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CONVEX COMPACT SETS THAT ADMIT A LOWER

SEMICONTINUOUS STRICTLY CONVEX FUNCTION

L. GARCÍA-LIROLA, J. ORIHUELA, AND M. RAJA

Abstract. We study the class of compact convex subsets of a topological
vector space which admits a strictly convex and lower semicontinuous function.
We prove that such a compact set is embeddable in a strictly convex dual
Banach space endowed with its weak∗ topology. In addition, we find exposed
points where a strictly convex lower semicontinuous function is continuous.

1. Introduction

A well-known result of Hervé [6] says that a compact convex subset K ⊂ X of
a locally convex space is metrizable if and only if there exists f : K → R which
is both continuous and strictly convex. It happens that lower semicontinuity is
a very natural hypothesis for a convex function, so it is natural to wonder if the
existence of a strictly convex lower semicontinuous function on compact convex
subset K ⊂ X of a locally convex space enforces special topological properties on
K. Ribarska proved [16, 17] that such a compact is fragmentable by a finer metric,
and in particular it contains a completely metrizable dense subset. The third named
author proved [14] that the same is true for the set of its extreme points ext(K).
On the other hand, Talagrand’s argument in [2, Theorem 5.2.(ii)] shows that [0, ω1]
is not embeddable in such a compact set. In addition, Godefroy and Li showed [5]
that if the set of probabilities on a compact group K admits a strictly convex lower
semicontinuous function then K is metrizable.

Our purpose here is to continue with the study of the class of compact convex
subsets which admits a strictly convex lower semicontinuous function. We shall
denote this class by SC. The first remarkable fact that we have got is a Banach
representation result.

Theorem 1.1. Let X be a locally convex topological vector space and let K ⊂ X be

convex compact subset. Then there exists a function f : K → R which is both lower
semicontinuous and strictly convex if and only if K imbeds linearly into a strictly

convex dual Banach space Z endowed with its weak∗ topology.

Notice that the strictly convex norm of the dual Banach space in the statement is
weak* lower semicontinuous, which is a stronger condition that just being a strictly
convex Banach space isomorphic to a dual space.

If f : K → R is a strictly convex function, then the symmetric defined by

ρ(x, y) =
f(x) + f(y)

2
− f(

x+ y

2
)
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provides a consistent way to measure diameters of subsets of K. This idea was
successfully applied in renorming theory [9]. We will prove that every nonempty
subset ofK has slices of arbitrarily small ρ-diameter, we can mimic some arguments
of the geometric study of the Radon–Nikodým property which leads to results as
the following one.

Theorem 1.2. Let X be a locally convex topological vector space and let f : X → R

be lower semicontinuous, strictly convex and bounded on compact sets. Then for

every K ⊂ X compact and convex, the set of points in K which are both exposed

and continuity points of f |K is dense in ext(K).

The organization of the paper is as follows. In the second section we present
stability properties of the class SC, which allow us to prove the embedding The-
orem 1.1. The third and fourth sections are devoted to the search of faces and
exposed points of continuity, respectively. Finally, a characterization of the class
SC in terms of the existence of a symmetric with countable dentability index is
given in Section 5.

2. Embedding into a dual space

Along this section X will denote a locally convex topological vector space. Our
first goal is to study the properties of following class of compact sets.

Definition 2.1. The class SC(X) consists of all the nonempty compact convex
subsets K of X such that there exists a function f : K → R which is lower semi-
continuous and strictly convex. In addition, SC denotes the class composed of all
the families SC(X) for any locally convex space X .

Since a lower semicontinuous function on a compact space attains its minimum,
the function f is bounded below. Later we shall show that we may always take f
to be bounded. Notice that metrizable convex compacts admits continuous strictly
convex functions, so they are in the class. In particular, if X is metrizable then
SC(X) contains all the convex compact subsets of X . If X is a Banach space
endowed with its weak topology, then SC(X) is made up of all convex weakly
compact subsets as a consequence of the strictly convex renorming results for WCG
spaces.

Proposition 2.2. The class SC satisfies the following stability properties:

a) SC(X) is stable by translations and homothetics;

b) SC is stable by Cartesian products;

c) SC is stable by linear continuous images;
d) If A,B ∈ SC(X), then A+B ∈ SC(X).

Proof. Statement a) is obvious. To prove b) suppose that fi witnesses Ai ∈ SC(Xi)
for i = 1, . . . , n. Then

∑n
i=1 fi ◦ πi, where πi :

⊗n
i=1Xi → Xi is the coordinate

projection, witnesses that A1 × · · · ×An ∈ SC(
⊗n

i=1Xi).
To prove c) assume that A ∈ SC(X) and T : X → Y is linear and continuous.

Obviously T (A) is convex and compact. Let f : A → R be lower semicontinuous
and strictly convex. It is straightforward to check that the function g : T (A) → R

defined by
g(y) = inf

{

f(x) : x ∈ T−1(y)
}

does the work. Finally, d) follows by a combination of b) and c). �

We will need a kind of external convex sum of convex compact sets.

Definition 2.3. Given A,B ⊂ X convex compact define a subset of X×X×R by

A⊕B = {(λx, (1 − λ)y, λ) : x ∈ A, y ∈ B, λ ∈ [0, 1]} .
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Lemma 2.4. Let A,B ⊂ X be convex compact subsets. Then

a) A⊕B is a convex compact subset of X ×X × R;
b) if f : A→ R and g : B → R are convex, then h : A⊕B → R defined by

h
(

(λx, (1 − λ)y, λ)
)

= λf(x) + (1− λ)g(y)

is convex as well;
c) if A,B ∈ SC(X), then A⊕B ∈ SC(X ×X × R).

Proof. Compactness is clear in statement a). Given (λixi, (1 − λi)yi, λi) ∈ A ⊕ B
for i = 1, 2, just observe that

(

λ1x1 + λ2x2
2

,
(1− λ1)y1 + (1− λ2)y2

2
,
λ1 + λ2

2

)

=

(

λ1 + λ2
2

λ1x1 + λ2x2
λ1 + λ2

,
(

1−
λ1 + λ2

2

) (1− λ1)y1 + (1 − λ2)y2
(1− λ1) + (1 − λ2)

,
λ1 + λ2

2

)

(the case where λ1 = λ2 = 0, 1 can be handed in a different way). Thus, A⊕ B is
convex. For the convexity of function h notice that

h
(

(
λ1x1 + λ2x2

2
,
(1− λ1)y1 + (1− λ2)y2

2
,
λ1 + λ2

2
)
)

=
λ1 + λ2

2
f
(λ1x1 + λ2x2

λ1 + λ2

)

+

(

1−
λ1 + λ2

2

)

g
( (1− λ1)y1 + (1 − λ2)y2

(1− λ1) + (1 − λ2)

)

≤
λ1 + λ2

2

λ1f(x1) + λ2f(x2)

λ1 + λ2
+

(

1−
λ1 + λ2

2

)

(1− λ1)g(y1) + (1 − λ2)g(y2)

(1− λ1) + (1 − λ2)

=
1

2

(

h
(

(λ1x1, (1 − λ1)y1, λ1)
)

+ h
(

(λ2x2, (1 − λ2)y2, λ2)
))

.

If f and g were strictly convex, the above inequality for h would become strict if
x1 6= x2 or y1 6= y2. To overcome this difficulty consider the function

k
(

(λx, (1 − λ)y, λ)
)

= h
(

(λx, (1 − λ)y, λ)
)

+ λ2

and notice that λ2 provides the strict inequality when x1 = x2 and y1 = y2. �

Proposition 2.5. Suppose that A,B ∈ SC(X). Then conv(A ∪ B) ∈ SC(X) and
aconv(A) ∈ SC(X).

Proof. Consider the map T : X × X × R → X defined by T
(

(x, y, t)
)

= x + y
and observe that T (A ⊕ B) = conv(A ∪ B). Since T is linear and continuous,
the combination of the previous results gives us that conv(A ∪ B) ∈ SC(X). The
application to the symmetric convex hull follows by applying it with B = −A. �

Lemma 2.6. Let B ⊂ X be a symmetric compact convex set and let Z = span(B).
Then the following hold:

a) Z, with the norm given by the Minkowski functional of B, is isometric to

a dual Banach space;
b) B imbeds linearly into (Z,w∗);
c) if f : X → R is convex and lower semicontinuous, then f |Z is weak* lower

semicontinuous.

Proof. Notice that Z =
⋃∞

n=1 nB, and thus the Minkowski functional of B is a
norm on Z. Of course, B is the unit ball of Z endowed with this norm. By a
result of Dixmier-Ng, see for instance [10], the space Z is isometric to the dual of
the Banach space W of all linear functionals f on Z such that f |B is τ -continuous.
If f : X → R is convex and lower semicontinuous, then the sets {f ≤ a} are
convex and closed for any a ∈ R. We have {f |Z ≤ a} = {f ≤ a} ∩ Z, and thus
{f |Z ≤ a} ∩ nB = {f ≤ a} ∩ nB is compact, and so it is weak* compact as subset
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of Z for every n ∈ N. By the Banach-Dieudonné theorem, {f |Z ≤ a} is a weak*
closed subset of Z. �

Proof of Theorem 1.1. Let B = aconv(K) which is in SC(X). The function f
witnessing that B ∈ SC(X) is weak* lower semicontinuous and strictly convex. By
Lemma 2.6 we only need to renorm the dual space Z. Notice that the function f
can be taken symmetric and bounded. Indeed, for the symmetry just take g(x) =
f(x) + f(−x). Now apply the Baire theorem to the B =

⋃∞
n=1 g

−1((−∞, n]) to
obtain a set of the form λB with λ > 0 where g is bounded. Then redefine f as
f(x) = g(λx).

Without loss of generality we may assume that f takes values in [0, 1]. Consider
the function defined on BZ by

h(x) =
1

2
(3‖x‖+ f(x))

and consider the set C = {x ∈ BZ : h(x) ≤ 1}. Clearly 1
3
BZ ⊂ C ⊂ 2

3
BZ , and

C is convex, symmetric and weak* closed. Moreover, if h(x) = h(y) = 1, then
h
(

x+y
2

)

< 1. Therefore, C is the unit ball of an equivalent strictly convex dual
norm on Z. �

Corollary 2.7. If K ∈ SC(X), then it is witnessed by the square of a lower semi-
continuous strictly convex norm defined on span(K).

We shall finish this section by showing the connection between the class SC and
(∗) property. The following notion was introduced in [11] in order to characterize
dual Banach spaces that admit a dual strictly convex norm:

Definition 2.8. A compact space K is said to have (∗) if there exists a sequence
(Un)

∞
n=1 of families of open subsets of K such that, given any x, y ∈ K, there exists

n ∈ N such that:

a) {x, y} ∩
⋃

Un is non-empty;
b) {x, y} ∩ U is at most a singleton for every U ∈ Un.

Here we are using the agreement that
⋃

Un =
⋃

{U : U ∈ Un}. Recall that if
K is a subset of a locally convex topological vector space then a slice of K is an
intersection of K with an open halfspace. If the elements of

⋃∞
n=1 Un can be taken

to be slices of K, then K is said to have (∗) with slices. It is shown in [11, Theorem
2.7] that if Z is a dual Banach space then (BZ , w

∗) has (∗) with slices if and only
if Z admits a dual strictly convex norm.

Corollary 2.9. Let (X, τ) be locally convex topological vector space and K ⊂ X be

compact and convex. Then K ∈ SC(X) if and only if K has (∗) with slices.

Proof. By Lemma 2.6 we may assume that K ⊂ Z = span(K) has (∗) with weak*
slices. It follows from [11, Proposition 2.2] that then there is a lower semicontinuous
strictly convex function defined on K. On the other hand, assume that φ witnesses
K ∈ SC(X). For f ∈ (X, τ)∗ and r ∈ R, denote S(f, r) = {x ∈ K : f(x) > r}.
Consider the families {Uqr}q,r∈Q of open subsets given by

Uqr = {S(f, r) : f ∈ (X, τ)∗, S(f, r) ∩ {x : φ(x) ≤ q} = ∅} .

Let x 6= y be in K. We may assume that φ(x) ≤ φ(y). Since φ is strictly convex,
there exists q ∈ Q such that φ(x+y

2
) < q < φ(y). By the Hahn–Banach theorem,

there is f ∈ (X, τ)∗ and r ∈ Q such that sup{f(z) : φ(z) ≤ q} < r < f(y).
Therefore, S(f, r) ∩ {z : φ(z) ≤ q} = ∅ and {x, y} ∩

⋃

Uqr 6= ∅.
Suppose that x, y ∈ S(g, r) ∈ Uqr. Then g(x), g(y) > r implies g

(

x+y
2

)

> r.

Hence x+y
2

/∈ {z : φ(z) ≤ q}, a contradiction. So {x, y} ∩ S(g, q) is at most a
singleton for each S(g, q) ∈ Uqr. �
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3. Faces of continuity

We will assume along the section that Z =W ∗ is a dual Banach space endowed
with the weak∗ topology. Therefore any unspecified topological concept (compact,
open, . . . ) is always referred to the weak∗ topology. The elements of W will be
considered as functionals on Z. Other topological ingredient that we will use is a
symmetric ρ : Z × Z → [0,+∞). Recall that a symmetric satisfies ρ(x, y) = ρ(y, x)
and ρ(x, y) = 0 if and only if x = y. Since a symmetric does not satisfy the triangle
inequality, its associated topology is complicated to handle. Nevertheless we have
a natural notion of diameter associated to ρ defined by

ρ-diam(A) = sup{ρ(x, y) : x, y ∈ A}

Let us recall the definition of face of a convex set.

Definition 3.1. Let C ⊂ Z be closed and convex. We say that a closed subset
F ⊂ C is a face if there is a continuous affine function w : C → R such that

F = {x ∈ C : w(x) = sup{w,C}} .

In that case we say that the face is produced by w. In addition, we say that a point
x ∈ C is a exposed point of C if {x} is a face of C.

Sometimes the face is produced by an element of the dual. Nevertheless, there
may exist continuous affine functions on C that are not the restriction of an element
of the dual.

We shall need the following lemma.

Lemma 3.2 (Lemma 3.3.3 of [1]). Suppose that w ∈ W and ‖w‖ = 1. For r > 0
denote by Vr the set rBZ ∩ w−1(0). Assume that x0 and y are points of Z such
that w(x0) > w(y) and ‖x0 − y‖ ≤ r/2. If u ∈ W satisfies that ‖u‖ = 1 and

u(x0) > sup{u, y + Vr}, then ‖w − u‖ ≤ 2
r‖x0 − y‖.

First we shall discuss the dual Banach case.

Proposition 3.3. Let f : Z → R be a convex lower semicontinuous function which
is bounded on compact subsets. If K ⊂ Z is compact convex, then there exists a Gδ

dense set of elements of W producing faces where f |K is constant and continuous.

Proof. Define the pseudo-symmetric ρ by the formula

ρ(x, y) =
f(x)2 + f(y)2

2
− f

(x+ y

2

)2
.

We claim that ρ(x, y) = 0 implies f(x) = f(y) = f(x+y
2

) (in particular, if f
were strictly convex, ρ would be a symmetric). Indeed, it follows easily from this
observation

ρ(x, y) ≥
f(x)2 + f(y)2

2
−

(

f(x) + f(y)

2

)2

=

(

f(x)− f(y)

2

)2

≥ 0 .

Now we claim that the set G(K, ε) is open and dense in W for K ⊂ Z compact
convex and ε > 0, where

G(K, ε) = {w ∈W : ∃a < sup{w,K}, ρ-diam(K ∩ {w > a}) < ε} .

Suppose that w ∈ G(K, ε). If w′ ∈W is close enough to w to fulfill that

sup{w′,K} > sup {w′,K ∩ {w ≤ a}}

then w′ ∈ G(K, ε) as well. Thus G(K, ε) is open. In order to see that it is also
dense, fix w ∈ W and δ ≤ 1/4. Take x ∈ K and y ∈ Z with w(x) > a > w(y)
for some a ∈ R. Take r = sup {‖x′ − y‖, x′ ∈ K} /2δ, consider the set Vr given by
Lemma 3.2 and define the set C = conv(K ∪ (y + Vr)). By [14, Theorem 1.1], the
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halfspace {w > a} contains a point x0 ∈ ext(C) where f |C is continuous. Notice
that x0 ∈ ext(K) and ‖x0 − y‖ ≤ r/2. There exists u ∈ W and b ∈ R such that
u(x0) > b, C ∩ {u > b} ⊂ C ∩ {w > a} and ρ-diam(C ∩ {u > b}) < ε. In particular
ρ-diam(K ∩ {u > b}) < ε. Since C ∩ {u > b} does not meet y + Vr, we have
u(x0) > sup{u, y+Vr}. Thus, ‖w− u‖ ≤ 2

r‖x0 − y‖ ≤ δ. That completes the proof
of the density of G(K, ε) in W .

By the Baire theorem, the set G(K) =
⋂∞

n=1G(K, 1/n) is dense. If w ∈ G(K)
and s = sup{w,K} then

lim
t→s−

ρ-diam(K ∩ {w > t}) = 0 .

In particular, the face F = K ∩{w = s} satisfies that ρ-diam(F ) = 0. That implies
that f is constant on F . Moreover, we claim that any point x ∈ F is a point
of continuity of f |K . If (xα) ⊂ K is a net with limit x, then limα w(xα) = w(x).
Therefore limα ρ(xα, x) = 0. It follows that limα f(xα) = f(x), so f |K is continuous
at x. �

Now the above result can be translated into a more general setting.

Proposition 3.4. Let f : X → R be a convex lower semicontinuous function which

is bounded on compact subsets. Then for every compact convex subset K ⊂ X and

every open slice S ⊂ K, there is a face F ⊂ S of K such that f |K is constant and
continuous on F .

Proof. By Lemma 2.6, Z =
⋃∞

n=1 n aconv(K) is a dual Banach space and f |Z is
weak* lower semicontinuous. Then we can apply the previous proposition. �

It is clear that the last two results are true for countably many functions simul-
taneously.

Remark 3.5. We do not know if the function f in Proposition 3.3 and 3.4 can be
assumed to be defined only on K. Notice that if ‖ ‖ is a strictly convex norm on Z

then f(x) = −
√

1− ||x||2 is a strictly convex weak* lower semicontinuous function
on (BZ , w

∗) that cannot be extended to a convex function on Z.

4. Exposed points

Notice that if a strictly convex function is constant on a face of a compact K,
then necessarily that face should be an exposed point of K. Having this in mind,
Propositions 3.3 and 3.4 can be rewritten. As in the previous section Z = W ∗ is
a dual Banach space endowed with the weak∗ topology and we understood all the
topological notions referred to that topology.

Proposition 4.1. Let f : Z → R be a strictly convex lower semicontinuous function

which is bounded on compact subsets. If K ⊂ Z is compact convex, then there exists

a Gδ dense set of elements of W exposing points of K at which f |K is continuous.

Proof. It follows straightforward from Proposition 3.3. �

In particular, we retrieve the following result, which is usually proved in the
frame of Gâteaux Differentiability Spaces [13, Corollary 2.39 and Theorem 6.2].

Corollary 4.2 (Asplund, Larman–Phelps). Let Z be a strictly convex dual Banach

space. Then every convex compact is the closed convex hull of its exposed points.

Proof of Theorem 1.2. It follows straightforward from Proposition 3.4. �

Corollary 4.3. Assume that K ∈ SC(X). Then K is the closed convex hull of its

exposed points.
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Proof. Thanks to Theorem 1.1 it can be reduced to the previous corollary. �

Notice that the previous result is far from being a characterization. For instance,
consider X = C([0, ω1])

∗ and K = (BX , w
∗). Then X has the Radon–Nikodým

Property and thus there exist strongly exposed points of K [1, Theorem 3.5.4]. Nev-
ertheless, Talagrand’s argument in [2, Theorem 5.2.(ii)] shows that K /∈ SC(X,w∗).
Indeed, the result of Larman and Phelps mentioned aboved states that Banach
spaces for which each weak* compact convex subset has an exposed point are ex-
actly dual spaces of a Gâteaux Differentiability Space.

Remark 4.4. A point x in a subset C of a normed space (Z, ‖ ‖) is said to be a
farthest point in C if there exists y ∈ Z such that ‖y − x‖ ≥ sup{‖y − c‖ : c ∈ C}.
If ‖ ‖ is strictly convex then every farthest point of C is exposed by a functional in
Z∗. In addition, it was shown in [3] that there exists a weak* compact subset of ℓ1
that has no farthest points, so the existence of exposed points does not imply the
existence of farthest points. On the other hand, suppose that Z is a strictly convex
dual Banach space, C is a compact subset of Z and x is a farthest point in C with

respect to y ∈ Z. Consider the symmetric ρ(u, v) = ‖u−y‖2+‖v−y‖2

2
− ‖u+v

2
− y‖2.

Then x is a ρ−denting point of C, that is, admits slices with arbitrarily small ρ-
diameter. Indeed, if δ = ε

1+2‖x−y‖+2‖y‖ then every slice of C that does not meet

B(y, ‖y − x‖ − δ) has ρ-diameter less than ε.

Typically a variational principle provides strong minimum for certain functions
after a small perturbation. But in the compact setting, a lower semicontinuous
function already attains its minimum. Nevertheless, inspired by Stegall’s variational
principle [4, Theorem 11.6], we have obtained the following result.

Proposition 4.5. Suppose that K ∈ SC(X) and let f : K → R be a lower semi-

continuous function. Given ε > 0, there exists an affine continuous function w on

K with oscillation less than ε such that f + w attains its minimum exactly at one
point. Moreover, if X is a dual Banach space then w can be taken from the predual

with norm less than ε.

Proof. By the embedding it is enough to consider the Banach case. Let m be the
minimum of f and take M > 0 such that K ⊂MBX . Consider the compact set

H = {(x, t) : f(x) ≤ t ≤ m+ εM}

and take its convex closed envelop A. By Proposition 2.2, A ∈ SC(X × R).
The functional on X × R given by (0, 1) attains its minimum on A. Proposi-
tion 4.1 provides a small perturbation of the form (w, 1), with ‖w‖ < ε, attain-
ing its minimum on A at one single point (x0, t0). Notice that t0 = f(x0) and
f(x0) +w(x0) ≤ m+ εM . If y ∈ K, then either f(y) ≤ m+ εM and (y, f(y)) ∈ A,
or f(y) > m+ εM ≥ f(x0) + w(x0). �

5. Ordinal indices

Let K be a convex and compact subset of a locally convex topological vector
space and ρ a symmetric on K. We consider the following set derivations:

[K]′ε = {x ∈ K : x ∈ S slice of K ⇒ ρ-diam(S) ≥ ε} ;

〈K〉′ε = {x ∈ K : x ∈ U open ⇒ ρ-diam(S) ≥ ε} .

The iterated derived sets are defined as [K]α+1
ε = [[K]αε ]

′
ε, 〈K〉α+1

ε = 〈〈K〉αε 〉
′
ε

and intersection in case of limit ordinals. If there exists some ordinal such that
[K]αε = ∅, then we set Dzρ(K, ε) = min {α : [K]αε = ∅}. Otherwise, we take
Dzρ(K, ε) = ∞, which is beyond the ordinals. The ρ-dentability index of K is
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defined by Dzρ(K) = supε>0Dz(K, ε). The ρ-Szlenk index of K, Szρ(K), is de-
fined the same way. Obviously Szρ(K) ≤ Dzρ(K). Set derivations with respect
to a symmetric were introduced in [7] in order to characterize dual Banach spaces
admitting a dual strictly convex norm.

Proposition 5.1. Let K be a convex compact subset of a locally convex space.

Then the following assertions are equivalent:

a) K ∈ SC;
b) there exists a symmetric ρ on K such that Dzρ(K) ≤ ω;
c) there exists a symmetric ρ on K such that Dzρ(K) ≤ ω1.

Proof. Let f be a bounded function witnessing that K ∈ SC and assume that f
takes values in [0, 1]. For a fixed ε > 0, take N > 1/ε and define the closed convex
subsets Fn = {x ∈ K : f(x) ≤ 1− n/N} for n = 0, . . .N . Take

ρ(x, y) =
f(x) + f(y)

2
− f

(x+ y

2

)

.

We claim that [K]′ε ⊂ F1. Let x0 ∈ K r F1. By the Hahn–Banach theorem, there
exists a slice S of K such that x0 ∈ S and S∩F1 = ∅. If x, y ∈ S, then x+y

2
∈ S and

ρ(x, y) ≤ 1− (1− 1/N) = 1/N . Thus, ρ-diam(S) < ε and x0 /∈ [K]′ε. By iteration,
we get that [K]Nε ⊂ FN and hence [K]N+1

ε = ∅. Therefore, Dzρ(K, ε) < ω for each
ε > 0.

Now suppose that Dzρ(K) ≤ ω1. Notice that indeed Dzρ(K) < ω1. By Corol-
lary 2.9, it suffices to show that K has (∗) with slices. For each n ∈ N and
α < Dzρ(K, 1/n) consider the family

Un,α =
{

S : S slice of K, [K]α+1
1/n ∩ S = ∅, ρ-diam([K]α1/n ∩ S) < 1/n

}

.

Given distinct x, y ∈ K, take n so that ρ(x, y) > 1/n and let α be the least ordinal
such that {x, y} ∩ [K]α+1

1/n is at most a singleton. Then it is clear that there is a

slice in Un,α containing either x or y, and no slice in Un,α contains both points. �

Remark 5.2. By using deep results of descriptive set theory, Lancien proved in [8]
that there exists an universal function ψ : [0, ω1) → [0, ω1) such that Dz‖ ‖(BX∗) ≤
ψ(Sz‖ ‖(BX∗)) whenever X is a Banach space such that Sz‖ ‖(BX∗) < ω1. We do
not know if a similar statement holds when the norm is replaced by a symmetric.

We shall show that we cannot change symmetric by metric in Proposition 5.1.
That would imply that K is a Gruenhage compact, which is a strictly stronger
condition that being in SC [18, Theorem 2.4]. By [19, Lemma 7.1 and Proposition
7.4], a compact space K is Gruenhage if and only if there exist a countable set D,
a family of closed sets {Ad : d ∈ D} and families (Ud)d∈D of open sets such that
the family {Ad ∩ U : U ∈ Ud} is pairwise disjoint for each d ∈ D and the family
{Ad ∩ U : U ∈ Ud} separates the points of K.

Proposition 5.3. Let K be a compact space. Then the following assertions are
equivalent:

a) K is Gruenhage;
b) there exists a metric d on K such that Szd(K) ≤ ω;
c) there exists a metric d on K such that Szd(K) ≤ ω1.

Proof. If K is a Gruenhage compact space, then the same construction used in the
proof of [15, Theorem 2.8] provides a metric on K such that Szd(K) ≤ ω.

Now assume that d is a metric on K with countable Szlenk index. Let B =
⋃

m∈N Bm be a basis of the metric topology such that every Bm is discrete. Consider

the open sets Un,α
V =

⋃
{

U : U open, 〈K〉α
2−n

∩ U ⊂ V
}

and the families Un,α
m =
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{Un,α
V : V ∈ Bm}. Then {〈K〉α

2−n
∩ U : U ∈ Un,α

m } is pairwise disjoint for each
n,m ∈ N and α < Dz(K, 2−n). Given distinct x, y ∈ K take V ∈ Bm such that
x ∈ V and y /∈ V . Fix n such that Bd(x, 2

−n+1) ⊂ V . Let α be the least ordinal so
that x /∈ 〈K〉α+1

2−n
. Then there is an open subset U ofK such that x ∈ 〈K〉α

2−n
∩U and

diam(〈K〉α
2−n

∩U) ≤ 2−n. Thus x ∈ 〈K〉α
2−n

∩Un,α
V ⊂ V , so y /∈ 〈K〉α

2−n
∩Un,α

V . �
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compact convexe métrisable, C. R. Acad. Sci. Paris 253 (1961) 366–368.

[7] S. Ferrari, J. Orihuela, M. Raja: Weak metrizability of spheres, to apear.

[8] G. Lancien: On the Szlenk index and the weak*-dentability index, Quart. J. Math. Oxford

(2) 47 (1996), no. 185, 59–71.
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