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ASYMPTOTIC AND COARSE LIPSCHITZ STRUCTURES OF

QUASI-REFLEXIVE BANACH SPACES

G. LANCIEN♣ AND M. RAJA♠

Abstract. In this note, we extend to the setting of quasi-reflexive spaces
a classical result of N. Kalton and L. Randrianarivony on the coarse Lip-
schitz structure of reflexive and asymptotically uniformly smooth Banach
spaces. As an application, we show for instance, that for 1 ≤ q < p, a q-
asymptotically uniformly convex Banach space does not coarse Lipschitz
embed into a p-asymptotically uniformly smooth quasi-reflexive Banach
space. This extends a recent result of B.M. Braga.

1. Introduction.

We start this note with some basic definitions on metric embeddings.
Let (M,d) and (N, δ) be two metric spaces and f be a map from M into N .
We define the compression modulus of f by

ρf (t) = inf
{

δ(f(x), f(y)), d(x, y) ≥ t
}

,

and the expansion modulus of f by

ωf (t) = sup
{

δ(f(x), f(y)), d(x, y) ≤ t
}

.

We say that f is a Lipschitz embedding if there exist A,B in (0,∞) such that
ωf (t) ≤ Bt and ρf (t) ≥ At.
If the metric space M is unbounded, we say that f is a coarse embedding if
limt→∞ ρf (t) = ∞ and ωf (t) < ∞ for all t > 0. Note that if M is a Banach
space, we have automatically in that case that ωf is dominated by an affine
function.
We say that f is a coarse Lipschitz embedding if there exist A,B,C,D in
(0,+∞) such that ωf (t) ≤ Bt+D and ρf (t) ≥ At− C.
In order to refine the scale of coarse embeddings, E. Guentner and J. Kaminker
introduced in [6] the following notion. Let X and Y be two Banach spaces.
We define αY (X) as the supremum of all α ∈ [0, 1) for which there exists a
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1

http://arxiv.org/abs/1705.00577v1


2 G. LANCIEN♣ AND M. RAJA♠

coarse embedding f : X → Y and A,C in (0,∞) so that ρf (t) ≥ Atα − C for
all t > 0. Then, αY (X) is called the compression exponent of X in Y .

We now turn to the definitions of the uniform asymptotic properties of
norms that will be considered in this paper. For a Banach space (X, ‖ ‖)
we denote by BX the closed unit ball of X and by SX its unit sphere. The
following definitions are due to V. Milman [12] and we follow the notation
from [8]. For t ∈ [0,∞), x ∈ SX and Y a closed linear subspace of X, we
define

ρX(t, x, Y ) = sup
y∈SY

(

‖x+ ty‖ − 1
)

and δX(t, x, Y ) = inf
y∈SY

(

‖x+ ty‖ − 1
)

.

Then

ρX(t, x) = inf
dim(X/Y )<∞

ρX(t, x, Y ) and δX(t, x) = sup
dim(X/Y )<∞

δX(t, x, Y )

and

ρX(t) = sup
x∈SX

ρX(t, x) and δX(t) = inf
x∈SX

δX(t, x).

The norm ‖ ‖ is said to be asymptotically uniformly smooth (in short AUS) if

lim
t→0

ρX(t)

t
= 0.

It is said to be asymptotically uniformly convex (in short AUC) if

∀t > 0 δX(t) > 0.

Let p ∈ (1,∞) and q ∈ [1,∞).
We say that the norm of X is p-AUS if there exists c > 0 such that for all
t ∈ [0,∞), ρX(t) ≤ ctp.
We say that the norm of X is q-AUC if there exits c > 0 such that for all
t ∈ [0, 1], δX(t) ≥ ctq.
Similarly, there is in X∗ a modulus of weak∗ asymptotic uniform convexity
defined by

δ
∗

X(t) = inf
x∗∈SX∗

sup
E

inf
y∗∈SE

(

‖x∗ + ty∗‖ − 1
)

,

where E runs through all weak∗-closed subspaces of X∗ of finite codimension.
The norm of X∗ is said to be weak∗ uniformly asymptotically convex (in short

weak∗-AUC) if δ
∗

X(t) > 0 for all t in (0,∞). If there exists c > 0 and q ∈ [1,∞)

such that for all t ∈ [0, 1] δ
∗

X(t) ≥ ctq, we say that the norm of X∗ is q-weak∗-
AUC.

Let us recall the following classical duality result concerning these moduli
(see for instance [4] Corollary 2.3 for a precise statement).

Proposition 1.1. Let X be a Banach space.
Then ‖ ‖X is AUS if and and only if ‖ ‖X∗ is weak∗-AUC.
If p, q ∈ (1,∞) are conjugate exponents, then ‖ ‖X is p-AUS if and and only
if ‖ ‖X∗ is q-weak∗-AUC.
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The main purpose of this note is to extend to the quasi-reflexive case an
important result obtained by N. Kalton and L. Randrianarivony in [10] about
coarse Lipschitz embeddings into p-AUS reflexive spaces. In order to explain
their result, we need to introduce special metric graphs that we shall call
Kalton-Randrianarivony’s graphs. For an infinite subset M of N and k ∈ N,
we denote

Gk(M) = {n = (n1, .., nk), ni ∈ M n1 < .. < nk}.

Then we equip Gk(M) with the distance d(n,m) = |{j, nj 6= mj}|. The
fundamental result of their paper (Theorem 4.2 in [10]) can be rephrased as
follows.

Theorem 1.2. (Kalton-Randriarivony 2008) Let p ∈ (1,∞) and assume
that Y is a reflexive p-AUS Banach space. Then there exists a constant C > 0
such that for any infinite subset M of N, any f : (Gk(M), d) → Y Lipschitz
map and any ε > 0, there exists an infinite subset M′ of M, such that

diam f(Gk(M
′)) ≤ CLip(f)k1/p + ε.

We refer the reader to [10] and [9] for the various applications derived by
the authors. Very recently, B.M. Braga used the above theorem in [3] to
develop many other applications. We will only mention one of them in this
introduction (Corollary 4.5 in [3]).

Theorem 1.3. (Braga 2016) Let 1 ≤ q < p, X be a q-AUC Banach space
and Y be a p-AUS reflexive Banach space. Then αY (X) ≤ q/p.

We recall that a Banach space is said to be quasi-reflexive if the image of
its canonical embedding into its bidual is of finite codimension in its bidual.
The aim of this note is to obtain a version of the above Theorem 1.2 for
quasi-reflexive Banach spaces. This is done in section 2 and our main results
are Theorem 2.2 and Theorem 2.4. In section 3, we apply them in order
to extend some results from [3] to the quasi-reflexive setting, including the
above Theorem 1.3. Our applications are stated in Corollary 3.2, Theorem
3.5, Corollary 3.6 and Corollary 3.8.

2. The main result.

We first need the following simple property of the bidual of a Banach space
X, in relation with the modulus of uniform asymptotic smoothness of X.

Proposition 2.1. Let X be a Banach space. Then the bidual norm on X∗∗ has
the following property. For any t ∈ (0, 1), any weak∗-null sequence (x∗∗n )∞n=1

in BX∗∗ and any x ∈ SX we have:

lim sup
n→∞

‖x+ tx∗∗n ‖ ≤ 1 + ρX(t, x).

Proof. Let x in SX and ε > 0. By definition, there exists a finite codimensional
subspace Y of X such that

(1) x+ tBY ⊂ (1 + ρX(t, x) + ε)BX .
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There exist x∗1, .., x
∗
k ∈ X∗ such that

Y =

k
⋂

i=1

{x ∈ X, x∗i (x) = 0}.

Note that the weak∗-closure of Y in X∗∗ is

Y
w∗

= Y ⊥⊥ =
k
⋂

i=1

{x∗∗ ∈ X∗∗, x∗∗(x∗i ) = 0}.

By Goldstine’s Theorem we have that the weak∗-closures in X∗∗ of BY and
BX are respectively B

Y
w∗ and BX∗∗ . So, taking the weak∗-closures in (1) we

get that

x+ tB
Y

w∗ ⊂ (1 + ρX(t, x) + ε)BX∗∗ .

Since the sequence (x∗∗n )∞n=1 is weak∗-null, we have that for all i in {1, .., k},
limn→∞ x∗∗n (x∗i ) = 0. It follows easily that limn→∞ d(x∗∗n , B

Y
w∗ ) = 0. We

deduce, that for n large enough

x+ tx∗∗n ∈ (1 + ρX(t) + 2ε)BX∗∗ ,

which concludes our proof. �

We shall now give an analogue of Theorem 1.2 when Y is only assumed
to be quasi-reflexive and p-AUS for some p ∈ (1,∞). The idea is to adapt
techniques from a work by F. Nétillard [13] on the coarse Lipschitz embeddings
between James spaces. To this end, for M an infinite subset of N, we denote
Ik(M) the set of strictly interlaced pairs in Gk(M), namely :

Ik(M) =
{

(n,m) ∈ Gk(M)×Gk(M), n1 < m1 < n2 < m2 < ... < nk < mk

}

.

Note that for (n,m) ∈ Ik(M), d(n,m) = k. Our statement is then the follow-
ing.

Theorem 2.2. Let p ∈ (1,∞) and Y be a quasi-reflexive p-AUS Banach
space. Then there exists a constant C > 0 such that for any infinite subset
M of N, any f : (Gk(M), d) → Y ∗∗ Lipschitz and any ε > 0 there exists an
infinite subset M′ of M, such that

∀(n,m) ∈ Ik(M
′) ‖f(n)− f(m)‖ ≤ CLip(f)k

1

p + ε.

In fact, we will show a more general result, which follows the ideas of section
6 in [10]. Before to state it, we need some preparation. We briefly recall the
setting of section 6 in [10].
So let Y be a Banach space and denote by ρY its modulus of asymptotic
uniform smoothness. It is easily checked that ρY is an Orlicz function. Then
we define the Orlicz sequence space:

ℓρY =
{

x ∈ R
N, ∃r > 0

∞
∑

n=1

ρY
( |xn|

r

)

< ∞
}

,
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equipped with the norm

‖x‖ρY = inf
{

r > 0,

∞
∑

n=1

ρY
( |xn|

r

)

≤ 1
}

.

Next we construct a sequence of norms (Nk)
∞
k=1, where Nk is a norm on R

k,
as follows.
For all ξ ∈ R, N1(ξ) = |ξ|.
N2(ξ, η) = |η| if ξ = 0 and

N2(ξ, η) = |ξ|
(

1 + ρY
( |η|

|ξ|

))

if ξ 6= 0.

Then, for k ≥ 3, we define by induction the following norm on R
k:

Nk(ξ1, .., ξk) = N2

(

Nk−1(ξ1, .., ξk−1), ξk
)

.

The following property is proved in [10].

Proposition 2.3. For any k ∈ N and any a ∈ R
k:

Nk(a) ≤ e‖a‖ρY .

Fix now a = (a1, .., ak) a sequence of non zero real numbers and define the
following distance on Gk(M), for M infinite subset of N:

∀n,m ∈ Gk(M), da(n,m) =
∑

j, nj 6=mj

|aj |.

We can now state our general result, from which Theorem 2.2 is easily
deduced.

Theorem 2.4. Let Y be a quasi-reflexive Banach space, a = (a1, .., ak) a
sequence of non zero real numbers, M an infinite subset of N and let
f : (Gk(M), da) → Y ∗∗ be a Lipschitz map.
Then for any ε > 0 there exists an infinite subset M′ of M, such that

∀(n,m) ∈ Ik(M
′) ‖f(n)− f(m)‖ ≤ 2eLip(f)‖a‖ρY + ε.

Proof. Under the assumptions of Theorem 2.4, we will show that there exists
an infinite subset M′ of M, such that

∀(n,m) ∈ Ik(M
′) ‖f(n)− f(m)‖ ≤ 2Lip(f)Nk(a) + ε.

Then, the conclusion will follow from Proposition 2.3.
Since the graphs Gk(N) are all countable, we may assume that Y is sepa-

rable. We can write Y ∗∗ = Y ⊕ E, where E is finite dimensional.
We will prove our statement by induction on k ∈ N. It is clearly true for

k = 1, so assume it is true for k ∈ N and let a = (a1, .., ak+1) be a sequence of
non zero real numbers and f : (Gk+1(M), da) → Y ∗∗ be a Lipschitz map. Let
ε > 0 and fix η ∈ (0, ε2) (our initial choice of a small η will be made precise
later).
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Since Y is separable and quasi-reflexive, Y ∗ is also separable. So, using weak∗-
compactness in Y ∗∗, we can find an infinite subset M0 of M such that

∀n ∈ Gk(M0) w∗ − lim
nk∈M0

f(n, nk) = g(n) ∈ Y ∗∗.

Using the weak∗ lower semi continuity of ‖ ‖Y ∗∗ we get that the map
g : Gk(M0) → Y ∗∗ satisfies Lip(g) ≤ Lip(f). For n ∈ Gk(M0), we can write
g(n) = h(n) + e(n), with h(n) ∈ Y and e(n) ∈ E. It then follows from
Ramsey’s theorem and the norm compactness of bounded sets in E that there
exists an infinite subset M1 of M0 such that

∀n,m ∈ Gk(M1) ‖e(n)− e(m)‖ ≤ η.

For n,m ∈ Gk(M1) and t, l ∈ M1, set

un,m,t,l =
(

f(n, t)− g(n)
)

−
(

f(m, l)− g(m)
)

.

Since ‖ ‖Y ∗∗ is weak∗ lower semi continuous, we have that

‖un,m,t,l‖ ≤ 2Lip(f)|ak+1|.

On the other hand, it follows from our induction hypothesis that there exists
an infinite subset M2 of M1 such that

∀(n,m) ∈ Ik(M2) ‖g(n)− g(m)‖ ≤ 2Lip(f)Nk(a1, .., ak) + η.

Therefore

∀(n,m) ∈ Ik(M2) ‖h(n)− h(m)‖ ≤ 2Lip(f)Nk(a1, .., ak) + 2η.

Assume first that h(n) 6= h(m). Then it follows from Proposition 2.1 and the
fact that un,m,t,l is tending to 0 in the weak∗ topology, as t, l tend to ∞, that
there exists N(n,m) ∈ M2 such that for all t, l ∈ M2 satisfying t, l ≥ N(n,m):

‖h(n)− h(m) + un,m,t,l‖ ≤ ‖h(n)− h(m)‖
(

1 + ρY
( 2Lip(f)|ak+1|

‖h(n)− h(m)‖

)

)

+ η

≤ N2

(

‖h(n)− h(m)‖, 2Lip(f)|ak+1|
)

+ η.

Note that if h(n) = h(m), the above inequality is clearly true for all t, l ∈ M2.
Therefore, we have that for all (n,m) ∈ Ik(M2) there exists N(n,m) ∈ M2 such
that for all t, l ≥ N(n,m):

‖h(n)− h(m) + un,m,t,l‖ ≤ N2

(

2Lip(f)Nk(a1, .., ak) + 2η, 2Lip(f)|ak+1|
)

+ η

≤ 2Lip(f)Nk+1(a1, .., ak+1) +
ε

2
,

if η was initially chosen small enough.
So we have proved that for all (n,m) ∈ Ik(M2) there exist N(n,m) ∈ M2 such
that for all t, l ≥ N(n,m):

(2) ‖f(n, t)− f(m, l)‖ ≤ 2Lip(f)Nk+1(a1, .., ak+1) + ε.

We now wish to constructM′ infinite subset of M2 satisfying our conclusion.
For that purpose, for a finite subset F of N of cardinality at least 2k, we denote
Ik(F ) the set of all (n,m) ∈ Ik(N) such that n1 < m1 < .. < nk < mk ∈ F .
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Assume now M2 = {n1 < .. < nj < ..}. We shall define inductively the
elements of our set M′ = {m1 < ... < mj < ..}.
First, we setm1 = n1, ...,m2k = n2k. Then, for j > 2k, we definemj = nφ(j) >
mj−1 in such a way that for all (n,m) ∈ Ik({m1, ..,mj−1}) we have that
mj ≥ N(n,m). Then, it should be clear from equation (2) and the construction

of M′ that

∀(n,m) ∈ Ik+1(M
′) ‖f(n)− f(m)‖ ≤ 2Lip(f)Nk+1(a1, .., ak+1) + ε.

This finishes our induction. �

Remark. Suppose now that Y is a non reflexive Banach space and fix θ ∈
(0, 1). Then, James’ Theorem (see [7]) insures the existence of a sequence
(xn)

∞
n=1 in SX and a sequence (x∗n)

∞
n=1 in SX∗ such that

x∗n(xi) = θ if n ≤ i and x∗n(xi) = 0 if n > i.

In particular, for all n1 < .. < nk < m1 < .. < mk:

(3) ‖xn1
+ ..+ xnk

− (xm1
+ ..+ xmk

)‖ ≥ θk.

Define now, for k ∈ N and n ∈ Gk(N), f(n) = xn1
+ .. + xnk

. Then f is
clearly 2-Lipschitz. On the other hand, it follows from (3) that for any infinite
subset M of N, diam

(

f(Gk(M))
)

≥ θk. This shows that the conclusion
of Theorem 1.2 cannot hold as soon as Y is non reflexive. This obstacle
is overcome in our Theorems 2.2 and 2.4 by considering particular pairs of
elements in Gk(N) that are k-separated, namely the strictly interlaced pairs
from Ik(N). Note also that the pairs considered in our above application of
James’ Theorem are k-separated but at the “opposite” of being interlaced,
since n1 < .. < nk < m1 < .. < mk.

3. Applications.

Let us start with the following definitions.

Definition 3.1.
(i) A Banach space X has the Banach-Saks property if every bounded se-

quence in X admits a subsequence whose Cesàro means converge in norm.
(ii) A Banach space X has the alternating Banach-Saks property if for ev-

ery bounded sequence (xn)
∞
n=1 in X, there exists a subsequence (xnk

)∞k=1 of

(xn)
∞
n=1 and a sequence (εk)

∞
k=1 ∈ {−1, 1}N such that the Cesàro means of the

sequence (εkxnk
)∞k=1 converge in norm.

Our last remark of section 2 was used in [1] (Theorem 4.1), to show that if a
Banach space coarse Lipschitz embeds into a reflexive AUS Banach space, then
X is reflexive. This result, was recently improved by B.M Braga [3] (Theorem
1.3) who showed that actually X must have the Banach-Saks property (which
clearly implies reflexivity). As a first application of our result we obtain.

Proposition 3.2. Assume that X is a Banach space which coarse Lipschitz
embeds into a quasi reflexive AUS Banach space Y . Then X has the alternat-
ing Banach-Saks property.
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Proof. Since Y is AUS, there exists p ∈ (1,∞) such that Y is p-AUS. This a
consequence of a result of Knaust, Odell and Schlumprecht [11] in the sepa-
rable case and of the second named author for the general case [14].
Assume also that X does not have the alternating Banach-Saks property.
Then it follows from the work of B. Beauzamy (Theorem II.2 in [2]) that there
exists a sequence (xn)

∞
n=1 in X such that for all k ∈ N, all ε1, .., εk ∈ {−1, 1}

and all n1 < .. < nk:

(4)
1

2
≤

∥

∥

∥

1

k

k
∑

i=1

εixni

∥

∥

∥
≤

3

2
.

Assume now that X coarse Lipschitz embeds into Y . Then, after a linear
change of variable if necessary, there exists f : X → Y and A,B > 0 such
that

∀x, x′ ∈ X ‖x− x′‖ ≥
1

2
⇒ A‖x− x′‖ ≤ ‖f(x)− f(x′)‖ ≤ B‖x− x′‖.

We then define ϕk : (Gk(N), d) → X as follows:

ϕk(n) = xn1
+ ..+ xnk

, for n = (n1, .., nk) ∈ Gk(N).

We clearly have that Lip(ϕk) ≤ 3. Moreover, for n 6= m ∈ Gk(N) we have
‖ϕk(n)− ϕk(m)‖ ≥ 1. We deduce that for all k ∈ N, Lip(f ◦ ϕk) ≤ 3B.
It now follows from Theorem 2.2 that there exists a constant C > 0 such that
for all k ∈ N, there is an infinite subset Mk of N so that

∀(n,m) ∈ Ik(Mk) ‖(f ◦ ϕk)(n)− (f ◦ ϕk)(n)‖ ≤ Ck1/p.

On the other hand, it follows from (4) that for all (n,m) ∈ Ik(Mk), we have:
‖ϕk(n)− ϕk(m)‖ ≥ k. Therefore

∀(n,m) ∈ Ik(Mk) ‖(f ◦ ϕk)(n)− (f ◦ ϕk)(m)‖ ≥ Ak.

This yields a contradiction for k large enough.
�

In order to state some more quantitative results, we will need the following
definition.

Definition 3.3. Let q ∈ (1,∞) and X be a Banach space. We say that X
has the q-co-Banach-Saks property if for every semi-normalized weakly null
sequence (xn)

∞
n=1 in X there exists a subsequence (xnj

)∞j=1 and c > 0 such
that for all k ∈ N and all k ≤ n1 < .. < nk:

‖xn1
+ ...+ xnk

‖ ≥ ck1/q.

For the proof of the following result, we refer the reader to Proposition 4.6
in [9], or Proposition 2.3 in [3] and references therein.

Proposition 3.4. Let q ∈ (1,∞) and X be a Banach space. If X is q-AUC,
then X has the q-co-Banach-Saks property.

Using our Theorem 2.2 and adapting the arguments of Braga in [3] we
obtain.
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Theorem 3.5. Let 1 < q < p in (1,∞). Assume that X is an infinite
dimensional Banach space with the q-co-Banach-Saks property and Y is a p-
AUS and quasi reflexive Banach space. Then X does not coarse Lipschitz
embed into Y . More precisely, the compression exponent αY (X) of X into Y
satisfies the following.
(i) If X contains an isomorphic copy of ℓ1, then αY (X) ≤ 1

p .

(ii) Otherwise, αY (X) ≤ q
p .

Proof. We follow the proof of Theorem 4.1 in [3].

Assume first that X contains an isomorphic copy of ℓ1 and that αY (X) > 1
p .

Then there exists f : X → Y and θ,A,B > 0 and α > 1
p such that

∀x, x′ ∈ X ‖x− x′‖ ≥ θ ⇒ A‖x− x′‖α ≤ ‖f(x)− f(x′)‖ ≤ B‖x− x′‖.

Let (xn)
∞
n=1 be a sequence in X which is equivalent to the canonical basis of

ℓ1. We may assume, after a dilation, that there exists K ≥ 1 such that

∀a1, .., ak ∈ R, θ

k
∑

i=1

|ai| ≤
∥

∥

∥

k
∑

i=1

aixi

∥

∥

∥
≤ Kθ

k
∑

i=1

|ai|.

Then define ϕk : (Gk(N), d) → X by

ϕk(n) = xn1
+ ..+ xnk

, for n = (n1, .., nk) ∈ Gk(N).

We clearly have that Lip(ϕk) ≤ 2Kθ. Moreover, for n 6= m ∈ Gk(N) we have
‖ϕk(n)− ϕk(m)‖ ≥ 2θ. We deduce that for all k ∈ N, Lip(f ◦ ϕk) ≤ 2θKB.
It now follows from Theorem 2.2 that there exists a constant C > 0 such that
for all k ∈ N, there is an infinite subset Mk of N so that

∀(n,m) ∈ Ik(Mk) ‖(f ◦ ϕk)(n)− (f ◦ ϕk)(n)‖ ≤ Ck1/p.

On the other hand, for all (n,m) ∈ Ik(Mk), ‖ϕk(n)−ϕk(m)‖ ≥ 2kθ. Therefore

∀(n,m) ∈ Ik(Mk) ‖(f ◦ ϕk)(n)− (f ◦ ϕk)(m)‖ ≥ A2αθαkα.

This yields a contradiction if k was chosen large enough.

Assume now that X does not contain an isomorphic copy of ℓ1 and that
αY (X) > q

p . Then there exists f : X → Y , α > q
p and θ,A,B > 0 such that

∀x, x′ ∈ X ‖x− x′‖ ≥ θ ⇒ A‖x− x′‖α ≤ ‖f(x)− f(x′)‖ ≤ B‖x− x′‖.

Now, by Rosenthal’s theorem, we can pick a normalized weakly null sequence
(xn)

∞
n=1 in X. By extracting a subsequence, we may also assume that (xn)

∞
n=1

is a 2-basic sequence in X. We then define ϕk : (Gk(N), d) → X as follows:

ϕk(n) = 2θ(xn1
+ ..+ xnk

), for n = (n1, .., nk) ∈ Gk(N).

Note that Lip(ϕk) ≤ 4θ. Since (xn)
∞
n=1 is 2-basic, we have that for all n 6=

m ∈ Gk(N), ‖ϕk(n)−ϕk(m)‖ ≥ θ. Therefore Lip(f ◦ϕk) ≤ 4θB, for all k ∈ N.
It now follows from Theorem 2.2 that, for any k ∈ N, there exists an infinite
subset Mk of N such that

(5) ∀(n,m) ∈ Ik(Mk) ‖(f ◦ ϕk)(n)− (f ◦ ϕk)(m)‖ ≤ Ck1/p,
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where C > 0 is a constant independent of k.
We can make sure in our construction that for all k ∈ N, Mk+1 ⊂ Mk. Let now
M be the diagonalization of the sequence (Mk)

∞
k=1 and enumerate M = {r1 <

.. < ri < ..}. Denote zn = xr2n − xr2n+1
. By applying the q-co-Banach-Saks

property to the semi normalized weakly null sequence (zn)
∞
n=1, we can find a

subsequence (znj
)∞j=1 of (zn)

∞
n=1 and a constant d > 0 such that for all k ∈ N

and all k ≤ n1 < .. < nk:

‖
k

∑

j=1

znj
‖ = ‖

k
∑

j=1

(xr2nj
− xr2nj+1

)‖

= ‖ϕk(r2n1
, .., r2nk

)− ϕk(r2n1+1, .., r2nk+1)‖ ≥ dk1/q.

If k is chosen large enough so that dk1/q ≥ θ, we get that for all
k ≤ n1 < .. < nk:

‖(f ◦ ϕk)(r2n1
, .., r2nk

)− (f ◦ ϕk)(r2n1+1, .., r2nk+1)‖ ≥ Adαkα/q.

It is now important to note that, due to the diagonal construction of M, we
have that for k ≤ n1 < .. < nk, the pair

(

(r2n1
, .., r2nk

), (r2n1+1, .., r2nk+1)
)

is
an element of Ik(Mk). Therefore, this yields a contradiction with (5) if k is
chosen large enough. �

The following result is now a direct consequence of Theorem 3.5 and Propo-
sition 3.4.

Corollary 3.6. Let 1 < q < p < ∞. Assume that X is q-AUC and Y is a
p-AUS and quasi reflexive Banach space. Then

αY (X) ≤
p

q
.

For our next application, we need to recall the definition of the Szlenk
index. This ordinal index was first introduced by W. Szlenk [16], in a slightly
different form, in order to prove that there is no separable reflexive Banach
space universal for the class of all separable reflexive Banach spaces.
So, let X be a Banach space, K a weak∗-compact subset of its dual X∗ and
ε > 0. Then we define

s′ε(K) = {x∗ ∈ K, for any weak∗ − neighborhood U of x∗, diam(K ∩U) ≥ ε}

and inductively the sets sαε (K) for α ordinal as follows: sα+1
ε (K) = s′ε(s

α
ε (K))

and sαε (K) =
⋂

β<α s
β
ε (K) if α is a limit ordinal.

Then Sz(K, ε) = inf{α, sαε (K) = ∅} if it exists and we denote Sz(K, ε) = ∞
otherwise. Next we define Sz(K) = supε>0 Sz(K, ε). The Szlenk index of X
is Sz(X) = Sz(BX∗). We also denote Sz(X, ε) = Sz(BX∗ , ε).
We shall apply the following renorming theorem, which is proved in [5].

Theorem 3.7. Let q ∈ (1,∞) and X be a Banach space. Assume that there
exists C > 0 such that

∀ε > 0 Sz(X, ε) ≤ Cε−q.
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Then, for all r ∈ (q,∞), X admits an equivalent norm whose dual norm is
r-weak∗-AUC.

Since a dual norm which is r-weak∗-AUC is also r-AUC, we obtain the
following statement as an immediate consequence of our Theorem 3.7 and
Corollary 3.6.

Corollary 3.8. Let 1 < q < p < ∞. Assume that Y is a p-AUS and quasi
reflexive Banach space. Assume also that there exists C > 0 such that

∀ε > 0 Sz(X, ε) ≤ Cε−q.

Then

αY (X
∗) ≤

p

q
.

Aknowledgements.
The authors wish to thank F. Baudier and Th. Schlumprecht for pointing
out the application to the alternating Banach-Saks property. The first named
author also wants to thank for their hospitality the Universidad de Murcia
and the University of Texas A&M, where part of this work was completed.

References

[1] F. Baudier, N.J. Kalton, G. Lancien, A new metric invariant for Banach spaces, Studia
Math., 199, (2010), no. 1, 73–94.

[2] B. Beauzamy, Banach-Saks properties and spreading models, Math. Scand., 44, (1979),
357–384.

[3] B.M. Braga, Asymptotic structure and coarse Lipschitz geometry of Banach spaces,
Studia Math., 237, (2017), 71–97.

[4] S. Dilworth, D. Kutzarova, G. Lancien and L. Randrianarivony, Equivalent norms with
the property β of Rolewicz, Revista de la Real Academia de Ciencias Exactas, F́ısicas
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♠ Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo,

30100 Espinardo, Murcia, Spain

E-mail address: matias@um.es


	1. Introduction.
	2. The main result.
	3. Applications.
	References

