall prove the result when the property (R) is the LUR renormability
of the space and we shall give hints to modify the proof for the other properties.
Let ‖·‖n an equivalent LUR norm on C (Kn) bounded by the supremum norm.
For every n ∈ N define

On(f) = sup

{
|f(x)− f(y)|

∣∣∣∣x, y ∈ K, d(x, y) ≤ 1

n

}
and consider the equivalent norm 9 · 9 on C (K) defined by the formula

9f92 = ‖f‖2 +
∑
n∈N

2−n
∥∥f|Kn∥∥2

n
+
∑
n∈N

2−nOn(f)2.

If we prove that 9 ·9 is a w-LUR norm, then the result will follow from [19]. To
see that, suppose that 9fk9 = 9f9 and limk 9fk + f9 = 2 9 f9. A standard
convexity argument [3, Fact II.2.3] gives us that (fk) converges to f uniformly on
every Kn. We claim that (fk(x)) converges to f(x) for every x ∈ X. Fix ε > 0
and take n big enough to have On(f) < ε/3 (this is possible because continuous
functions on K are d-uniformly continuous by the lower semicontinuity of the
metric d over K, see the proof of [27, Theorem 4]). Now take y ∈

⋃
m∈NKm such

that d(x, y) < 1/n. If k is big enough, then On(fk) < ε/3 and |fk(y)− f(y)| <
ε/3. We have that

|fk(x)− f(x)| ≤ |fk(x)− fk(y)|+ |fk(y)− f(y)|+ |f(y)− f(x)| < ε

and this end the proof of the claim. Thus we have that (fk) converges to f weakly
by Lebesgue’s theorem and 9 · 9 is w-LUR .

For tp-lower semicontinuous LUR renormability, the proof is the same if we
notice that the norm 9 · 9 built above is tp-lower semicontinuous. For ‖·‖-SLD
consider the formula

Φ(f) =
∑
n∈N

2−nϕn(f|Kn ) +
∑
n∈N

2−nOn(f)

where ϕn are Kadec functions on C (Kn). The convexity argument above con be
replaced by an argument of lower semicontinuity in order to obtain that Φ is a
Kadec function on C (K). �

Corollary 5.5. Let K be a norm fragmented w∗-compact subset of X∗ and H =

co(K)
w∗

. If C (K) has the property (R), then C (H) also has the property (R).

Proof. First notice that if K is a norm fragmented w∗-compact subset of X∗ then

co(K)
w∗

= co(K)
‖·‖

by a result of Namioka [23]. Also notice that if L is a compact Hausdorff space
such that C (L) has the property (R), then C (L′) has the property (R) for any
compact L′ which is continuous image of L. Let Kn be the set of convex com-
binations of at most n points of K. It is easy to see that Kn is compact and
continuous image of L = ∆×Kn, where

∆ =

{
(λi)

n
i=1

∣∣∣∣∣λi ≥ 0,
n∑
i=1

λi = 1

}
.
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By Ribarska’s result C (L) has the property (R), and so C (Kn) does also. Now

we have that H =
⋃
n∈NKn and the result follows from proposition 5.4. �

Under the hypothesis of the previous corollary the LUR norm can be made
pointwise lower semicontinuous always. Indeed, for a Radon-Nikodým compact
K the space C (K) has an equivalent pointwise lower semicontinuous norm such
that pointwise and weak topologies coincide on the unit sphere by [27, Theorem
4]. Then it is possible to apply [28, Theorem A].

6. Open problems

In relation with descriptive properties let us remind that for a descriptive Ba-
nach space the family of weak Borel sets coincides with the norm Borel sets,
[7, 24]. Based on a sophisticated construction of Todorcevic [31], Marciszewki
and Pol have proved that it is consistent the existence of a compact scattered
space K such that in the function space C (K) each norm open set is an Fσ-set
with respect to the weak topology but the identity map

Id : (C (K), w)→ (C (K), ‖·‖∞)

is not σ-continuous, see [17]. Descriptive Banach spaces are weakly Čech analytic
and coincide with the ones that can be represented with a Souslin scheme of Borel
subsets in their σ(X∗∗, X∗) biduals. The fact that every weakly Čech analytic
Banach space is σ-fragmented is the main result in [13]. The reverse implications
are open questions considered in [11, 12], and we recall here the following:

Problem 6.1. Is there any gap between the classes of descriptive Banach spaces
and that of σ-fragmented Banach spaces?

After the seminal paper of R. Hansell [7] we know that a covering property on
the weak topology of a Banach space, known as hereditarely weakly θ-refinability,
is a necessary and sufficient condition for the coincidence of both classes. Indeed,
all known examples of normed spaces which are not weakly θ-refinable are not σ-
fragmentable by the norm, see [4, 5]. For spaces of continuous functions on trees
Haydon has proved that there is no gap between σ-fragmented and the pointwise
Kadec renormability property of the space, see [8]. We can consider a particular
case of the former question as follows:

Problem 6.2. Let X be a weakly Čech analytic Banach space where every norm
open set is a countable union of sets which are differences of closed sets for the
weak topology. Does it follow that the identity map Id : (X,w) → (X, ‖·‖) is
σ-continuous?

In the particular case of a Banach space X with the Radon-Nikodým property
it is still an open problem to decide if X has even an equivalent strictly convex
norm. In that case the LUR renormability reduces to the question of Kadec
renormability by our results in [20]. So we summarize here:

Problem 6.3. If the Banach space X has the Radon-Nikodým property, does it
follow that X has an equivalent Kadec norm? Does it have an equivalent strictly
convex norm?
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Let us remark here that a result of D. Yost and A. Plicko [26] shows that the
Radon-Nikodým property does not imply the separable complementation prop-
erty. Thus it is not possible any approach to the former question based on the
projectional resolution of the identity which works for the dual case, as in [6].
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Parco Area delle Scienze 53/A, 43124 Parma, Italy.

E-mail address: simone.ferrari1@unipr.it
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