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A BOURGAIN-LIKE PROPERTY OF BANACH SPACES
WITH NO COPIES OF c¢o

A. PEREZ AND M. RAJA

ABSTRACT. We give a characterization of the existence of copiexofi Ba-
nach spaces in terms of indexes. As an application, we dedeweproofs of
James Distortion theorem and Bessaga-Petczynski thedoent aveakly un-
conditionally Cauchy series.

1. INTRODUCTION

The aim of this paper is to study the existence of copieg af Banach spaces
in terms of indexes and by purely geometrical methods. Ouivattton for this is
the beautiful characterization given by Bourgain [1, Len81ig p. 39] of Banach
spaces not containing}, as those satisfying that for every bounded suBset
X* and eacle > 0 there exist relatively weédkopen subsetds, ..., Uy of C such
that%(Ul-i- ...+Um) has diameter less than Several results concerning this
type of spaces follow from this, like the fact that their dualt ball (Bx+, w*) is
convex block compact [1, Proposition 3.11, p. 43].

We prove that a Banach spa¥edoes not contain an isomorphic copyagfif
and only if for every bounded subs&bf X and eacle > 0 there arexy, ..., Xnin
A such thaL; (A—x;) N (x; — A) has diameter less than Actually, we give
a quantitative version of this fact. We first associate to lanynded seA C X
a sequence of indexe¥,(A) (m > 0), beingdm(A) half of the infimum of all
diameters of set§)[L; (A—x;j) N (x; —A) wherexy, ..., Xm € A. Then, we prove
in Theoreni 2.5 that for each> 0 we can find a sequen¢®, )< in the absolute
convex hull ofA such that

(1) (Gn(A)—¢)- max A <

1<n<N

< &(A)- max |An|

1<n<N

N
Z AnXn
n=1

for everyAq,... Ay € R andN € N.

From the previous result we deduce the characterizatioran&Bh spaces con-
taining an isomorphic copy af mentioned above (Theordm B.1), as well as the
known theorems of James (Theorem 3.2) and Bessaga-Pétctyhsoreni 3.8)
without using basic sequences.

Our notation is standard and follows [5]. We denoteXbg real Banach space
with the norm|| - ||. Its topological dual will be denoted B¥*, and for any* € X*
andx € X the evaluation ox* atxis written as<*(x) = (x*,X) = (x,x*). The closed
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unit ball (resp. unit sphere) of is denoted byBx (resp. Sx). If D C X then
we write caD), aco(D) and spariD) to denote the convex hull, the absolutely
convex hull and the linear hull dd. The supremum o%* € X on D is denoted
by sup(x*,D). A sliceof D is a set of the forn§D,x*,d) := {x € D : xX*(x) >
sup(x*,D) — &} for somex" € X* andd > 0. Recall that theliameterof D is
defined as diarfD) := sup{||x—y||: x,y € D}.

2. INDEXES OF SYMMETRIZATION

Definition 2.1. Given AC X bounded, the symmetrized of A with respect to
X1,...,xn € A is defined ag\\_; (A—xn) N (% —A). For each Ne N we also
define:
AN(A) = {Nho1 (A= %) N (X —A) D Xq,..., Xn € AL
do(A) :=diam(A)/2, n(A) :=inf{d(D):D e An(A)}.

It is clear from the definition tha&tAn(A) : N € N} is an increasing sequence of
sets, and hend®n(A): N € N} is decreasing. We will writé., (A) :=limy on(A).
Let us point out that ik € A, thend € (A—Xx) N (Xx—A) is equivalent tox+d € A.
With this in mind, the following (useful) observations arieedt:

() If D € AN(A) is the symmetrized o with respect toky, ..., xN € A, then
for everyd € D the set(D —d) N (d— D) is the symmetrized o with
respecttog+d,...,xy+d € A. Inparticular(D—d)N(d—D) € Apn(A).

(I) Givenx* € X*, 0 > 0andx € S(A,x",0), everyd € D := (A—x) N (Xx—A)
satisfiegx* (x)| + |x*(d)| < supx*,A), so that|x*(d)| < d. In particular,
Xx+D C S(A,x*,29).
Recall that th&Kuratowski measure of non-compactnega setSc X is

a(S):=inf{e > 0: there are finitely many balls of radigsvhich coverS}.
Lemma 2.2. If A C X is bounded and [& Ay (A), thena (D) > dn(A).

Proof. Suppose that (D) < &, and letD1, ..., Dy, be afinite family of subsets &
whose union is equal 1 and such that eaddy is contained in a ball of radius less
thane. If D C To(D1), then dianiD) < 2¢ and sodn(A) < dn(A) < &(D) < &.
Otherwise, we can assume that there s & < n such that
(2) Dcco(DiU...UDy) and D Zto(D1U...UDm_1).
We can takeq; € Sx+ andd > 0 such that the slic§(D, x, 8) has empty intersec-
tion withTo(B1 U...UBm-1). We claim that for every & n < 1 it holds that
(3) S(D,x5,n0) C Dm+ n(1+diamD)Bx.
If d € S(D,x3,nd), then by [2) we can find’ := Adn+ (1 —A)cm where 0<
A <1,dn€Dpandcy € co(D1U...UDm-1) such thatfld —d'|| < n andd’ €
S(D, x5,0n). Sincexg(Cm) < sup(xj) — &, we deduce that
sup(Xp, D) — 16 < x5(d') = Axg(dm) + (1—A)x5(Cm) < sup(xp,D) — (1—A)d.
Thisyields 1- A < n, and so

|d — dm|| < [|d —d'[| +[|d" = dm|| <N + (1~ A)]|dm— Cml| < N(1+diamD).
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This proves the claim. By observations (I) and (Il), for gves € S(D, x5, r76/2)
the setDg := (D —dp) N (dp — D) belongs ta\xn (A) anddg + Do C S(D, X3, n9).
Hence, we get by {3) that

IN(A) < d(Do) < 2dlamS(D X0, N9) < €+ n(1+diamD).

Sincen > 0 is arbitrary, we conclude th&gn(A) < €. O

Remark 2.3. We are thankful to an anonymous referee for pointing out to us
that Lemma 2]2 can be obtained as a corollary of the so-caBgerlemma”

of Namioka and Bourgaif8, Chapter IX, p. 157]Indeed, under the assumption
(2) we can apply this result to the closed convex hull of D to abtaslice S=
S(D, xg, 0) of D with diameter smaller than the diameteraa@ D), which is less
than2e. Taking @ € S(D, X, 0/2) we can argue as in the last part of the proof of
LemmdZ.R to conclude the result.

Lemma 2.4. Let F C X be a finite-dimensional subspace and'IX bounded. If
a(D) > A > 0, then there existspe S-1 such thaisup(xg,D) > A

Proof. Suppose that everyj € S-. satisfies that supg,D) < A. By Hahn-
Banach Theorem we have thtC F + ABx. But thenD C uBg + ABx for
somep > 0, which implies thatr (D) < A by the compactness &. O

Theorem 2.5.Let AC X be bounded. For ever/> Othere is a sequenden ) e
in aco(A) such that

(4) (0N (A) —€) - max |An| <

- max |Ap|
1<n<N

1<n<N

N
Z nXn

for everyAs,...,An iINR and Ne€ N.

Proof. Write n = €/3. Fixxp € Ag:= A and putA; := (A—Xg)N(xo—A). By
Lemmd 2.2 we have that(A1) > &(A) —n, so Lemma 24 yields that there are
X1 € Ay andx; € Sx+ with X3 (x1) > sup(xl,Al) n > &(A) —2n. Suppose that
N > 1 and we have constructés;)N_, in Sx+, (xn)N_; in aco(A) and (An)N_;
subsets oK satisfying for each X n < N:

(@) Xn—1EAn C An_1 andAp € An-1(A).

(b) {x:1<k<n}Ckerx.

(€) Xa(%n) > SUP(Xy, An) =11 > On(A) —2n.
Put ANt = (An—Xn) N (XN — An) € An(A). By Lemmal2.2 we have that
a(An+1) > One1(A) — N1, SO using Lemma 214 we obtaig 1 € Any1 and
XN41 € Sk suchthafx: 1 <K< N} C kerx, 1 andxy 1 (Xn+1) > SUP(XN 1, AN+1) —
n > on:1(A) —2n. This finishes the inductive construction. Notice that dend
tions (a) and (c) imply that

(d) |x3(2)] < n wheneverze Any1.
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GivenN € N, we show now that the sequente)ncn satisfies[(¥). For every
0+# (An)N_; € RN we can write

N
Z AnXn
n=1

beingm such thatAm| = max{|An| : 1 < n < N}, sincexo + SN +x, € A. Fur-

thermore

N An * * )\n

Z A—Xn > (X, Xm) + (X, Z A—Xn> > Opm(A) —3n > dn(A) —3n,
n=1/'m m<n<N 7'M

where we have used (b), (c), (d) and the fact that

N

A
2 3

n=1

= [Am - < |Am| - %o(A)

?—”xn € co(Am+1), Which is a consequence of (a)
m

m<n<N

g

Corollary 2.6. Let AC X be bounded. For every > 0 there is a sequence in
(Xn)nen in @aco(A) such that

(O (A) — &) max|Ap| < < &(A) -max|Ay|
neN neN

00
Z AnXn
n=1

for every finitely supported sequen@g)ncy in R.

3. COPIES OFCy IN BANACH SPACES

Theorem 3.1.Let X be a Banach space. The following assertions are eqgnval

() cois notisomorphic to a subspace of X.
(il) &w(C)=0for every bounded set C X.
(iii) 0w (C) = Ofor every bounded, convex and closed set .

Proof. Implication (i)=(ii) is a consequence of Corollaky 2.6, while &iii) is
obvious. We just have to check that (##)i). Let T : cg — X be an isomorphism,
and consideA := T (Bg,). Givenay,...,ay € Aand 0< £ <1 we can findne N
such thata, + (1—€)T(ey) € A for every 1< n < N. This shows thady(A) >
(1—¢)/||T~1| for eachN € N. O

Whency is isomorphic to a subspace Hf it is also said thaX has a copy
of cp. It turns out that these spaces have indeed almost isoneefpies ofcy,
which means that for every > 0 we can find a closed subspace- X and an
isomorphisniT : cg — Y such that|T||||T~1|| < 1+¢.

Theorem 3.2(James) If X has a copy of & then it has almost isometric copies
of ¢o.

Proof. If co embedds intX then there exists a bounded et X with d»(A) >0
by Theoreni 3]1. It follows from the definition af (A) that for everye > 0 there
exists an elemer® € JyenyAn(A) such that

% (A) < 00(D) < (1+€)0a(A).
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Sincedw(A) < d-(D), we deduce thady(D) < (1+ €)d»(D), so an application
of Corollary(2.6 withD leads to the desired copy of. O

Another easy consequence is the Bessaga-Petzcynskiamiter the existence
of copies ofcy. Recall that a serieg x, in a Banach spack is said to be wuC
if >n[x"(xn)| converges for every* € X*, which by the Uniform Boundedness
Principle implies thag , [X*(xn)| is uniformly bounded fox* € By:-.

Theorem 3.3(Bessaga-Petczynski)f co ¢ X andy x, is wuC, then the series
is unconditionally convergent.

Proof. Consider the uniformly bounded sets given by

m
M:{z BnXn : B € {—1,1} for each 1§n§m}, A= U Anm.

n=1 meN

If X does not contain a copy @f, thend»(A) = 0, so givens > 0 we can find
ai,...,an € Awith

N
diam<ﬂ (A—aj)ﬁ(aj—A)> <E.
j=1
There isM € N such that{an : 1 <n <N} C Umem Am sonp,/':/M 6xn|| < € for
every6, € {—1,1} andM’ > M.

We finish with a non-symmetrized characterization of Bansjgdices with no
copies ofcg.

Proposition 3.4. A Banach space X does not contain an isomorphic copy f ¢
and only if for every bounded set®AX and eacke > O there are x,...,xy € A

such that N
diam(ﬂ (A—x,—)) <E.

j=1

Proof. The sufficiency of the condition is consequence of ThedrdinT see the
converse, assume that there exsts X ande > 0 such that any intersection like
in the statement has diameter greater or equal ¢h&iix an arbitraryxg € A and
then pickx; € (A—Xp) such that|x;|| > €. Consider the sef; := {xo,X0+ X1} C
A. Now we take

Xo € () (A—x) with [|[xo]| > & and Ax:=A1U(A1+X).
XeAL

Following in this way, we will have a sequen@g )ncny Of vectors of norm greater
or equal toe for n > 1 and set#\, C A of cardinality 2". Then consider

Xoi1 € (1) (A=) With [xqal| > € and  Anpai=AqU (X +An).
XEAR

Notice that the sum§N_; 6.x, are uniformly bounded independently Kfand
the choice o, € {—1,1}, since they are difference of two elementsfgf C A.
Now Theoreni 313 implies tha¢ contains a copy ofp. O
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4. REMARKS

Let A be a subset oX. Recall that are-tree inAis a a sequencgx,: n € N}
such that, = (Xon + Xon+1)/2 and||Xon — Xont1|| > € for everyn € N. The index
01(A) is directly related to existence @ftrees insideA. In fact, if 81(A) > ¢,
then we can construct &2ree inside ofA in the following way: fix anyx; € A.
Since diani(A—x1) N (X1 —A)) > 2¢, we can findu; € X such thatju; || > € and
X1t U1 € A. Putxy := X3 — U andxs := X1 + U1. Repeating this process wikh, X3
and the subsequent constructed points, we obtain the d&shteee. On the other
hand, it is clear that eversrtreeA’ satisfies thad, (A') > €/2. As a consequence,
we can conclude that a s&tC X contains nce-trees (for anye > 0) if and only
if &1(A") =0 for eachA’ C A. In particular, ifC is a closed and convex set having
the Radon-Nikodym Property (RNP), thépn(A) = O for everyA C C.

We say thakg € Ais ane-extreme poinof Aif diam((A—xg) N (Xo—A)) is less
than Z. Itis not difficult to see thaxg is an extreme point oA if and only if it is
e-extreme for everg > 0. As a consequence, K C X is a bounded, closed and
convex set having the Krein-Milman Property (KMP), th&ridC) = O for every
closed and convex s€tC K.

The previous notion reminds of the following concept introed by Kunen
and Rosenthal [6]xy € A is ang-strong extreme poirtdf A if there isd > 0 such
that whenevea;,ap € A and there exists a poiot=2Aa; + (1—A)ax (0< A < 1)
with [[Xo — u|| < 9, then|ju—ay|| < € or |lu—ay| < €. If Xg is e-strong extreme
for everye > 0, then we simply say that it is strong extreme pointlt is not
difficult to see that everg-strong extreme point of\ is an e-extreme point of
the same set. The converse is not true, since as it is pointad {6, Remark 3,
p. 173] every strong extreme point of a bounded, closed andexoset is also
an extreme point of iter(X**, X*)-closure (in the terminology of [4] we might
say that these af@eserved extreme pointsvhile there are, for instance, Banach
spaces wherBy has extreme points that are not extreme poinByof (see [4]).
With this formulation we have that K is a bounded, closed and convex set such
that everyA C K hase-extreme points for everg > 0 (i.e. 8;(A) = 0), then each
closed and convex s€&C K has ans-strong extreme point for every> 0 (see
[6, Proposition 3.2, p. 170]).
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