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Abstract

Let K be an uncountable metric compact space. It is well known that C(K)
is isometrically universal for the separable Banach spaces, but the continuous
functions that compose the isometric image of finite dimensional spaces are
typically far from being Lipschitz. We prove that the possibility of embedding
Euclidean spaces Rn ↪→ C(K) in such a way that the image in C(K) is
made of Lipschitz functions is tightly related to the dimension (topological
or Hausdorff) of K.

Keywords: Lipschitz map, metric space, Lipschitz manifold, Universal
Banach space.
2010 MSC: 26A16, 54C30, 54C50, 54E40.

1. Introduction

Throughout the paper all the Banach spaces considered are real. We
shall denote by K a compact Hausdorff space, and C(K) will be the Banach
space of real continuous functions defined on K endowed with the supremum
norm. The real unit interval is denoted by I. We shall consider I and its
finite powers with the Euclidean distance. As usual, if X is a Banach space
we shall denote by BX its closed unit ball, and by SX its unit sphere. For
any unexplained concepts or notations about Banach spaces we address the
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reader to [6] or [17].

A classical result of Banach and Mazur [6, Theorem 5.8] says that C(I) is
isometrically universal for the class of separable Banach spaces. In particular,
the Euclidean spaces (Rn, ‖ · ‖2) can be found isometrically as subsets of
functions defined on I. For n = 2 an isometric embedding J : R2 → C(I)
can be written explicitly as J(x1, x2)(t) = x1 cos(πt) + x2 sin(πt), using C∞

functions. As we see later, an isometric embedding of R3 cannot be written
explicitly using such simple functions. In fact, Peano curves are needed as
was first noticed in 1957 by Donoghue [4]. However, R3 is isometrically
embedded into C(I2) by means of the formula

J(x1, x2, x3)(t, s) = x1 cos(πt) cos(πs) + x2 sin(πt) cos(πs) + x3 sin(πs).

We will see that the possibility of finding an “easy formula” for an isometric
embedding of Rn into C(K) is related to the dimension of K.

If K1 and K2 are uncountable metrizable compacta, then C(K1) and
C(K2) are isomorphic by Milutin’s theorem [17, III.D.19]. These Banach
spaces cannot be isometric unless K1 and K2 are homeomorphic. On the
other hand, C(K1) and C(K2) are universal spaces for the class of separable
spaces in the isometric category. In particular C(K1) contains an isometric
copy of C(K2) and vice versa. In particular, that means that it is not possi-
ble to distinguish between K1 and K2 by isometric embeddings of test spaces.

Our idea is to relate properties of a compact K to the existence of iso-
metric embeddings J : X → C(K) of finite dimensional linear spaces X such
that the set J(X) is composed of “nice” functions. Here nice will mean Lips-
chitz at least, and the requirement of finite dimension is necessary. Indeed, it
is easy to see that if the isometric embedding J(X) is composed of Lipschitz
functions, then X must be of finite dimension (Proposition 2.1). The next
result shows the relation between K and the existence of nice embeddings of
the Euclidean spaces.

Theorem 1.1. Let (K, d) be an uncountable metric compact space and n ∈
N. The following are equivalent:

(i) There is an onto Lipschitz mapping φ : K → In.
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(ii) C(K) contains an isometric copy of any (n + 1)-dimensional Banach
space made of Lipschitz functions.

(iii) C(K) contains an isometric copy of the Euclidean space (Rn+1, ‖ · ‖2)
made of Lipschitz functions.

Moreover, if K is a Lipschitz manifold, then statements (i), (ii) and (iii) are
also equivalent to

(iv) The dimension of K is at least n.

We follow [12] for the definition of Lipschitz manifold (with boundary).
A separable metric space is called a Lipschitz manifold (of dimension n) if
every point has a closed neighborhood which is Lipschitz homeomorphic to
In, that is, there is a Lipschitz bijective mapping whose inverse is Lipschitz
too. We may apply our result as well to topological manifolds. Indeed, Sul-
livan [15] proved that n-dimensional topological manifolds have a Lipschitz
structure for n 6= 4. Nevertheless, a fixed metric on K is needed since topo-
logically equivalent metrics on K are in general not Lipschitz equivalent. If
K is neither a topological or a Lipschitz manifold, we may still obtain in-
formation about K from the previous result using the Hausdorff dimension.
Indeed, statement (i) clearly implies that the Hausdorff dimension of K is
greater or equal than n (see [7, Corollary 2.4]). On the other hand, a recent
result of Keleti, Máthé and Zindulka [9] says that if the Hausdorff dimension
of K is strictly greater than n, then statement (i) holds. Unfortunately, the
existence of a Lipschitz mapping onto a cube does not characterize the Haus-
dorff dimension as showed by the example constructed by Vitušhkin, Ivanov
and Melnikov [16]. If K is ultrametric, then statement (i) implies that the
Hausdorff dimension is at least n by another result of [9]. In the following,
dimH(K) will denote the Hausdorff dimension of K.

The smooth embedding of a smooth compact manifold into some RN

(see e.g. [11, Theorem 3.21]) induces on it a metric and a structure of a
Lipschitz manifold. This structure is unique because two metrics obtained
in the same way are Lipschitz equivalent (indeed, apply the compactness to
the fact that both metric spaces are locally Lipschitz homeomorphic) and
therefore the expression “Lipschitz function” when referring to a compact
smooth manifold makes sense with no need of an explicit metric. For smooth
manifolds, the regularity of the functions composing the isometric copy of
the Euclidean space is as good as possible.
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Theorem 1.2. Let K be a compact Cr-manifold of dimension n−1 for n ≥ 2
and r = 1, . . . ,∞. Then

(a) C(K) contains an isometric copy of (Rn, ‖ · ‖2) made of Cr-smooth
functions;

(b) C(K) contains no isometric copy of (Rn+1, ‖ · ‖2) made of C1-smooth
functions or Lipschitz functions.

The word dimension in Theorems 1.1-(iv) and 1.2 refers to the dimen-
sion of K as manifold (topological dimension). However, it is well-known
that topological dimension and Hausdorff dimension coincide if the space is
a Lipschitz or smooth manifold (see e.g. [7, p. 32]).

We have chosen the Euclidean space as test space because of its easiness,
but any finite dimensional space with strictly convex dual will work as a
test space. On the other hand, polyhedral spaces can always be isometrically
embedded using nice functions. Recall that a finite dimensional Banach space
is polyhedral if its unit ball is a convex polytope.

Theorem 1.3. If K is an infinite metric compact space, then C(K) con-
tains isometric copies made of Lipschitz functions of any finite dimensional
polyhedral space.

The proofs of these results depend on some easy facts about Lipschitz
mappings, Lipschitz manifolds and isometric embeddings into C(K) spaces
that we will develop in the next section. We finish the paper with some
remarks about extending the results for Hölder maps and the typical n-
dimensional subspaces of C(K).

2. Auxiliary results

We denote by L(K, d) the Lipschitz functions (with respect to d) of C(K).
The Lipschitz constant for f ∈ L(K, d) is the number

L(f) = sup

{
|f(t1)− f(t2)|

d(t1, t2)
: t1, t2 ∈ K, t1 6= t2

}
.

Proposition 2.1. Let X ⊂ C(K) be a non-trivial linear subspace. Then
either
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(a) X ∩ L(K, d) is of first category in X;

(b) or X ⊂ L(K, d), X is finite dimensional and there exists λ > 0 such
that L(f) ≤ λ‖f‖ for every f ∈ X.

Proof. Observe that X ∩ L(K, d) =
⋃∞
n=1{f ∈ X : L(f) ≤ n} is a decom-

position of X ∩L(K, d) into countably many closed balanced convex sets. If
X ∩ L(K, d) is not of first category in X, then there is f0 ∈ X and δ > 0
such that f0 + δBX ⊂ {f ∈ X : L(f) ≤ n} for some n ∈ N. The symmetry
and convexity of the last set easily imply that δBX ⊂ {f ∈ X : L(f) ≤ n}.
By homogeneity, we have L(f) ≤ λ‖f‖ with λ = δ−1n for every f ∈ X. In
particular X ⊂ L(K, d). Note that BX is a complete, bounded and equicon-
tinuous set of functions, and thus it is compact by Ascoli’s theorem [10].
Therefore X must be of finite dimension.

Recall that given a linear operator T : X → Y between Banach spaces,
the adjoint operator T ∗ : Y ∗ → X∗ is the linear map defined by the rule

T ∗(y∗)(x) = y∗(T (x)).

If T is bounded then T ∗ is also bounded and ‖T‖ = ‖T ∗‖. On the other hand,
observe that K is naturally embedded in C(K)∗ if we define t : C(K)→ R as
t(f) := f(t) for every t ∈ K. In this case, we always have that K ⊂ BC(K)∗ .

Proposition 2.2. Let J : X → C(K) be an isomorphic embedding. Then
J(X) ⊂ L(K, d) if and only if J∗|K is Lipschitz from d to the norm of X∗,
where J∗ denotes the adjoint map from C(K)∗ into X∗.

Proof. If J∗ is Lipschitz, then any function J(x) is Lipschitz as well. Indeed,
note that L(J(x)) ≤ L(J∗)‖x‖ since J(x)(t) = J∗(t)(x). Reciprocally, as-
sume that J(X) ⊂ L(K, d). By Proposition 2.1 there is λ > 0 such that
L(f) ≤ λ for every f ∈ J(X). Now, if x ∈ BX and t1, t2 ∈ K then

|J∗(t1)(x)− J∗(t2)(x)| = |J(x)(t1)− J(x)(t2)| ≤ λ d(t1, t2).

Taking supremum on x ∈ BX we get ‖J∗(t1)− J∗(t2)‖ ≤ λ d(t1, t2).

Remark 2.3. A function f : K → R is said to be α-Hölder for α ∈ (0, 1]
if there is a constant λ > 0 such that |f(x) − f(y)| ≤ λ d(x, y)α for any
x, y ∈ K. It is easy to see that the Lemma 2.1 and Proposition 2.2 can be
generalized to the setting of α-Hölder functions.
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The set of extreme points of a convex set C is denoted by Ext(C).

Proposition 2.4. Let X be a Banach space and let J : X → C(K) be a
linear operator with ‖J‖ ≤ 1. Then J is an isometric embedding if and only
if

Ext(BX∗) ⊂ J∗(K) ∪ (−J∗(K)).

Proof. Note that, in general, J : X → Y is an isometric embedding if and
only if J∗(BY ∗) = BX∗ (the less easy part relies on the Hahn–Banach theo-
rem). Hence we have just to check that the statement above is equivalent to
BX∗ = J∗(BC(K)∗). Clearly, ‖J∗‖ = ‖J‖ ≤ 1 implies that J∗(BC(K)∗) ⊂ BX∗ .
On the other hand, suppose that Ext(BX∗) ⊂ J∗(K) ∪ (−J∗(K)). Observe
that J∗(K)∪ (−J∗(K)) ⊂ J∗(BC(K)∗), noting that the last set is convex and
weak∗ compact. Now the inclusion BX∗ ⊂ J∗(BC(K)∗) follows directly from
the Krein–Milman Theorem [6, Theorem 3.65].
For the converse implication, observe that BC(K)∗ = convw

∗
(K ∪ (−K)) in

general since Ext(BC(K)∗) = K ∪ (−K) [6, Lemma 3.116]. Therefore, if we
suppose that BX∗ = J∗(BC(K)∗), then

BX∗ = J∗(convw
∗
(K ∪ (−K))) = convw

∗
(J∗(K ∪ (−K)))

where the last equality comes from the linearity and weak∗-continuity of
J∗. Finally, Milman’s Theorem [6, Theorem 3.66] implies that Ext(BX∗) ⊂
J∗(K ∪ (−K)), as desired.

Corollary 2.5. Let X be a Banach space. There exists an isometric em-
bedding of X into C(K) if and only if there exists a continuous mapping
Ψ : K → BX∗ such that

Ext(BX∗) ⊂ Ψ(K) ∪ (−Ψ(K)).

Proof. If such an isometric embedding J : X → C(K) exists, then Ψ = J∗|K .
For the other implication, define J(x)(t) = Ψ(t)(x). Evidently, J is a linear
operator with ‖J‖ ≤ 1 that satisfies J∗|K = Ψ. So, by Proposition 2.4, it is
an isometric embedding.

The first part of the following result is due to Donoghue [4] who used it
for the construction of Peano-type filling curves.
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Corollary 2.6. Let X be a Banach space such that X∗ is strictly convex and
let J : X → C(K) be an isometric embedding. Then

SX∗ ⊂ J∗(K) ∪ (−J∗(K)).

Moreover, there exists t1, t2 ∈ K such that J(x)(t1) = −J(x)(t2) for every
x ∈ X.

Recall that a Banach space X is strictly convex if given x, y ∈ SX , with
x 6= y then ‖x+y

2
‖ < 1.

Proof. In this case Ext(BX∗) = SX∗ . Therefore SX∗ ⊂ J∗(K) ∪ (−J∗(K)).
But the connectedness of SX∗ implies that J∗(K)∩(−J∗(K)) 6= ∅. Take x∗ ∈
J∗(K) ∩ (−J∗(K)) and t1, t2 ∈ K such that J∗(t1) = x∗ and J∗(t2) = −x∗.
Thus, for every x ∈ X we have that J(x)(t1) = J∗(t1)(x) = −J∗(t2)(x) =
−J(x)(t2), as desired.

A metric space M is called an absolute Lipschitz retract if for any iso-
metric embedding φ : M → M̃ into another metric space M̃ , there exists a
Lipschitz map ψ : M̃ → M such that ψ ◦ φ is the identity map on M . The
notion of Lipschitz retract will be useful in what follows.

Lemma 2.7. Let K be a k-dimensional Lipschitz manifold. Then k ≥ n if
and only if there exists a Lipschitz onto map ψ : K → In.

Proof. Since K is a k-dimensional Lipschitz manifold, we can find a finite
cover {O1, O2, . . . , Om} of K each member of which is bi-Lipschitz homeo-
morphic to Ik. In particular, there exists a Lipschitz onto map φ : O1 → Ik.
Since Ik is an absolute Lipschitz retract, by [2, Proposition 1.2] we can find a
Lipschitz (onto) extension Φ : K → Ik of φ. Now, if k ≥ n, the projection in
the first n-coordinates p : Ik → In is a Lipschitz map with Lipschitz constant
1. Therefore, the composition p ◦Φ : K → In is a Lipschitz onto map, which
proves the first implication.

Now assume that ψ : K → In is a Lipschitz onto map. Since {ψ(Oi)}mi=1

is a finite compact cover of In, by Baire’s category theorem there must exist
i ∈ {1, . . . ,m} such that ψ(Oi) has non-empty interior in In. Since ψ cannot
increase the Hausdorff dimension of Oi, we thus have that

k = dimH(Oi) ≥ n.
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We finish this section with the following two lemmas that may seem
intuitively obvious. For the sake of completeness we include their proofs.

Lemma 2.8. Let X be a vector space of dimension n+ 1.

1. Two spheres for different norms on X are Lipschitz homeomorphic.

2. The unit sphere, for any norm on X, is an n-dimensional Lipschitz
manifold.

Proof. Clearly it is enough to consider unit spheres centered at the origin.
Let ‖ · ‖1 and ‖ · ‖2 be two norms on X, and S1 and S2 be their respective
unit spheres. The map φ : S1 → S2 defined by φ(x) = ‖x‖−12 x is Lipschitz.
Indeed, the norms ‖·‖1 and ‖·‖2 are equivalent, that is α‖x‖1 ≤ ‖x‖2 ≤ β‖x‖1
for some constants α, β > 0 and every x ∈ X. Suppose now that x, y ∈ S1.
Then

‖φ(x)− φ(y)‖2 =
∥∥‖x‖−12 x− ‖x‖−12 y + ‖x‖−12 y − ‖y‖−12 y

∥∥
2

≤ ‖x‖−12 ‖x− y‖2 +
∣∣‖x‖−12 − ‖y‖−12

∣∣ ‖y‖2
= ‖x‖−12 ‖x− y‖2 +

∣∣∣∣‖y‖2 − ‖x‖2‖x‖2‖y‖2

∣∣∣∣ ‖y‖2
= ‖x‖−12 ‖x− y‖2 + |‖x‖2 − ‖y‖2| ‖x‖−12

≤ 2‖x‖−12 ‖x− y‖2 ≤ 2α−1β‖x− y‖1.

The symmetry of the argument ensures that φ−1 is Lipschitz as well, and
so φ is a Lipschitz homeomorphism.

Given a norm ‖·‖ on X there is a Lipschitz homeomorphism φ : Sn → SX
by the previous statement, where Sn is the n-dimensional Euclidean sphere.
That homeomorphism endows SX with a structure of a Lipschitz manifold.

Actually, the homeomorphism described in the proof carries the structure
of a C∞-manifold from the sphere Sn into SX , although SX is not a smooth
submanifold of X in general.

Lemma 2.9. Let X be a normed space of dimension n + 1. For any non-
empty open subset O ⊂ SX there is an injective Lipschitz mapping ψ : In →
SX such that SX = ψ(In) ∪O.

Proof. The mapping ψ can be easily obtained by combining a Lipschitz home-
omorphism from SX to Sn and the inverse of a suitable stereographic projec-
tion of Sn into Rn, see for instance [11, Example 1.39].
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3. Proofs of the main results and final remarks

Proof of Theorem 1.1. (i)⇒(ii) If X is (n + 1)-dimensional, then the dual
sphere SX∗ is a Lipschitz manifold of dimension n. Using Lemma 2.9, we can
find a Lipschitz mapping ψ : In → SX∗ such that SX∗ ⊂ ψ(In)∪(−ψ(In)). For
x ∈ X, consider the function J(x) ∈ C(K) given by J(x)(t) = ψ(φ(t))(x).
Clearly, J∗(K) = ψ(In), and so J is an isometric embedding by Corollary 2.5.

(ii)⇒(iii) is trivial. (iii)⇒(i) Assume that X = (Rn+1, ‖ · ‖) embeds into
C(K) with an isometric embedding J . If J(X) ⊂ L(K, d), then J∗|K : K →
BX∗ is Lipschitz by Proposition 2.2. Now, Corollary 2.6 implies that

SX∗ ⊂ J∗(K) ∪ (−J∗(K)).

Using Baire’s category theorem, we can find a closed neighborhood O ⊂ SX∗

such that O ⊂ J∗(K). Without loss of generality, we may assume that there
is a Lipschitz homeomorphism to ψ : O → In. By [2, Proposition 1.2], there
is a Lipschitz map Ψ : BX∗ → In extending ψ. Therefore Ψ◦J∗ is a Lipschitz
mapping from K onto In. This proves the desired implication.

Finally if K is a Lipschitz manifold, implication (i)⇔ (iv) follows imme-
diately from Lemma 2.7.

Proof of Theorem 1.2. For the sake of simplicity, let X be (Rn, ‖ · ‖2). If K
is an (n − 1)-dimensional Cr-manifold, then there is a compact set H ⊂ K
which is Cr-homeomorphic to In−1 and such that there exists a Cr-smooth
retraction ψ : K → H. With the help of the stereographic projection we can
find a Cr-smooth mapping φ : H → SX∗ such that SX∗ ⊂ φ(H) ∪ (−φ(H)).
Define J : X → C(K) by J(x)(t) = φ(ψ(t))(x). Clearly J(x) is a Cr-
smooth function and J is an isometric embedding by Corollary 2.5, and this
completes the proof of (a).
If C(K) contains an isometric copy of (Rn+1, ‖·‖2) made of Lipschitz functions
(in particular, if they are C1-smooth), then there is a Lipschitz mapping of
K onto In, and so dimH(K) ≥ n.

Proof of Theorem 1.3. If X is polyhedral and finite dimensional, its dual X∗

is also polyhedral and so Ext(BX∗) = {x∗1, . . . , x∗N} is a finite set. Take
different points {tn}Nn=1 ⊂ K and disjointly supported Lipschitz functions
ψn : K → [0, 1] such that ψn(tm) = 0 if n 6= m and ψn(tn) = 1. The map
defined by Ψ(t) =

∑N
n=1 ψn(t)x∗n is Lipschitz and ‖Ψ(t)‖ ≤ 1 for every t ∈ K,
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that is Ψ(K) ⊂ BX∗ . Since Ext(BX∗) ⊂ Ψ(K), Corollary 2.5 implies that the
linear operator J : X → C(K) defined by J(x)(t) = Ψ(t)(x) is an isometric
embedding.

We will finish with some remarks:

(1) There exist Peano’s filling curves in the Hölder class, see [14, Theo-
rem 3.1] for instance, where it is shown that there is an 1/2-Hölder surjec-
tion from I onto I2. Note that such a map with small modifications and the
help of Corollary 2.5 provides an embedding of (R3, ‖ · ‖2) into C(I) made
of 1/2-Hölder functions. Indeed, if φ : I → I2 is onto and 1/2-Hölder, write
φ = (τ, σ) and note that J : R3 ↪→ C(I) defined by

J(x1, x2, x3) = x1 cos(πτ) cos(πσ) + x2 sin(πτ) cos(πσ) + x3 sin(πσ)

is an isometric embedding made of 1/2-Hölder functions.

(2) Hausdorff dimension has a good behavior under Hölder maps, [7, Propo-
sition 2.3]. Therefore it would be possible to obtain information about the
Hausdorff dimension of a metric compact K from the dimension of the Eu-
clidean subspaces of C(K) made of Hölder functions, as in Theorem 1.1.
This observation combined with Remark 2.3 and the ideas from the previous
remark can be used to generalize Theorem 1.1 in the Hölder case.

(3) In the remaining remarks we will use the techniques about isometric
embeddings into C(K) spaces to understand how a “typical” n-dimensional
subspace of C(K) looks like. Let us start by recalling that the strictly convex
norms are generic in the following sense: the set of strictly convex norms on
a separable Banach space is a dense Gδ-set in the metric space of equivalent
norms endowed with the Banach-Mazur distance. In particular, the “generic
norm” on Rn is strictly convex and smooth. Baire’s category theorem allows
us to blend generic properties of norms, see the Asplund averaging technique
[3, p. 52].

(4) However, a “typical” n-dimensional subspace of C(I) is far from being
smooth. A subspace of C(K) of dimension equal or less than n is determined
by n “random” functions {f1, . . . , fn} ⊂ C(K). Putting F = (f1, . . . , fn)
this is an element F ∈ C(K,Rn), and name XF = span{f1, . . . , fn}. Let JF
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be the mapping from Rn into C(K) given by

JF (x1, . . . , xn) = x1f1 + · · ·+ xnfn

and endow Rn with the seminorm pF (x1, . . . , xn) = ‖x1f1 + · · · + xnfn‖∞.
If XF has dimension n, then JF is the isometric embedding of (Rn, pF ) into
C(K). Clearly, we have J∗F |K = F . Suppose that XF has strictly convex dual,
then the radial boundary of F (K)∪(−F (K)) should be a (n−1)-dimensional
sphere, by Corollary 2.6. This seems to be “highly unlikely”. Indeed, in [1]
the authors proved that from a generic point of view the Hausdorff dimen-
sion of F (K) for F ∈ C(K,Rn) is the minimum of n and the topological
dimension of K. In particular, if K = I, the set F (K) has generic Hausdorff
dimension 1. That implies for n > 2 that X∗F is generically far from being
strictly convex.

(5) Finally, we may compare two n-dimensional subspaces of C(K) by mea-
suring the Hausdorff distance dH between their unit balls (or spheres). This
way of measuring the distance between subspaces of a Banach space was in-
troduced long ago in [8] and sometimes it is called the Gokhberg-Markus gap.
Following the notation above, the next two observations show that the rela-
tion between F and XF is continuous back and forth (we omit the elementary
proofs)

(a) Given F ∈ C(K,Rn) such that XF is n-dimensional and ε > 0, there
is δ > 0 such that for any G ∈ C(K,Rn) with ‖F − G‖∞ < δ, then
dH(XF , XG) < ε.

(b) Given F ∈ C(K,Rn) and ε > 0, there is δ > 0 such that if X ⊂ C(K)
satisfies that dH(XF , X) < δ, we can then find G ∈ C(K,Rn) with
X = XG and ‖F −G‖∞ < ε.

Now, consider the space of n-dimensional subspaces of C(I), equipped
with the topology induced by dH. In this case, polyhedral subspaces are
dense, however smooth subspaces are not dense for n ≥ 2. Indeed, given
ε > 0 and XF a n-dimensional subspace of C(I), by observation (a) we
can find G ∈ C(I,Rn) close enough to F in order that dH(XF , XG) < ε
and such that conv(G(I)) has finitely many extreme points. This implies
that X∗G is polyhedral and thus XG is polyhedral too. To prove the other
statement consider a subspace XF such that F (I) is far from its convex hull
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(for example if F (I) is a star). Fix ε > 0 such that (F (I) ∪ (−F (I))) + εBRn

is not convex. Any subspace X ⊂ C(I) close enough to XF is of the form
X = XG with ‖G − F‖∞ < ε by observation (b). With such a choice,
G(I)∪(−G(I)) ⊂ (F (I)∪(−F (I)))+εBRn is far from containing the boundary
of a large convex body, and so BX∗ = conv(G(I)∪(−G(I))) cannot be strictly
convex. Therefore X is not smooth by Šmulyan’s duality [3, Proposition 1.6]
or [6, Corollary 7.23].
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