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SZLENK INDICES OF CONVEX HULLS

G. LANCIEN♣, A. PROCHÁZKA♦, AND M. RAJA♠

Abstract. We study the general measures of non-compactness defined on subsets of
a dual Banach space, their associated derivations and their ω-iterates. We introduce
the notions of convexifiable and sublinear measure of non-compactness and investigate
the properties of its associated fragment and slice derivations. We apply our results
to the Kuratowski measure of non-compactness and to the study of the Szlenk index
of a Banach space. As a consequence, we obtain that the Szlenk index and the
convex Szlenk index of a separable Banach space are always equal. We also give, for
any countable ordinal α, a characterization of the Banach spaces with Szlenk index
bounded by ωα+1 in terms of the existence of an equivalent renorming. This extends
a result by Knaust, Odell and Schlumprecht on Banach spaces with Szlenk index
equal to ω.

1. Introduction

In this paper we deal with the Szlenk and the convex Szlenk index of Banach spaces.
Let us first recall their definitions. Let X be a Banach space, K a weak∗-compact
subset of its dual X∗ and ε > 0. Then we define

s′ε(K) = {x∗ ∈ K, for any weak∗ − neighborhood U of x∗, diam(K ∩ U) ≥ ε}

and inductively the sets sαε (K) for α ordinal as follows: sα+1
ε (K) = s′ε(s

α
ε (K)) and

sαε (K) =
⋂

β<α s
β
ε (K) if α is a limit ordinal.

Then Sz(K, ε) = inf{α, sαε (K) = ∅} if it exists and we denote Sz(K, ε) = ∞ otherwise.
Next we define Sz(K) = supε>0 Sz(K, ε). The closed unit ball of X∗ is denoted BX∗

and the Szlenk index of X is Sz(X) = Sz(BX∗).
Let us also denote A0

ε := K, Aα+1
ε is the weak∗-closed convex hull of s′ε(A

α
ε ) and

Aα
ε :=

⋂

β<αA
β
ε if α is a limit ordinal. Now we set Cz(K, ε) = inf{α, Aα

ε = ∅} if it

exists and Cz(K, ε) = ∞ otherwise. Then Cz(K) = supε>0Cz(K, ε) and the convex
Szlenk index of X is Cz(X) = Cz(BX∗).

The Szlenk index was first introduced by W. Szlenk [18], in a slightly different form,
in order to prove that there is no separable reflexive Banach space universal for the class
of all separable reflexive Banach spaces. Another striking fact is that the isomorphic
classification of a separable C(K) space is perfectly determined by the value of its Szlenk
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index. This is a consequence of some classical work by C. Bessaga and A. Pe lczyński
[2], D.E. Alspach and Y. Benyamini [1], C. Samuel [16] and A.A. Milutin [12] (see also
[15] for a survey on C(K)-spaces).

One of the goals of this paper is to obtain a general renorming result for Banach
spaces with a prescribed Szlenk index in the spirit of the following important theorem
due to Knaust, Odell and Schlumprecht [8]: if X is a separable Banach space and
Sz(X) ≤ ω, where ω is the first infinite ordinal, then X admits an equivalent norm
whose dual norm is such that for any ε > 0, there exists δ > 0 satisfying s′ε(B) ⊂
(1 − δ)B, where B is the closed unit ball of this equivalent dual norm. Such a norm is
said to be weak∗-uniformly Kadets-Klee. This has been quantitatively improved in [4]
and extended to the non-separable case in [14]. We will prove a similar result for other
values of the Szlenk index. More precisely, we show (Theorem 6.3) that a separable
Banach space X satisfies Sz(X) ≤ ωα+1 with α countable if and only if X admits an
equivalent norm whose dual norm is such that for any ε > 0, there exists δ > 0 satisfying
sω

α

ε (B) ⊂ (1−δ)B, where B is the closed unit ball of this equivalent dual norm. We say
that such a norm is ωα-UKK∗. It is worth recalling that Sz(X) is always of the form
ωα (see Lemma 5.2 for a slightly more general statement, [17] for the original idea, or
[11]). Let us also mention that C. Samuel proved in [16] that Sz(C0([0, ωωα

))) = ωα+1

whenever α is a countable ordinal. A different proof of this computation is given in [5]
by showing that the natural norm of C0([0, ωωα

)) is ωα-UKK∗.
One of the inconveniences of the Szlenk derivation is that it does not preserve con-

vexity. This explains why it is difficult to obtain renorming results related to this
derivation. In contrast, a derivation based on peeling off slices (i.e. intersections with
half spaces) preserves the convexity and allows to use distance functions to the derived
sets in order to build a good equivalent norm (see [9] for instance).

In order to overcome this difficulty, we will study the fragment and slice derivations
associated with general measures of non-compactness as they were introduced in [13].
In section 2, we recall these definitions and also introduce the ω-iterated measure
ηω associated with a measure of non-compactness η. In section 3, we introduce the
notions of convexifiable and homogeneous measure of non-compactness. Then we prove
a crucial result (Proposition 3.4) on the properties of the slice derivation associated
with a general convexifiable measure of non-compactness. In section 4 we explore
the notion of sublinear measure of non-compactness and obtain a sharp comparison
between the slice and fragment derivations for certain convexifiable sublinear measures
of non-compactness. Section 5 is devoted to the applications of our general results to
the Kuratowski measure of non-compactness, denoted σ. This measure is of special
interest to us, as its fragment derivation is exactly the Szlenk derivation. The main
result of this section is Theorem 5.9 which asserts that for any n ∈ N, the iterate σωn

of σ is convexifiable. It is then a key ingredient for proving that Cz(K) = Sz(K)
for any weak∗-compact subset K of the dual of a separable Banach space such that
Sz(K) ≤ ωn, for some integer n (Corollary 5.11). This together with some earlier work
by P. Hájek and T. Schlumprecht [7] implies that for any separable Banach space X,
Cz(X) = Sz(X). Finally, with all these ingredients, we state and prove our renorming
result in section 6.
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2. Measures of non-compactness and associated derivations

Definition 2.1. Let X be a Banach space. We call measure of non-compactness on
X∗, any map η defined on the weak∗-compact subsets of X∗ with values in [0,∞) and
satisfying the following properties:

(i) η({x∗}) = 0 for any x∗ ∈ X∗.
(ii) If A1, .., An are weak∗-compact subsets of X∗, then η(

⋃n
i=1Ai) = maxi η(Ai).

(iii) There exists b > 0 such that for any weak∗-compact subset A of X∗ and any
λ > 0, η(A + λBX∗) ≤ η(A) + λb.

Remark 2.2. Note that (ii) implies that a measure of non-compactness η on X∗ is
monotone in the following sense: η(A) ≤ η(B), whenever A ⊂ B are weak∗-compact
subsets of X∗.
Note also that if η is a measure of non-compactness on X∗, then η(A) = 0, for any
norm-compact subset A of X∗.

Example 2.3. Let A be a weak∗-compact subset of X∗. We call Kuratowski measure
of non-compactness of A and denote σ(A), the infimum of all ε > 0 such that A can
be covered by a finite family of closed balls of diameter equal to ε.
Conditions (i), (ii) and (iii) are clearly satisfied. Note that (iii) is satisfied with b = 1.

Following [13], we now define two set operations associated with a given measure of
non-compactness η. Let us agree that if E is a subset of a dual Banach space X, then
E

∗
denotes the weak∗-closure of E.

We start with the fragment derivation. Given ε > 0 and A a weak∗-compact subset
of X∗, we set

[η]′ε(A) = {x∗ ∈ A, for any weak∗ − neighborhood U of x∗, η(A ∩ U
∗
) ≥ ε}.

For any ordinal γ, the sets [η]γε (A) are defined by [η]γ+1
ε (A) = [η]′ε([η]γε (A)) and

[η]γε (A) =
⋂

β<γ [η]βε (A) if γ is a limit ordinal.

Similarly we define the slice derivation by

〈η〉′ε(A) = {x∗ ∈ A, for any weak∗ − open halfspace H containing x∗, η(A∩H
∗
) ≥ ε}.

Then, for an ordinal γ, the set 〈η〉γε (A) is defined in an obvious way as before. Note
that we clearly have that [η]γε (A) ⊂ 〈η〉γε (A).

We begin with a very basic property of the fragment derivation associated with a
measure of non-compactness.

Lemma 2.4. Let X be a Banach space and η a measure of non-compactness on X∗

and let A be a weak∗-compact subset of X∗. Then for any B weak∗-closed subset of A
and any ε > 0 such that B ∩ [η]′ε(A) = ∅, we have that η(B) < ε.

Proof. For any x∗ in B there exists a weak∗-neighborhood Ux∗ of x∗ so that η(A ∩
Ux∗

∗
) < ε. Then, since B is included in A and weak∗-compact, there exist x∗1, .., x

∗
n in

B such that B ⊂
⋃n

k=1(A ∩ Ux∗
k

∗
).

The conclusion now follows from property (ii) of Definition 2.1. �
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We now define the iterates of a measure of non-compactness.

Definition 2.5. Let X be a Banach space and η a measure of non-compactness on
X∗. The ω-iterated measure of η is defined by

ηω(A) = inf{ε > 0 : [η]ωε (A) = ∅}.

It will also be convenient to define η1 = ηω
0

:= η and then inductively ηω
n+1

:= (ηω
n
)ω.

Lemma 2.6. If η is a measure of non-compactness on X∗, then ηω is a measure of
non-compactness on X∗.

Proof. Condition (i) of the definition is clearly satisfied by ηω.
The condition (ii) for η yields that [η]′ε(

⋃n
i=1Ai) =

⋃n
i=1[η]′ε(Ai) whenever A1, .., An are

weak∗-compact subsets of X∗. After iterating, this implies that ηω satisfies condition
(ii) of the definition.
Property (iii) comes from the following observation. Let b > 0 be the constant given
by condition (iii) for η. Then for any weak∗-compact subset A of X∗ and any λ > 0,

(2.1) [η]′ε+λb(A + λBX∗) ⊂ [η]′ε(A) + λBX∗ .

Indeed, take any

x∗ ∈ A + λBX∗ \ ([η]′ε(A) + λBX∗).

Then, there exists a weak∗-neighborhood U of x∗ such that U
∗

is disjoint from [η]′ε(A)+

λBX∗ . Then consider V = U
∗
+λBX∗. It is clear that V is a weak∗-closed neighborhood

of x∗ such that V is disjoint from [η]′ε(A). Then it follows from Lemma 2.4 that
η(V ∩A) < ε. By the definition of V we also have

U
∗
∩ (A + λBX∗) ⊂ (V ∩A) + λBX∗ .

This yields the estimate η(U
∗
∩ (A + λBX∗)) < ε + λb. Therefore x∗ does not belong

to [η]′ε+λb(A + λBX∗), which finishes the proof of (2.1).
Finally, this implies by iteration that [η]ωε+λb(A + λBX∗) = ∅ whenever [η]ωε (A) = ∅,
which yields property (iii) for ηω, with the same constant b as for η.

�

We will need the following elementary lemma.

Lemma 2.7. Let X be a Banach space, η a measure of non-compactness on X∗ and
let ε′ > ε > 0. Then, for any weak∗-compact subset A of X∗ we have

[ηω]′ε′(A) ⊂ [η]ωε (A) ⊂ [ηω ]′ε(A).

Also, for any n ∈ N, we have

[ηω
n

]′ε′(A) ⊂ [η]ω
n

ε (A) ⊂ [ηω
n

]′ε(A).

Proof. If x∗ ∈ A \ [ηω]′ε(A) then there is a weak∗-neighborhood U of x∗ such that

ηω(A ∩ U
∗
) < ε and therefore [η]ωε (A ∩ U

∗
) = ∅. This implies that x∗ 6∈ [η]ωε (A).

On the other hand, if x∗ ∈ A \ [η]ωε (A) then there is n ∈ N such that x∗ 6∈ [η]nε (A).

If U is a weak∗-neighborhood of x∗ such that U
∗
∩ [η]nε (A) = ∅, then [η]nε (A ∩ U

∗
) = ∅

and so ηω(A ∩ U
∗
) ≤ ε < ε′ and x∗ ∈ A \ [ηω]′ε′(A).
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Let us assume now that it has been proved that for some n ∈ N, [ηω
n
]′ε′(A) ⊂ [η]ω

n

ε (A)

for all ε′ > ε and all weak∗-compact A. Since ηω
n

is a measure of non-compactness,
we infer from the first statement of Lemma 2.7 and this inductive hypothesis that

[ηω
n+1

]′ε′(A) ⊂ [ηω
n
]ωε′′(A) =

⋂∞
m=1[η

ωn
]mε′′(A) ⊂

⋂∞
m=1[η]ω

n·m
ε (A) = [η]ω

n+1

ε (A) for all
ε′ > ε′′ > ε and any weak∗-compact subset A of X.

Finally, when [η]ω
n

ε (A) ⊂ [ηω
n
]′ε(A) for every weak∗-compact A has been proved

for n ∈ N, we easily get that [η]ω
n+1

ε (A) =
⋂∞

m=1[η]ω
n·m

ε (A) ⊂
⋂∞

m=1[ηω
n
]mε (A) =

[ηω
n
]ωε (A) ⊂ [ηω

n+1

]′ε(A) is true for every weak∗-compact A. �

We end this section with a lemma describing the link between the slice derivation
and the fragment derivation.

Lemma 2.8. Let X be a Banach space, η a measure of non-compactness on X∗ and
ε > 0. Then, for any convex and weak∗-compact subset K of X∗, we have that

〈η〉′ε(K) = conv∗[η]′ε(K).

Proof. Since 〈η〉′ε(K) is convex, weak∗-closed and contains [η]′ε(K), it is clear that
conv∗[η]′ε(K) ⊂ 〈η〉′ε(K).
Consider now x∗ ∈ K\conv∗[η]′ε(K). It follows from the Hahn-Banach theorem that we

can find a weak∗-open half space H containing x∗ and so that H
∗
∩ conv∗[η]′ε(K) = ∅.

Let S = K ∩H
∗
. By Lemma 2.4, we have that η(S) < ε. Therefore x∗ does not belong

to 〈η〉′ε(K), which concludes the proof of this lemma. �

3. convexifiable and homogeneous measures of non-compactness

Definition 3.1. Let X be a Banach space. We say that a measure of non-compactness
η on X∗ is convexifiable if there exists κ ≥ 1 such that for any weak∗-compact subset
A of X∗, we have that η(conv∗(A)) ≤ κη(A). The infimum of the set of all constants κ
satisfying the above property (which also belongs to this set) is called the convexifiability
constant of η.

Definition 3.2. Let X be a Banach space. A measure of non-compactness η on X∗

is homogeneous if for any weak∗-compact subset A of X∗ and any λ in R, we have
η(λA) = |λ| η(A).

The following lemma is straightforward.

Lemma 3.3. Let X be a Banach space and B a weak∗-compact subset of X∗. Assume
that η is a homogeneous measure of non-compactness on X∗. Then for any ε > 0 and
any λ in (0,+∞), we have

[η]′λε(λB) = λ[η]′ε(B) and 〈η〉′λε(λB) = λ〈η〉′ε(B).

The following proposition is crucial.

Proposition 3.4. Let X be a Banach space and η a homogeneous and convexifiable
measure of non-compactness on X∗ with convexifiability constant κ. Assume that A is
a weak∗-compact subset of X∗ such that [η]′ε(A) ⊂ λA for some λ ∈ (0, 1) and ε > 0.
Then

∀ ε′ > ε 〈η〉ωκε′(conv∗(A)) = ∅.
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Proof. Let ε′ > ε, fix ζ ∈ (λ, 1) and take some ξ ∈ (ζ, 1) whose precise value will be
fixed later. Let us write B := conv∗(A). The key step of the proof will be to show
that 〈η〉′κε′(B) ⊂ ξB for ξ close enough to 1. In order to do so we need to estimate the
η-measure of weak∗-slices of B which are disjoint from ξB. Once we observe that each
such slice S lies in a small neighborhood of the weak∗-closed convex hull D of a well
chosen η-small slice K of A, we will be in a position to apply the property (iii) and the
convexifiability of η.

Le us be more precise. Fix x ∈ X such that supx∗∈B x∗(x) = 1 and consider the
weak∗-closed half space H = {x∗ ∈ X∗, x∗(x) ≥ ξ}. We denote S = H ∩B.
Let now D = conv∗(K) where K = {x∗ ∈ A : x∗(x) ≥ ζ}. Since K ∩ [η]′ε(A) = ∅, it
follows from the weak∗-compactness of K and Lemma 2.4 that η(K) < ε. Since η is
convexifiable, we have η(D) < κε.
Note that B = conv∗

(

(A ∩ {x ≤ ζ}) ∪ (A ∩ {x ≥ ζ})
)

⊂ conv(Q ∪ D), where Q =
{x ≤ ζ} ∩B. In particular, any point x∗ ∈ S can be written x∗ = tx∗1 + (1 − t)x∗2 with
x∗1 ∈ D, x∗2 ∈ Q and t ∈ [0, 1]. If x∗(x) > ξ, an elementary computation shows that
t > tξ = (ξ − ζ)(1 − ζ)−1.
Since B is bounded, there is β > 0 such that B ⊂ βBX∗ . Then we choose ξ ∈ (ζ, 1)
such that

2b(1 − tξ)β < κ(ε′ − ε),

where b > 0 is the constant given by the property (iii) of the measure of non-compactness
η. Note that ξ depends only on λ, b, β, κ and ε′ − ε.
We have shown that S ⊂ [tξ, 1]D + [0, 1− tξ]Q. Note that [tξ, 1]D ⊂ D+β(1− tξ)BX∗ .
Therefore, S ⊂ D + 2β(1 − tξ)BX∗ . We deduce that η(S) ≤ η(D) + κ(ε′ − ε) < κε′.
We have proved that under the assumptions of Proposition 3.4, the following holds:
there exists ξ < 1 such that 〈η〉′κε′(B) ⊂ {x∗ ∈ B, x∗(x) ≤ ξ} whenever supB x = 1.
Therefore, using the Hahn-Banach theorem for the weak∗ topology, we deduce that
〈η〉′κε′(B) ⊂ ξB.
Finally, we combine an iteration of this argument with Lemma 3.3 to get that for any
n ∈ N, 〈η〉nκε′(B) ⊂ ξnB. Therefore, for n ∈ N large enough, 〈η〉nκε′(B) ⊂ β−1b−1κεB ⊂

b−1κεBX∗ . It follows that η(〈η〉nκε′(B)) < κε′ and finally that 〈η〉n+1
κε′ (B) = ∅. �

4. Sublinear measures of non-compactness.

Property (iii) in Definition 2.1 provides a control of the increase of the measure of a
set after adding a ball to it. Actually the Kuratowski measure of non-compactness and
its ω-iterates have an even better behavior for general sums of sets. We shall introduce
a definition.

Definition 4.1. Let X be a Banach space. A measure of non-compactness η on X∗ is
subadditive if for all weak∗-compact subsets A and B of X∗, η(A + B) ≤ η(A) + η(B).
The measure of non-compactness η on X∗ is sublinear if it is homogeneous and subad-
ditive.

Remark 4.2. Note that property (i) of Definition 2.1 implies that a sublinear measure
of non-compactness is translation invariant and that the sublinearity implies property
(iii) in Definition 2.1 with b = η(BX∗).
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Example 4.3. It is easily checked that the Kuratowski measure σ on a dual Banach
space X∗ is sublinear.

In order to show that the ω-iterates of σ are sublinear as well, we will prove first a
few elementary facts. Consider two dual Banach spaces X∗

1 and X∗
2 and measures of

non-compactness η1 and η2 in each of them. The product X∗
1 ×X∗

2 is a dual Banach
space endowed with the supremum norm. Consider the set function η1 × η2 defined on
X∗

1 ×X∗
2 by

(η1×η2)(A) = inf{ε > 0, A ⊂
n
⋃

i=1

A1
i×A2

i with ηj(A
j
i ) < ε; for all j ∈ {1, 2} and i ≤ n}.

Since η1 and η2 are measures of non-compactness, it follows from property (ii) in
Definition 2.1 that we actually have

(η1 × η2)(A) = inf{ε > 0, A ⊂ A1 ×A2 with ηj(A
j) < ε for j = 1, 2}.

Lemma 4.4. The function η1 × η2 defined above is a measure of non-compactness
defined on X∗

1 ×X∗
2 and the following properties are satisfied:

(1) [η1 × η2]
′
ε(A

1 ×A2) ⊂ ([η1]′ε(A
1) ×A2) ∪ (A1 × [η2]′ε(A

2)).

(2) If [η1]ωε (A1) = ∅ and [η2]
ω
ε (A2) = ∅, then [η1 × η2]

ω
ε (A1 ×A2) = ∅.

Proof. It is elementary to check the properties from Definition 2.1, as well as the first
statement. The second one follows by iteration of the previous set inclusion. �

Lemma 4.5. Let T : X∗
1 → X∗

2 be a weak∗-continuous linear operator. Suppose that
there exists λ > 0 such that η2(T (A)) ≤ λη1(A) for any weak∗- compact subset A of
X∗

1 . Then, the following holds:

(1) If A ⊂ X∗
1 , then [η2]′λε(T (A)) ⊂ T ([η1]′ε(A)).

(2) If [η1]ωε (A) = ∅, then [η2]
ω
λε(T (A)) = ∅.

Proof. We will only prove the first statement which clearly implies the second. So,
let y∗ ∈ T (A) \ T ([η1]′ε(A)) and fix x∗ ∈ A such that T (x∗) = y∗. Since T is weak∗-
continuous, T ([η1]′ε(A)) is weak∗-compact and there exists a weak∗-neighborhood U

of y∗ such that U
∗

is disjoint from T ([η1]′ε(A)). Thus V = T−1(U
∗
) is weak∗-closed

and is a weak∗-neighborhood of x∗ disjoint from [η1]′ε(A). Then Lemma 2.4 insures

that η1(A ∩ V ) < ε. It follows that η2(T (A) ∩ U
∗
) = η2(T (A ∩ V )) < λε. Therefore,

y∗ /∈ [η2]′λε(T (A)). This concludes our proof. �

Proposition 4.6. Let η be a sublinear measure of non-compactness defined on a dual
Banach space X∗. Then ηω is also a sublinear measure of non-compactness.

Proof. By applying Lemma 4.5 to the operator T defined by T (x∗) = λx∗ for x∗ ∈ X∗,
we deduce immediately that ηω is homogeneous.
Let now A,B ⊂ X∗ be weak∗-compact and ε1, ε2 > 0 such that ηω(A) < ε1 and
ηω(B) < ε2. Let A′ = ε−1

1 A and B′ = ε−1
2 B. Since ηω is homogeneous, we have that

[η]ω1 (A′) = ∅ and [η]ω1 (B′) = ∅. It follows from Lemma 4.4 that [η × η]ω1 (A′ × B′) = ∅.
Consider now the operator T : X∗ × X∗ → X∗ defined by T (x∗, y∗) = ε1x

∗ + ε2y
∗.

Since η is sublinear, we may easily deduce that η(T (C)) ≤ (ε1 + ε2)(η × η)(C) for any
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weak∗-compact subset C of X∗ ×X∗. In particular, we can apply Lemma 4.5 to get
that [η]ωε1+ε2(A+B) = [η]ωε1+ε2(T (A′ ×B′)) = ∅, that is, ηω(A+B) ≤ ε1 + ε2. Since ε1
and ε2 were arbitrary, we have proved the subadditivity of ηω. �

As an immediate consequence we have.

Corollary 4.7. Let X be a Banach space and denote by σ the Kuratowski measure
of non-compactness on X∗. Then, for any n ∈ N, σωn

is a sublinear measure of non-
compactness on X∗.

Let us recall the notation that we use for the slice derivation

〈η〉′ε(A) = {x∗ ∈ A, for any weak∗ − open halfspace H containing x∗, η(A∩H
∗
) ≥ ε}.

Along the remaining part of this section we shall only deal with weak∗-compact convex
sets, since the effect of the slice derivation on convex sets produces convex sets again.
Also, we will assume that the measure of non-compactness η is sublinear. Thus we
will be able to keep better constants in the formulas.

Lemma 4.8. Let η be a sublinear measure of non-compactness defined on a dual Ba-
nach space X∗. If A and C are weak∗-compact and convex then

〈η〉′ε+η(C)(A + C) ⊂ 〈η〉′ε(A) + C

Proof. Let x∗ ∈ (A + C) \ 〈η〉′ε(A) + C. Then there exist x ∈ X and a ∈ R such that
x∗(x) < a and S ∩

(

〈η〉′ε(A) +C
)

= ∅, where S = {y∗ ∈ X∗, y∗(x) ≤ a}. Consider now

T = {y∗ ∈ X∗, y∗(x) ≤ a− inf
u∗∈C

u∗(x)}.

Then T ∩ 〈η〉′ε(A) = ∅ and Lemma 2.4 yields that η(T ∩A) < ε.
Finally, since S ∩ (A + C) ⊂ (T ∩A) + C, we get that η(S ∩ (A + C)) < ε + η(C) and
that x∗ /∈ 〈η〉′ε+η(C)(A + C), which concludes our proof.

�

We will need a modification of the slice derivation. Given a convex weak∗-compact
set D consider

〈η〉′ε(A|D) = {x∗ ∈ A,∀H weak∗−open halfspace, x∗ ∈ H, H
∗
∩D = ∅ ⇒ η(A∩H

∗
) ≥ ε}.

Lemma 4.9. Let η be a sublinear measure of non-compactness defined on a dual Ba-
nach space X∗. Suppose that C and D are convex weak∗-compact subsets of X∗ so that
η(D) ≤ 1 and η(C) ≤ ε with ε ∈ (0, 1). For δ ∈ (0, 1), the sequence (Ak)∞k=1 defined
recursively by A1 = conv∗(C ∪D) and Ak+1 = conv∗((C ∩ 〈η〉′ε+δ(Ak|D)) ∪D) satisfies

∀k ≥ 2 sup{f,Ak} − sup{f,D} ≤ (1 − δ/2)k−1(sup{f,A1} − sup{f,D})

for every functional f ∈ X such that sup{f,D} ≤ sup{f,C}.

Proof. With small modifications, it is essentially done in [14]. It is enough to prove the
inequality for the first step

sup{f,A2} − sup{f,D} ≤
(

1 −
δ

2

)

(sup{f,A1} − sup{f,D}).
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Consider

E = {(1 − λ)y∗ + λz∗ : y∗ ∈ C, z∗ ∈ D,λ ∈
[δ

2
, 1
]

}

Note that E contains D and is weak∗-closed and convex. If x∗ ∈ A1 \ E then x∗ =
(1−λ)y∗ +λz∗ with y∗ ∈ C, z∗ ∈ D and λ ∈ [0, δ2 ]. Since x∗− y∗ = λ(z∗− y∗), we have

A1 \E ⊂ C +
⋃

λ∈[0, δ
2
]

λ(D − C).

Using the compactness of [0, δ2 ], it follows that for every ν > 0, there exists a finite

subset F of [0, δ2 ] such that

A1 \ E ⊂ C +
⋃

λ∈F

(

λ(D − C) + νBX∗

)

.

The set on the right hand side of the above inclusion is weak∗-closed, so we deduce
from the properties of η that for all ν > 0,

η(A1 \ E
∗
) ≤ η(C) + δ + νη(BX∗)

and therefore that η(A1 \E
∗
) ≤ ε + δ.

This implies that any weak∗-closed slice of A1 disjoint from E has η-measure less
than ε + δ. Therefore we have 〈η〉′ε+δ(A1|D) ⊂ E and thus sup{f,A2} ≤ sup{f,E}.
Moreover, we have

sup{f,E} − sup{f,D} ≤
(

1 −
δ

2

)

sup{f,C} +
δ

2
sup{f,D} − sup{f,D}

=
(

1 −
δ

2

)

sup{f,C} +
(δ

2
− 1

)

sup{f,D} =
(

1 −
δ

2

)

(sup{f,C} − sup{f,D}),

which concludes our proof. �

Lemma 4.10. Let η be a sublinear measure of non-compactness defined on a dual
Banach space X∗. For every ε, δ > 0, every convex weak∗-compact subset A of X∗ and
every weak∗-open halfspace H we have

〈η〉ωε (H
∗
∩A) = ∅ ⇒ 〈η〉ωε+δ(A) ⊂ A \H.

Proof. Since the measure η is homogeneous, we may assume without loss of general-
ity that η(A) ≤ 1. Then we can also assume that ε, δ are in (0, 1), since otherwise
〈η〉ωε+δ(A) = ∅. In fact, we are going to prove a more precise statement. Namely, for
every ε, δ, ζ ∈ (0, 1) and n ∈ N, there exists N = N(ε, δ, ζ, n) such that whenever A is
convex weak∗-compact with η(A) ≤ 1 and H is a weak∗-open halfspace we have

(4.2) 〈η〉nε (H
∗
∩A) = ∅ ⇒ 〈η〉Nε+δ(A) ⊂ (A \H) + (ζ/2)(A −A).

Let B = 1
2(A − A), so η(B) ≤ 1. We shall use an inductive argument on n ∈ N

to prove the result. For n = 1 the result is true, even with δ = ζ = 0. Indeed, if
〈η〉′ε(H

∗
∩ A) = ∅, the usual compactness argument implies that η(H

∗
∩ A) < ε and

therefore that 〈η〉′ε(A) ⊂ A \H.
Suppose now that it is true for some n ≥ 1 and let H be a weak∗-open halfspace with
〈η〉n+1

ε (H
∗
∩ A) = ∅ and 〈η〉nε (H

∗
∩ A) 6= ∅. Fix p ∈ N such that (1 − δ/4)p−1 ≤ ζ/4
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(this choice only depends on δ and ζ). We will use Lemma 4.9 with C = 〈η〉nε (H
∗
∩A),

D = A \ H and δ/2 instead of δ. Then, if (Ak)∞k=1 is defined as in Lemma 4.9, we
obtain that

(4.3) Ap ⊂ (A \H) +
ζ

2
B.

Indeed, by the Hahn-Banach Theorem, it is enough to show that

sup{g,Ap} ≤ sup{g,A \H} +
ζ

2

for every g ∈ X \ {0} such that sup{g,B} = 1. Suppose that it is not the case. Then
we have sup{g,Ap} > sup{g,A\H} and so sup{g,C} > sup{g,D}. On the other hand,
η(D) ≤ η(A) ≤ 1 and 〈η〉′ε(C) = ∅ implies that η(C) < ε. So, by Lemma 4.9, for our
choice of p, we have

sup{g,Ap} − sup{g,D} ≤
ζ

4

(

sup{g,A} − sup{g,A \H}
)

≤
ζ

2
,

which leads to a contradiction.
Set first A0 = A. Assume 0 ≤ k ≤ p−1 and consider now G a weak∗-open halfspace such
that G

∗
∩Ak+1 is empty. Since D ⊂ Ak+1 we have G

∗
∩Ak∩D = ∅, so G

∗
∩Ak ⊂ H

∗
∩A

and thus 〈η〉nε (G
∗
∩Ak) ⊂ C. In particular, 〈η〉nε (G

∗
∩ 〈η〉′ε+δ/2(Ak|D)) is a subset of C.

So

〈η〉nε
(

G
∗
∩ 〈η〉′ε+δ/2(Ak|D)

)

⊂ G
∗
∩ C ∩ 〈η〉′ε+δ/2(Ak|D) ⊂ G

∗
∩Ak+1 = ∅.

We can now deduce from our induction hypothesis that for any ξ ∈ (0, 1)

〈η〉
1+N(ε,δ/2,ξ,n)
ε+δ/2 (Ak) ⊂ (〈η〉′ε+δ/2(Ak|D) \G) + ξB ⊂ (Ak \G) + ξB.

The above inclusion being true for any weak∗-open halfspace such that G
∗
∩Ak+1 = ∅,

it follows from the Hahn-Banach Theorem that

∀ξ ∈ (0, 1) 〈η〉
1+N(ε,δ/2,ξ,n)
ε+δ/2 (Ak) ⊂ Ak+1 + ξB.

Pick now ξ ∈ (0, 1) so that 2pξ ≤ ζ and 2pξ ≤ δ and let m = 1+N(ε, δ/2, ξ, n). Mixing
the former inclusion with Lemma 4.8 gives

〈η〉mε+δ(Ak +kξB) ⊂ 〈η〉m
ε+ δ

2
+kξ

(Ak +kξB) ⊂ 〈η〉m
ε+ δ

2

(Ak)+kξB ⊂ Ak+1 +(k+1)ξB.

Chaining these inclusions from k = 0 to k = p− 1 and using (4.3) we get that

〈η〉pmε+δ(A) ⊂ Ap + (ζ/2)B ⊂ A \H + ζB.

This concludes the proof of (4.2). �

The next proposition, which is a version of Lemma 2.7 for slice derivations, is a
consequence of the previous results. We shall see later that it applies to the ω-iterates
of the Kuratowski measure.

Proposition 4.11. Let η be a sublinear measure of non-compactness defined on a
dual Banach space X∗. Assume that the measure η satisfies the following additional
property: there exists a constant θ > 0 such that for any convex weak∗-compact subset
A of X∗, [η]ωε (A) = ∅ implies that 〈η〉ωθε(A) = ∅.
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Then for any convex weak∗-compact subset A of X∗, any ε > 0, any λ > θ and every
ordinal α we have

〈η〉ω.αλε (A) ⊂ 〈ηω〉αε (A).

Proof. It is enough to show that

〈η〉ωλε(A) ⊂ 〈ηω〉′ε(A)

since the general statement follows easily by iteration. Fix 0 < δ < ε(λ − θ). For any

weak∗-open halfspace H such that H
∗
∩ 〈ηω〉′ε(A) = ∅ we have 〈ηω〉′ε(H

∗
∩A) = ∅ and

so [η]ωε (H
∗
∩ A) = ∅. By the assumption, 〈η〉ωθε(H

∗
∩ A) = ∅ and by Lemma 4.10 we

have

〈η〉ωλε(A) ⊂ 〈η〉ωθε+δ(A) ⊂ A \H.

Since H was arbitrary, we get that 〈η〉ωλε(A) ⊂ 〈ηω〉′ε(A) as we wanted. �

5. Application to the Kuratowski measure of non-compactness.

In this section we will show that σωn
is convexifiable for every n ≥ 0 and then use

it together with the sublinearity of σωn
in order to compare the Szlenk index and the

convex Szlenk index of a Banach space.

First, we wish to recall some definitions.

Definition 5.1. Let X be a Banach space, K a weak∗-compact subset of X∗ and ε > 0.
We define Sz(K, ε) = inf{α, [σ]αε (K) = ∅} if it exists and Sz(K, ε) = ∞ otherwise.
Then Sz(K) := supε>0 Sz(K, ε).
Further we define Kz(K, ε) = inf{α, 〈σ〉αε (K) = ∅} if it exists and Kz(K, ε) = ∞
otherwise. We put Kz(K) := supε>0Kz(K, ε)
Denote now

A0
ε := K Aβ+1

ε := conv∗
(

[σ]′ε(A
β
ε )
)

and Aβ
ε :=

⋂

γ<β

Aγ
ε if β is a limit ordinal.

We set Cz(K, ε) = inf{β, Aβ
ε = ∅} if it exists and Cz(K, ε) = ∞ otherwise, and

Cz(K) := supε>0Cz(K, ε).
Finally we denote Sz(X) = Sz(BX∗) and Cz(X) = Cz(BX∗). The ordinal Sz(X) is
called the Szlenk index of X and Cz(X) is called the convex Szlenk index of X.

Note that for any ordinal α and all ε > 0

(5.4) [σ]α2ε(K) ⊂ sαε (K) ⊂ [σ]αε/2(K).

It follows that the above definitions of the Szlenk index and the convex Szlenk index
of a Banach space actually coincide with those given in the introduction. Moreover,
it follows from Lemma 2.8 that for any weak∗-compact and convex subset K of X∗,
Cz(K) = Kz(K) and it is clear that Cz(K) = Kz(K) ≥ Sz(K).

Let us first state an elementary fact, well known for the case η = σ and K = BX∗

(see [17] for the original idea, or [11]).
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Lemma 5.2. Let K be a convex weak∗-compact subset of a dual Banach space X∗ and
let η be a homogeneous and translation invariant measure of non-compactness on X∗.
Then

(i) For any ε > 0 and any ordinal α, 1
2 [η]αε (K) + 1

2K ⊂ [η]αε/2(K).

(ii) For any ε > 0, n ∈ N and any ordinal α, [η]αε (K) ⊂ [η]α.2
n

ε/2n(K).

(iii) If Sz(K) 6= ∞ and K 6= ∅, then there exists an ordinal α such that Sz(K) = ωα.

Proof. (i) Since K is convex, the statement is clearly true for α = 0. It also passes
easily to limit ordinals. So assume that it is satisfied for some ordinal α and consider
x∗ /∈ [η]α+1

ε/2 (K). Assume, as we may, that x∗ belongs to 1
2 [η]αε (K) + 1

2K and thus

by induction hypothesis to [η]αε/2(K). Then there exists a weak∗-neighborhood U of

x∗ such that η([η]αε/2(K) ∩ U
∗
) < ε/2. For any u∗ ∈ [η]αε (K) and v∗ ∈ K so that

2x∗ = u∗ + v∗, we have that W = 2U − v∗ is a weak∗-neighborhood of u∗ such that
η(W

∗
∩ [η]αε (K)) < ε. Indeed, we have by the definition of W and the inductive

hypothesis that 1
2(W

∗
∩ [η]αε (K)) + 1

2v
∗ ⊂ U

∗
∩ [η]αε/2(K), and η is homogeneous and

translation invariant. This shows that x∗ /∈ 1
2 [η]α+1

ε (K) + 1
2K.

(ii) It is enough to show that [η]αε (K) ⊂ [η]α.2ε/2(K). So let x∗ ∈ [η]αε (K). It follows

from (i) that 1
2x

∗ + 1
2K ⊂ [η]αε/2(K). Since η is translation invariant we deduce that

1
2x

∗ + [η]αε/2(12K) ⊂ [η]α.2ε/2(K). Finally we use the homogeneity of η to get that 1
2x

∗ ∈

[η]αε/2(12K) and therefore that x∗ ∈ [η]α.2ε/2(K).

(iii) This is an easy consequence of property (ii) applied to the Kuratowski measure
of non-compactness.

�

We will need to use special families of trees on N. Let us first recall the basic notation
and definitions about trees on N.
We denote N

<ω =
⋃∞

k=1N
k ∪ {∅}, where ∅ denotes the empty sequence. For a ∈ N

<ω,
we denote by |a| the length of a, which is defined by |a| = 0 if a = ∅ and |a| = k
if a = (n1, .., nk) ∈ N

k. There is a natural order ≤ on N
<ω defined as follows: for

a, b ∈ N
<ω, a ≤ b if a = ∅ or b = (n1, .., nj) ∈ N

j with j ∈ N and a = (n1, .., nk) with
k ≤ j. For a, b ∈ N

<ω, we say that b is a successor of a, or that a is the predecessor of
b if a ≤ b and |b| = |a|+ 1. If a = (n1, .., nk) and b = (m1, ..,mj), we denote by aab the

sequence (n1, .., nk,m1, ..,mj) (and aab = b if a = ∅, aab = a if b = ∅). For a ∈ N
<ω

and S a subset of N<ω, aaS denotes the set {aab, b ∈ S}.
A subset T of N

<ω is a tree on N if for any a in T and any b in N
<ω such that

b ≤ a, we have that b ∈ T . A subset B of a tree T is a branch of T if it is a
maximal totally ordered subset of T . For any tree T on N, its derivative is T ′ = T 1 =
{

s ∈ T : sa(n) ∈ T for some n ∈ N
}

. Then Tα is defined inductively for α ordinal as

follows: Tα+1 = (Tα)′ and Tα =
⋂

β<α T
β if α is a limit ordinal. A tree T is said to

be well founded if there exists an ordinal α such that Tα = ∅, or equivalently if all its
branches are finite. If T is a well founded tree on N, then its height is the infimum
of all α so that Tα = ∅ and is denoted o(T ). Note that the height of a non empty
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well founded tree on N is always a countable successor ordinal and that Tα = {∅} if
o(T ) = α + 1.

We are now ready to define our families of trees on N.

Definition 5.3. For each ordinal α < ω1 we define a family of trees Tα as follows. We
set T0 := {{∅}}. Let now α be a countable ordinal such that α ≥ 1.
If α = β + 1 is a successor ordinal we say that T ∈ Tα if there exists an increasing
sequence (nk)∞k=0 in N and a sequence (Tk)∞k=0 in Tβ such that

T = {∅} ∪
∞
⋃

k=0

(nk)aTk.

If α is a limit ordinal we say that T ∈ Tα if there exists an increasing sequence (nk)∞k=0
in N, an increasing sequence (αk)∞k=0 in [0, α) such that αk ր α and a sequence (Tk)∞k=0
such that Tk ∈ Tαk

for all k and

T = {∅} ∪
∞
⋃

k=0

(nk)aTk.

Remark 5.4. One can easily verify that for all α < ω1, Tα is indeed a family of trees
on N and that for all T ∈ Tα, o(T ) = α + 1.

Definition 5.5. Let T ∈ Tα for some ordinal α < ω1. Note that for s ∈ T 1, there exists
an increasing sequence in N that we denote (ns

k)∞k=1 such that the set of successors of

s in T is {sa(ns
k), k ∈ N}. Note also that, if s ∈ T β+1 for some β ∈ [1, α), then there

exists k0 ∈ N such that sa(ns
k) ∈ T β, for all k ≥ k0.

Then, we say that a family (x∗s)s∈T ⊂ X∗ is weak∗-continuous if x∗sa(ns
k
)

w∗

−→ x∗s as

k → ∞ for all s ∈ T 1. We say that it is ε-separated if ‖x∗s − x∗sa(ns
k
)‖ ≥ ε for all s ∈ T 1

and all k ∈ N.

Our first lemma follows from (5.4) and the classical characterization of the Szlenk
index in the separable case (see Lemma 3.4 in [10] for a non-separable version).

Lemma 5.6. Let X be a separable Banach space, K a weak∗-compact subset of X∗,
ε > 0 and α < ω1.

(i) If x∗ ∈ [σ]αε (K), then for any ρ < ε
4 there is T ∈ Tα and a family (x∗s)s∈T ⊂ K

which is weak∗-continuous and ρ-separated, such that x∗∅ = x∗.

(ii) If there exists T ∈ Tα and a family (x∗s)s∈T ⊂ K which is weak∗-continuous and
ε-separated, then x∗∅ ∈ [σ]αε (K).

Proof. (i) Let x∗ ∈ [σ]αε (K). By (5.4), we have that x∗ ∈ sαε/2(K). Then it is easy to

show by transfinite induction on α < ω1 that if x∗ ∈ sαδ (K) for some δ > 0, then for

any ρ < δ
2 there is T ∈ Tα and a family (x∗s)s∈T ⊂ K which is weak∗-continuous and

ρ-separated, such that x∗∅ = x∗.

(ii) One can prove by induction on β ≤ α that if s ∈ T β, then x∗s ∈ [σ]βε (K).
Alternatively, (ii) can also be proved directly by a transfinite induction on α. �



14 G. LANCIEN♣, A. PROCHÁZKA♦, AND M. RAJA♠

We need the following property of weak∗-continuous separated trees in X∗.

Lemma 5.7. Let X be a separable Banach space, α < ω1 and T ∈ Tα. Assume that
(x∗s)s∈T is a weak∗-continuous and ε-separated family in X∗ and that K is a weak∗-
compact subset of X∗ such that, for some 0 < a ≤ b < ∞ we have:

∀s ∈ T ∃λs ∈ [a, b] λsx
∗
s ∈ K.

Then there exists λ ∈ [a, b] such that λx∗∅ ∈ [σ]αaε(K) and for any ν > 0 there exists
S ⊂ T so that S ∈ Tα and |λs − λ| < ν for all s ∈ S.

Proof. The proof is a transfinite induction on α < ω1. The statement is clearly true
for α = 0. So let us assume that it is satisfied for all β < α.
Assume first that α is a limit ordinal. Then T = {∅} ∪

⋃∞
k=0(nk)aTk where Tk ∈ Tαk

for each k ∈ N, with nk ր ∞ and αk ր α. By our induction hypothesis, for all k ∈ N,
there exists λk ∈ [a, b] such that λkx

∗
(nk)

∈ [σ]αk
aε (K) and for any ν > 0 there exists

Sk ⊂ Tk so that Sk ∈ Tαk
and for all s ∈ Sk, |λs − λk| <

ν
2 . By taking a subsequence,

we may assume that λk → λ ∈ [a, b] and for all k, |λ− λk| <
ν
2 . Then λkx

∗
(nk)

w∗

−→ λx∗∅.

Since the sets [σ]αk
aε (K) are weak∗-closed, we get that λx∗∅ belongs to their intersection

and therefore to [σ]αaε(K). Moreover, S = {∅}∪
⋃∞

k=0(nk)aSk is a subset of T belonging
to Tα such that for all s ∈ S, |λ− λs| < ν.

Assume now that α = β + 1. Then T = {∅} ∪
⋃∞

k=0(nk)aTk where Tk ∈ Tβ for each
k ∈ N. By our induction hypothesis, for all k ∈ N, there exists λk ∈ [a, b] such that

λkx
∗
(nk)

∈ [σ]βaε(K) and for any ν > 0 there exists Sk ⊂ Tk so that Sk ∈ Tβ and for all

s ∈ Sk, |λ− λs| <
ν
2 . By taking a subsequence, we may assume that λk → λ ∈ [a, b]

and for all k, |λ− λk| <
ν
2 . Then λkx

∗
(nk)

w∗

−→ λx∗∅ and lim infk ‖λkx
∗
(nk)

− λx∗∅‖ ≥ aε.

Therefore λx∗∅ ∈ [σ]β+1
aε (K) = [σ]αaε(K). We also have that S = {∅} ∪

⋃∞
k=0(nk)aSk is

a subset of T belonging to Tα such that for all s ∈ S, |λ− λs| < ν. This finishes our
induction. �

We now deduce the following.

Proposition 5.8. Let X be a separable Banach space and A be a weak∗-compact subset
of X∗ such that [σωn

]mε (A) = ∅ for some integers n ≥ 0 and m ≥ 1. Then there is a
symmetric radial weak∗-compact set B containing A and such that

[σωn

]′7ε(B) ⊂
(

1 −
1

32(m + 1)

)

B.

Proof. Considering −A∪A instead of A and we may assume, without loss of generality,
that A is symmetric. Fix r ∈ (0, 1) such that 3(r+ r2) > 4 (for instance r = 7/8). Now
define the sets

Bk = {λx∗ : x∗ ∈ [σωn

]kε(A) ∪ rA, λ ∈ [0, 1]}

for k = 0, . . . ,m. The sets Bk are clearly symmetric and radial. Using the weak∗-
compactness of rA and [σωn

]kε(A) it is not difficult to see that they are also weak∗-
compact. Therefore, we can define the Minkowski functional fk of Bk which is weak∗
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lower semi-continuous. Notice that fk ≤ fk+1 and fm = r−1f0. We now define

f(x∗) =
1

2
f0(x

∗) +
r

2(m + 1)

m
∑

k=0

fk(x∗)

Clearly f ≤ f0 and so A ⊂ B where B = {f ≤ 1}. By construction, B is symmetric
and radial. It is also bounded. Then it follows from the weak∗ lower semi-continuity
of f that B is weak∗-compact.
Take now x∗ ∈ [σωn

]′7ε(B) and assume as we may that f(x∗) > 1
2 . By Lemma 2.7

and Lemma 5.6 there exist T ∈ Tωn and (x∗s)s∈T a weak∗-continuous and 3
2ε-separated

family in B such that x∗∅ = x∗. Fix ν > 0. First, it follows from the weak∗ lower semi-
continuity of f and the fk’s that we may assume, by considering a subtree of T belonging
to Tωn , that for all s ∈ T , f(x∗s) >

1
2 and for all s ∈ T and all k, fk(x∗s) ≥ fk(x∗) − ν.

On the other hand, for all j, k ≤ m, fj ≥ f0 ≥ rfk. It follows that for all k ≤ m,

f ≥ r+r2

2 fk and therefore for all y∗ ∈ B, fk(y∗) ≤ 2
r+r2 . Then, we have that

∀s ∈ T ∀k ∈ {0, ...,m} :
2

3
≤

r + r2

2
≤ fk(x∗s)−1 := λs

k ≤ 2.

Notice that {λs
kx

∗
s : s ∈ T} is included in [σωn

]kε(A) ∪ rA. Then it follows from Lemma

5.7 that for any k = 0, . . . ,m− 1, there exists λk ≥ r+r2

2 such that

λkx
∗ ∈ [σ]ω

n

ε ([σωn

]kε(A) ∪ rA) ⊂ [σωn

]′ε([σ
ωn

]kε(A) ∪ rA) ⊂ [σωn

]k+1
ε (A) ∪ rA.

The last inclusion follows from the fact that σωn
is a measure of non-compactness

(Lemma 2.6) and the stability of the associated fragment derivation under finite unions.
Still by Lemma 5.7, we can find S ⊂ T such that S ∈ Tωn and

∣

∣(λs
k)−1 − λ−1

k

∣

∣ < ν
for all s ∈ S and all k ≤ m− 1. Now since λkx

∗ ∈ Bk+1, we obtain

fk+1(x
∗) ≤ λ−1

k ≤ (λs
k)−1 + ν = fk(x∗s) + ν

for any k = 0, . . . ,m− 1 and any s ∈ S. We infer that for all s ∈ S

f(x∗) ≤
1

2
f0(x

∗
s) +

ν

2
+

r

2(m + 1)
f0(x

∗) +
r

2(m + 1)

m
∑

k=1

fk(x∗)

≤
1

2
f0(x

∗
s) +

r

2(m + 1)

m
∑

k=0

fk(x∗s) +
r

2(m + 1)

(

f0(x
∗
s) − fm(x∗s)

)

+
ν(r + 1)

2

= f(x∗s) −
r

2(m + 1)

(1

r
− 1

)

fm(x∗s) +
ν(r + 1)

2
≤ 1 −

1 − r

4(m + 1)
+

ν(r + 1)

2
.

Since ν > 0 was arbitrary, we obtain that f(x∗) ≤ 1 − 1−r
4(m+1) . Applying this last

inequality with r = 7
8 as we may, we conclude our proof. �

We now state and prove the main result of this section.

Theorem 5.9. Let X be a separable Banach space and σ be the Kuratowski measure
of non-compactness on X∗. Then, for any n in N, σωn

is convexifiable.
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Proof. We can proceed by induction. The claim is true for n = 0. Indeed, it is easily
checked that if a weak∗-compact subset A of X∗ can be covered by finitely many balls
of diameter at most ε, then for any δ > 0, conv∗(A) can be covered by finitely many
balls of diameter (1 + δ)ε.
Assume now that σωn

is convexifiable. Denote κn the convexifiability constant of σωn
.

Let A be a weak∗-compact subset of X∗ such that σωn+1

(A) < ε. Then [σωn
]mε (A) = ∅

for some m ∈ N. Combining Propositions 5.8 and 3.4 gives that [σωn
]ω8κnε(conv

∗(A)) ⊂

〈σωn
〉ω8κnε(conv

∗(A)) = ∅. Therefore σωn+1

(conv∗(A)) ≤ 8κnε. �

Remark 5.10. Notice that the constant of convexifiability increases in each step of the
induction. It follows from our proof that κn ≤ 2 · 8n. We do not know if this method
can be adapted beyond ωω.

We can now compare the Szlenk index and the convex Szlenk index.

Corollary 5.11. Let X be a separable Banach space.

(1) If K is a weak∗-compact convex subset of X∗ such that Sz(K) ≤ ωn+1 for some
non negative integer n, then Cz(K) = Sz(K).

(2) Cz(X) = Sz(X).

Proof. (1) Note first that it follows from Proposition 5.8, Theorem 5.9 and Proposition
3.4 that σωn

satisfies the assumptions of Proposition 4.11 with θ = 8κn.
Assume now that K is a weak∗-compact convex subset of X∗ such that Sz(K) ≤ ωn+1.
By Lemma 5.2, it is enough to show that Cz(K) ≤ ωn+1. It follows from Lemma 2.7
that for any ε > 0, [σωn

]ωε (K) = ∅. Pick now λn > 8κn,...,λ0 > 8κ0. By our initial
remark, we obtain that for any ε > 0, 〈σωn

〉ωλnε
(K) = ∅. Then applying Proposition

4.11 to σωn−1

, ..., σ successively implies that for any ε > 0, 〈σ〉ω
n+1

αε (K) = ∅, with
α = λ0..λn. We have proved that Kz(K) ≤ ωn+1, or equivalently that Cz(K) ≤ ωn+1.

(2) We may assume that Sz(X) < ∞ and, by Lemma 5.2 it is enough to show that
Cz(X) = ωα whenever Sz(X) = ωα, with α countable ordinal.

Assume first that α ≥ ω. We need to introduce a new derivation. For a weak∗-
compact convex subset K of X∗ and ε > 0, we define d′ε(K) to be the set of all x∗ ∈ K

such that for any weak∗-open halfspace H of X∗ containing x∗, the diameter of K ∩H
∗

is at least ε. Then dαε (K) is defined inductively for α ordinal as usual, Dz(K, ε) =
inf{α, dαε (K) = ∅} if it exists (and = ∞ otherwise) and Dz(K) = supε>0Dz(K, ε).
Finally Dz(X) := Dz(BX∗).
It is clear that for any weak∗-compact convex subset K of X∗ and any ε > 0, s′ε(K) ⊂
d′ε(K). Since d′ε(K) is weak∗-compact and convex, we have that the weak∗-closed
convex hull of s′ε(K) is included in d′ε(K). Then an easy induction combined with (5.4)
yields that Cz(K) ≤ Dz(K).
We now need to recall an important recent result of P. Hájek and T. Schlumprecht who
proved in [7] that if Sz(X) = ωα with α ∈ [ω, ω1), then Sz(X) = Dz(X). Since we
always have Sz(X) ≤ Cz(X) ≤ Dz(X), it follows that Cz(X) = Sz(X), whenever X
is Banach space such that Sz(X) = ωα with α ∈ [ω, ω1).

Assume now that Sz(X) = ωn, with n ∈ N. By applying (1) to K = BX∗ , we get
that Sz(X) = Cz(X). �
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Remark 5.12. Let us emphasize again the fact that the equality of the Szlenk index
and the convex Szlenk index of a Banach space is a direct consequence of the work of
Hájek and Schlumprecht, except for spaces with Szlenk index ωn with n finite. The
main result of this section fills this gap.

It is worth mentioning that Hájek and Schlumprecht also proved in [7] that if
Sz(X) = ωn with n finite, then Dz(X) ≤ ωn+1 and that this result is optimal (see [6]).

Our comparison extends to the non-separable setting as follows.

Corollary 5.13. Let X be a Banach space such that Sz(X) < ω1, where ω1 is the first
uncountable ordinal. Then Cz(X) = Sz(X).

Proof. Let α = Sz(X) < ω1. Then for any separable subspace Y of X, Sz(Y ) ≤ α.
Thus, Corollary 5.11 ensures that for any separable subspace Y of X, Cz(Y ) = Sz(Y ) ≤
α. Then, since α is countable, it follows from the techniques developed in [10] to
show the separable determination of such indices (see Propositions 3.1 and 3.2) that
Cz(X) ≤ α = Sz(X), which concludes the proof. �

6. Renorming spaces and Szlenk index

The aim of this section is to generalize the following theorem due to Knaust, Odell
and Schlumprecht [8] (see [4] for quantitative improvements and [14] for the extension
to the non-separable case).

Theorem 6.1. Let X be a separable Banach space such that Sz(X) ≤ ω. Then X
admits an equivalent norm, whose dual norm satisfies the following property: for any
ε > 0 there exists δ > 0 such that [σ]′ε(BX∗) ⊂ (1 − δ)BX∗ .

Note, that an easy homogeneity argument shows that the converse of this statement
is clearly true. A dual norm satisfying the conclusion of the above theorem is said
to be weak∗ uniformly Kadets-Klee (in short UKK∗). We now introduce the following
analogous definition.

Definition 6.2. Let X be a Banach space and α ∈ [0, ω1) an ordinal. The dual norm
on X∗ is ωα-weak∗ uniformly Kadets-Klee (in short ωα-UKK∗) if for any ε > 0 there
exists δ > 0 such that [σ]ω

α

ε (BX∗) ⊂ (1 − δ)BX∗ .

Our main renorming result is the following.

Theorem 6.3. Let X be a separable Banach space. Then Sz(X) ≤ ωα+1 if and only
if X admits an equivalent norm whose dual norm is ωα-UKK∗.

It is clear that a Banach space X with a dual ωα-UKK∗ norm satisfies Sz(X) ≤ ωα+1.
So we shall concentrate on the other implication. Before our proof we need a few
technical lemmas and definitions.

Lemma 6.4. Let 0 ≤ α < ω1, 0 < 2a < b and T ∈ Tα. Assume that A ⊂ B ⊂ X∗

are two weak∗-compact sets and that (x∗s)s∈T ⊂ B is a b-separated, weak∗-continuous
family such that dist(x∗s, A) < a for all s ∈ T . Then there exists S ∈ Tα, S ⊂ T and a
weak∗-continuous and (b− 2a)-separated family (y∗s)s∈S ⊂ A such that ‖x∗∅ − y∗∅‖ ≤ a.
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Proof. The proof goes by induction on α. The claim is clear when α = 0 so let us
assume that we have proved our assertion for every β < α. Then, there is a sequence
(αk) of ordinals in [1, α) (with αk ր α if α is a limit ordinal, αk + 1 = α if α is a
successor ordinal), and a sequence (nk) in N such that

T = {∅} ∪
⋃

k∈N

{

(nk)as : s ∈ Tk

}

,

where Tk ∈ Tαk
for all k ∈ N. It follows from our induction hypothesis, that for each

k ∈ N there exist a tree Sk ∈ Tαk
, Sk ⊂ Tk, and a weak∗-continuous and (b − 2a)-

separated family that we denote (y∗(nk)as)s∈Sk
⊂ A such that the roots y∗(nk)

of these

families satisfy ‖y∗(nk)
− x∗(nk)

‖ ≤ a. By passing to a subsequence, we may assume that

the roots y∗(nk)
of these families are such that y∗(nk)

w∗

−→ y∗∅. Then ‖y∗∅ − x∗∅‖ ≤ a and

‖y∗(nk)
− y∗∅‖ ≥ b− 2a. Finally, the tree

S = {∅} ∪
⋃

k∈N

{

(nk)as : s ∈ Sk

}

,

belongs to Tα and (y∗s)s∈S satisfies the desired properties. �

We shall now define inductively the class Lα(T ) of “converging” real valued functions
on a given tree T in Tα and their “limit” along T .

Definition 6.5. For T ∈ T0 and r : T → R we put limT r := lims∈T r(s) := r(∅). We
define L0(T ) = R

T . Let now α ∈ [1, ω1) and assume that the class Lβ(T ) has been
defined for all β < α and all T ∈ Tβ. Assume also that for all T ∈ Tβ and all r ∈ Lβ(T ),
lims∈T rs has been defined. Consider now T ∈ Tα and r : T → R. Then

T = {∅} ∪
⋃

(nk)aTk

with αk ր α if α is a limit ordinal, αk + 1 = α if α is a successor ordinal and for
all k ∈ N, Tk ∈ Tαk

. We say that r ∈ Lα(T ) if for all k ∈ N, r ↾Tk
∈ Lαk

(Tk) and
limk→∞ lims∈Tk

r(s) exists. Then we set limT r := lims∈T r(s) := limk→∞ lims∈Tk
r(s)

Observe that the existence and the value of limT r depends only on r ↾T\T ′ . The
following observations rely on straightforward transfinite inductions similar to the one
used in the proof of Lemma 5.7.

Lemma 6.6. Let α ∈ [0, ω1), T ∈ Tα and r : T → R.

(i) Assume that r ∈ Lα(T ) and that S ⊂ T with S ∈ Tα. Then r ↾S∈ Lα(S) and
limT r = limS r.

(ii) Assume that r : T → R is bounded. Then there exists S ⊂ T such that S ∈ Tα
and r ↾S∈ Lα(S).

(iii) Assume that r ∈ Lα(T ). Then for each ε > 0 there exists S ⊂ T such that
S ∈ Tα and for all s ∈ S \ S1, we have |r(s) − limT r| < ε.

We can now proceed with the proof of Theorem 6.3. We will adapt to this new
situation a construction of uniformly convex norms given in [9].
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Proof of Theorem 6.3. So let us assume that Sz(X) ≤ ωα+1. Then we get from Corol-
lary 5.11 that Cz(X) ≤ ωα+1. Fix k ∈ N. We define inductively for n ∈ N:

A0
k := BX∗ , An+1

k := conv∗
(

[σ]ω
α

2−k(An
k )
)

.

The fact that Cz(X) ≤ ωα+1 implies that for all k ∈ N, there exists n ∈ N such that
An

k = ∅. Then denote Nk := min{n ∈ N : An
k = ∅} − 1. We define

f(x∗) = ‖x∗‖ +

∞
∑

k=1

1

2kNk

Nk
∑

n=1

dist(x∗, An
k).

It is easily checked that the sets An
k are symmetric and convex. We define | | on X∗ to

be the Minkowski functional of the set C = {f ≤ 1}. Since ‖x∗‖ ≤ f(x∗) ≤ 2‖x∗‖, we
have that | | is an equivalent norm on X∗ satisfying ‖x∗‖ ≤ |x∗| ≤ 2‖x∗‖. Moreover,
the sets An

k are weak∗-closed. Therefore f is weak∗ lower semi-continuous and | | is the
dual norm of an equivalent norm on X, still denoted | |.

Let now ε > 0 and x∗ ∈ sω
α

ε (B| |) (the distances and diameters are meant with the
original norm ‖ ‖). Then there exist T ∈ Tωα and (x∗s)s∈T ⊂ B| | weak∗-continuous

and ε
2 -separated such that x∗∅ = x∗. For k ∈ N and l ≤ Nk, we define rlk : T → R by

rlk(s) := dist(x∗s, A
l
k).

Let k ≥ 1 such that ε
8 ≤ 2−k < ε

4 , ξ = ε
64Nk

and k0 > k such that
∑∞

i=k0
2−i < ξ

2kNk
.

By passing to a subtree, we may assume, using Lemma 6.6, that for all i < k0 and
all l ≤ Ni, rli ∈ Lωα(T ). So, for each i < k0 and 1 ≤ l ≤ Ni we denote dli :=

lim
s∈T

dist(x∗s, A
l
i). Then by using Lemma 6.6 (iii) and passing to a further subtree, we

may assume that for each i < k0 and each 1 ≤ l ≤ Ni we have
∣

∣d(x∗s, A
l
i) − dli

∣

∣ < ξ
2kNk

for all s ∈ T \ T 1. By the weak∗ lower semi-continuity of the distance functions this

implies that d(x∗s, A
l
i) ≤ dli + ξ

2kNk
for all s ∈ T . Note also that we have d(x∗, Al

i) ≤ dli.

Let now γ = ε
16Nk

= 4ξ.

Claim 6.7. There exists l ∈ {1, . . . , Nk} such that dist(x∗, Al
k) ≤ dlk − γ.

Proof of Claim 6.7. Otherwise for all l ∈ {1, . . . , Nk} we have dist(x∗, Al
k) > dlk − γ.

Then we will show by induction that for all l ≤ Nk, dlk < γl + ξ(l − 1).

For l = 1 we have that x∗ ∈ sω
α

2−k(B| |) ⊂ A1
k. Therefore d1k < γ.

If dlk < γl + ξ(l − 1) has been proved for l ≤ Nk − 1, we can use Lemma 6.4 with the

following values A = Al
k, B = B| |, a = dlk + ξ, b = ε

2 and replacing α with ωα. Notice

that a = dlk +ξ < (γ+ξ)l ≤ ε
8 = 1

4b. So there exists S ∈ Tωα and (y∗s)s∈S in Al
k which is

weak∗-continuous, ( ε2 − 2 ε
8 )-separated so that its root y∗ satisfies ‖y∗ − x∗‖ ≤ dlk + ξ <

(γ + ξ)l. Note that y∗ ∈ Al+1
k . It follows that dl+1

k − γ < dist(x∗, Al+1
k ) < (γ + ξ)l and

therefore dl+1
k < γ(l + 1) + ξl.

Now applying Lemma 6.4 with A = ANk

k , B = B| |, a = Nk(γ + ξ) ≤ ε
8 , b = ε

2
and replacing α with ωα, we produce a weak∗-continuous ( ε2 − 2 ε

8 )-separated tree of

height ωα in ANk

k which implies that [σ]ω
α

2−k(ANk

k ) 6= ∅. This contradiction proves our
claim. �
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We now conclude the proof of Theorem 6.3. Take any s ∈ T \ T 1. We recall

that dist(x∗s, A
l
j) > dlj −

ξ
2kNk

for all 1 ≤ j < k0 and 1 ≤ l ≤ Nj . With another

application of Lemma 6.6, we may also assume that for all s ∈ T \ T 1 we have that

‖x∗s‖ ≥ limt∈T ‖x∗t‖ −
ξ

2kNk
. We now have by our choice of k0, ξ and γ, by Claim 6.7

and the weak∗ lower semi-continuity of all involved terms, that for all s ∈ T \ T 1

f(x∗) = ‖x∗‖ +

k0−1
∑

j=1

1

2jNj

Nj
∑

n=1

dist(x∗, An
j ) +

∞
∑

j=k0

1

2jNj

Nj
∑

n=1

dist(x∗, An
j )

≤ lim
t∈Tωα

‖x∗t ‖ +



−
γ

2kNk
+

k0−1
∑

j=1

1

2jNj

Nj
∑

n=1

dnj



 +
ξ

2kNk

≤ ‖x∗s‖ +
ξ

2kNk
+



−
γ

2kNk
+

k0−1
∑

j=1

1

2jNj

Nj
∑

n=1

(dist(x∗s, A
n
j ) +

ξ

2kNk
)



 +
ξ

2kNk

≤ f(x∗s) −
ξ

2kNk
≤ 1 −

ε

2k64N2
k

≤ 1 −
ε2

29N2
k

.

We have shown that for any ε > 0 there exists δ(ε) > 0 such that f(x∗) ≤ 1 − δ(ε),
whenever x∗ ∈ sω

α

ε (B| |). Note now that f is 2-Lipschitz for ‖ ‖X∗ and that B| | ⊂ BX∗ .

So, for any x∗ ∈ sω
α

ε (B| |) and any t ∈ [1, 1 + δ(ε)
2 ], we have that

f(tx∗) ≤ f(x∗) + 2(t− 1) ≤ 1.

Therefore

∀x∗ ∈ sω
α

ε (B| |) |x∗| ≤
1

1 + δ(ε)
2

.

This proves that | | is a ωα-UKK∗ norm. �

Remark 6.8. As we have already mentioned, the Szlenk index of a separable Banach
space X is either ∞ (exactly when X∗ is non-separable) or of the form Sz(X) = ωα

with α < ω1. If α < ω1 is a successor ordinal, it is known since [16] that there exists
a countable compact metric space K such that Sz(C(K)) = ωα. Let us now mention
the complete description of the possible values of the Szlenk index recently obtained by
R. Causey ([3], Theorem 1.4). The set of all α < ω1 such that there exists a separable
Banach space X satisfying Sz(X) = ωα is exactly:

[0, ω1] \ {ωξ, ξ < ω1 and ξ is a limit ordinal}.

The case Sz(X) = ωα with α < ω1 limit ordinal is not covered by our renorming
theorem. There is a good reason for this. Indeed, in that case, for any β < ωα, β.ω <

ωα. Then the usual homogeneity argument makes it impossible to have sβε (BX∗) ⊂
(1 − δ)BX∗ for some δ > 0.
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