
ON UNIFORMLY CONVEX FUNCTIONS

G. GRELIER, M. RAJA

Abstract. Non-convex functions that yet satisfy a condition of uniform con-
vexity for non-close points can arise in discrete constructions. We prove that
this sort of discrete uniform convexity is inherited by the convex envelope,
which is the key to obtain other remarkable properties such as the coercivity.
Our techniques allow to retrieve Enflo’s uniformly convex renorming of super-
reflexive Banach spaces as the regularization of a raw function built from trees.
Among other applications, we provide a sharp estimation of the distance of a
given function to the set of differences of Lipschitz convex functions. Finally,
we prove the equivalence of several possible ways to quantify the super weakly
noncompactness of a convex subset of a Banach space.

1. Introduction

Along the paper, (X, ∥ · ∥) will be a real Banach space and we will follow the
standard notation that one can find in books such as [2, 12, 14, 21, 24]. However,
dealing with real functions defined on X, if there is not specific hypothesis on the
domain, we will follow the convention typical from Convex Analysis [4, 32] that
a function f is defined everywhere and takes values in R = R ∪ {−∞,+∞}. A
function f is said to be proper if f(x) > −∞ for all x ∈ X, and dom(f) := {x ∈
X : f(x) < +∞} ̸= ∅. In the following, all the functions are supposed to be
proper. However, some operations performed on proper functions could lead to
non-proper functions. The class of lower semicontinuous convex proper functions
on X will be denoted Γ(X). Note that, if nothing is said on the contrary, all
functions are supposed to be defined everywhere in X and proper.

Definition 1.1. Let ε > 0. A function f : X → R is said to be ε-uniformly
convex if there is δ > 0 such that whenever ∥x− y∥ ≥ ε, then

f

(
x+ y

2

)
≤ f(x) + f(y)

2
− δ.

The function is said to be uniformly convex if it is ε-uniformly convex for all ε > 0.

The suggestive name discrete uniformly convex functions applied to functions
which are ε-uniformly convex for some ε > 0 could be misleading here. Clearly,
a uniformly convex function is midpoint-convex, that is, the inequality f(x+y

2 ) ≤
f(x)+f(y)

2 holds whenever x, y ∈ X. Therefore, a uniformly convex function is
convex provided some regularity holds (e.g., if f is lower semicontinuous). The
notion of uniform convexity for functions was introduced by Levitin and Polyak
[23], and based on Clarkson’s uniform convexity for normed spaces [11]. Since
then, the properties of uniformly convex functions have been studied in several
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papers, notably [28, 29, 31, 1, 3, 5], the section 3.5 in Zalinescu’s book [32], and
part of chapter 5 in Borwein-Vaderwerff’s book [4] devoted to them. In relation to
the standard theory, let us point out the notion of modulus of uniform convexity

δf (ε) = inf

{
f(x) + f(y)

2
− f

(
x+ y

2

)
: x, y ∈ dom(f), ∥x− y∥ ≥ ε

}
.

Note that δf could take negative values unless f is supposed to be (midpoint-)
convex. Analogously, it is possible to define ε-uniformly concave functions, how-
ever it will not be necessary to treat them here because all the theory extends
trivially.

In this paper, we are focused in ε-uniformly convex functions for a fixed ε > 0
for which the usual convexity assumption is not longer assumed. That is
the main issue we have to deal with here and the reason to do it is that non-convex
ε-uniformly convex functions may arise in relation with some discrete construc-
tions, starting from trees or barely convex sets. Nonetheless, ε-uniformly convex
functions have nice properties. Along the paper, f̆ will denote the lower semicon-
tinous convex envelope of a function f (also denoted conv(f) in some references).
The next result shows the global behaviour of ε-uniformly convex functions and
the relative stability of minimizers by linear perturbations.

Theorem 1.2. Let f be an ε-uniformly convex function such that f̆ is proper.
Then f is bounded below and coercive, more precisely we have

lim inf
∥x∥→+∞

f(x)

∥x∥2
> 0.

Moreover, for any ε′ > ε there exist δ, η > 0 such that if given x∗0 ∈ X∗ and x0 ∈ X
with

f(x0) + x∗0(x0) < inf(f + x∗0) + δ,

and x∗ ∈ X∗ such that ∥x∗ − x∗0∥ < η and x ∈ X that minimizes f + x∗, then

∥x−x0∥ ≤ ε′. The existence of such minimizer pair (x, x∗) is guaranteed if f = f̆ .

The proof of the former result relies in the possibility of “making convex” an
ε-uniformly convex function without loosing the ε-uniformly convexity. We will
say that a function f is ε+-uniformly convex if it is ε′-uniformly convex for every
ε′ > ε. We have the following result.

Theorem 1.3. Let f be ε-uniformly convex and assume that f̆ is proper. Then
f̆ is ε+-uniformly convex.

Simple examples, such as Example 2.6, show that the ε-uniformly convexity of
f does not guarantee that f̆ would be proper. In order to fulfil that requirement
in terms of f , we direct the reader to Corollary 5.1. Suppose now that we already
have a proper lower semicontinuous convex and ε-uniformly convex function f . We
wonder if we could “upgrade” f to a new function sharing those properties and,
besides, being locally Lipschitz (global Lipschitzness is not allowed for uniformly
convex functions). In that sense, we have the following result.

Theorem 1.4. Let f ∈ Γ(X) be ε-uniformly convex. Then there exists an equiv-
alent norm ||| · ||| on X such that the function x → |||x|||2 is ε+-uniformly convex on
the subsets of dom(f) where f is bounded above. Moreover, the norm ||| · ||| can be
taken as close to ∥ · ∥ as we wish.



ON UNIFORMLY CONVEX FUNCTIONS 3

We want to point out that in the previous theorem we get ε+ even in the case
that the function f in the hypothesis should be convex. If f were uniformly con-
vex, then a series of ε-uniformly convex norms for different ε’s going to 0 would
produce an equivalent norm whose square is uniformly convex on bounded subsets
of dom(f).

It turns out that supporting a convex continuous ε-uniformly convex function
is actually a geometrical-topological property of the domain. It is known that
a Banach space admits a uniformly convex function bounded on bounded sets if
and only if it is super-reflexive. The second named author proved in [27] that a
closed convex bounded set admits a bounded continuous uniformly convex func-
tion if and only if it is super weakly compact (SWC for short). We will give the
actual definition of SWC set in Section 6, however we can provide an alternative
one on a provisional basis: a bounded closed convex set is SCW if and only if
for all ε > 0 there is Nε ∈ N such that the height of any ε-separated dyadic tree
is bound by Nε. Recall that a dyadic tree of height n ∈ N is a set of the form
{xs : |s| ≤ n}, indexed by finite sequences s ∈

⋃n
k=0{0, 1}k of length |s| ≤ n, such

that xs = 2−1(xs⌢0 + xs⌢1) for every |s| < n, where {0, 1}0 := {∅} indexes the
root x∅ and the symbol “⌢” stands for concatenation. We say that a dyadic tree
{xs : |s| ≤ n} is ε-separated if ∥xs⌢0 − xs⌢1∥ ≥ ε for every |s| < n.

Our techniques allow us to give a very precise quantitative version of the rela-
tion between containment of separated trees and supporting a uniformly convex
function for a set.

Theorem 1.5. Let C ⊂ X be a closed bounded convex set. Then these two
numbers coincide:

(a) the infimum of the ε > 0 such that there is a common bound for the heights
of all the ε-separated dyadic trees;

(b) the infimum of the ε > 0 such that there is a bounded ε-uniformly convex
(and convex, Lipschitz. . . ) function defined on C.

As we will see later, the quantities given by the previous theorem can be used
as measures of super weak noncompactness. Note that the combination of The-
orem 1.5 and Theorem 5.6 applied to the ball of a Banach space produces yields
the famous Enflo’s renorming theorem of super-reflexive spaces. At this point, we
want to stress that we barely get Enflo’s but not Pisier’s, see [12] for instance,
because we are mainly focused on “ε” (the separation of dyadic trees) instead of
“δ” (the quality of the modulus of convexity). The importance of Enflo’s result
motivated us to offer to the reader a more direct proof based on our arguments.

A couple of comments on the contents of this paper. We will consider the more
general notion of ε-uniformly convexity with respect to a metric d, instead of the
norm, or even a pseudometric. Namely, let d be a pseudometric defined on dom(f)
(that we will always assume uniformly continuous with respect to ∥·∥ by technical
reasons). Given ε > 0, we say that f is ε-uniformly convex with respect to d if
there is δ > 0 such that if d(x, y) ≥ ε then

f

(
x+ y

2

)
≤ f(x) + f(y)

2
− δ
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(the modulus δf is defined likewise). With this definition Theorem 1.3, Theo-
rem 1.4 and Theorem 1.5 are still true provided that dom(f) is bounded. It
is known that the dual notion of uniform convexity is the uniform smoothness
[1, 32, 3], however, we will not discuss Fenchel duality here for ε-uniformly convex
functions. That will be eventually done in a subsequent paper.

The structure of the paper is the following. The second section deals with basic
properties of ε-uniformly convex and ε-uniformly quasi-convex functions, mostly
under the hypothesis of convexity. A few examples are given to show that the
definitions do not guarantee some additional nice properties. The third section
is devoted to the proof of Theorem 1.3 that will allow the reduction to the con-
vex case of other results. The construction of uniformly convex functions form
scratch (trees and sets) is done in the fourth section. The fifth section treats
general properties of ε-uniformly convex functions and the possibility of adding
more properties like Lipschitzness or homogeneity (renorming). We also prove an
estimation of the approximation by differences of convex functions. In the sixth
section, we prove the equivalence of several measures of super weak noncompact-
ness for convex sets. We also propose a measure of super weak noncompactness
for bounded sets and we study its behaviour by convex hulls. In the last section
we will sketch an understandable proof of Enflo’s uniformly convex renorming of
super-reflexive spaces theorem based on the ideas exposed along the paper.

2. Basic properties and examples

We will discuss in this section results of almost arithmetical nature. The first
proposition contains some easy facts whose proof is left to the reader.

Proposition 2.1. Let ε > 0 and let f be an ε-uniformly convex function. Then:

(1) If g is convex, then f + g is ε-uniformly convex with δf+g ≥ δf .
(2) The supremum of finitely many ε-convex functions is ε-convex too.
(3) If f ≥ 0, then f2 is ε-uniformly convex.
(4) The lower semicontinuous envelope of f is ε-uniformly convex.

Recall that the infimal convolution of two functions f, g is defined as

(f □ g)(x) = inf{f(x− y) + g(y) : y ∈ X}, for x ∈ X.

Proposition 2.2. Let f1, f2 be two convex functions such that f1 is ε1-uniformly
convex and f2 is ε2-uniformly convex for ε1, ε2 > 0. Then f1□ f2 is (ε1 + ε2)-
uniformly convex with modulus min{δf1(ε1), δf2(ε2)}.

Proof. Given x1, x2 ∈ dom(f1□ f2) = dom(f1)+dom(f2) with ∥x1−x2∥ ≥ ε1+ε2
and η > 0 we may find y1, y2 ∈ dom(f2) such that

f1(x1 − y1) + f2(y1) < (f1□ f2)(x1) + η,

f1(x2 − y2) + f2(y2) < (f1□ f2)(x2) + η.

We have

∥(x1 − y1)− (x2 − y2)∥+ ∥y1 − y2∥ ≥ ∥x1 − x2∥ ≥ ε1 + ε2.

Therefore, one of the inequalities either

∥(x1 − y1)− (x2 − y2)∥ ≥ ε1 or ∥y1 − y2∥ ≥ ε2
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Figure 1. Geometric interpretation of Proposition 2.3.

holds. Assume the first one does (the other case is similar)

(f1□ f2)

(
x1 + x2

2

)
≤ f1

(
x1 + x2

2
− y1 + y2

2

)
+ f2

(
y1 + y2

2

)
≤ f1(x1 − y1) + f1(x2 − y2)

2
− δf1(ε1) +

f2(y1) + f2(y2)

2

≤ (f1□ f2)(x1) + (f1□ f2)(x2)

2
− δf1(ε1) + η

which implies the statement as η > 0 was arbitrary.

Now we will discuss some properties of the modulus of uniform convexity in the
classic case, that is, when the function is assumed to be also convex. The following
property can be deduced easily with the help of a picture.

Proposition 2.3. Let f be convex and ε > 0. Then

(1− t)f(x) + tf(y)− f((1− t)x+ ty) ≥ 2δf (ε)min{t, 1− t}
whenever x, y ∈ dom(f), ∥x− y∥ ≥ ε and t ∈ [0, 1].

Proof. Without loss of generality we may assume t ∈ [0, 1/2] so t = min{t, 1− t}.
Note now that

(1− t)x+ ty = (1− 2t)x+ 2t
x+ y

2
.

By convexity of f we have

f((1− t)x+ ty) ≤ (1− 2t)f(x) + 2tf

(
x+ y

2

)
≤ (1− 2t)f(x) + 2t

(
f(x) + f(y)

2
− δf (ε)

)
= (1− t)f(x) + tf(y)− 2tδf (ε)

as wished.

The gage of uniform convexity is introduced in [28] (see also [32, p. 203]) for
convex function as

pf (ε) = inf

{
(1− t)f(x) + tf(y)− f((1− t)x+ ty)

t(1− t)
: 0 < t < 1, ∥x− y∥ ≥ ε

}
.

Corollary 2.4. For any convex function f defined on X and ε > 0, we have

2δf (ε) ≤ pf (ε) ≤ 4δf (ε).
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Figure 2. Example 2.5.

Proof. The first inequality is a consequence of Proposition 2.3 together with the
fact that min{t, 1 − t} ≥ t(1 − t), for t ∈ R. The second inequality follows just
taking t = 1/2.

Therefore, for convex functions, ε-uniformly convexity can be expressed as
pf (ε) > 0. The gage of uniform convexity has the following remarkable prop-
erty

pf (λε) ≥ λ2pf (ε)

whenever ε ≥ 0 and λ ≥ 1, see [32, Proposition 3.5.1] and note that the proof
does not requiere the uniform convexity of f . In particular ε → ε−2pf (ε) is a non
decreasing function.

Now we will discuss some examples showing the limitations of the notions we
are dealing with.

Example 2.5. f(x) = |x2 − 1/9| is a continuous nonconvex 1-uniformly convex
function on R.

Proof. This can be deduced by inspection of the drawing (see Figure 2). A more
detailed computation shows that δ = 1/36.

Example 2.6. A (proper) ε-uniformly convex function may have a non-proper
lower semicontinuous convex envelope.

Proof. Take a function f which is finite and unbounded below on B(0, ε/3) and
takes the value +∞ outside. By the very definition, f is ε-uniformly convex and
necessarily f̆ = −∞ on B(0, ε/3).

Example 2.7. A uniformly convex continuous function taking finite values which
is unbounded on a bounded convex closed set.

Proof. The function will be defined on ℓ2. Firstly note that ∥x∥2 is uniformly
convex. Consider the convex function h : R → R defined by

h(t) = max{0, t− 1/2,−t− 1/2}.
The series g(x) =

∑∞
n=1 nh(xn), for x = (xn) ∈ ℓ2, defines a convex continuous

function. Indeed, at each point, only a finite number of summands can be positive
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at once. The continuity comes from the fact that the same is true on any ball of
radius less than 1. Now, the function f(x) = ∥x∥2+g(x) is continuous, unbounded
on Bℓ2 and, by Proposition 2.1, it is also uniformly convex.

The following notions will be useful in relation with ε-uniform convexity.

Definition 2.8. Let f : X → R be a function. Then f is said to be:

(1) quasi-convex if

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}

for every x, y ∈ X and λ ∈ [0, 1].
(2) ε-uniformly quasi-convex if, for a given ε > 0, there is some δ > 0 such

that

f

(
x+ y

2

)
≤ max{f(x), f(y)} − δ

whenever x, y ∈ X with ∥x− y∥ ≥ ε (or d(x, y) ≥ ε for a pseudometric d).
(3) uniformly quasi-convex if it is ε-uniformly quasi-convex for every ε > 0.

Whereas the notion of quasi-convexity is well known, our definition of uniform
quasi-convexity is weaker than the one given in [29]. As with convexity, the mid-
point version does not implies the “λ-version” unless some regularity (e.g. lower
semicontinuity) is assumed. The following result shows one relation between the
quantified versions of uniform convexity and uniform quasi-convexity for functions.

Proposition 2.9. Let ε > 0 and let f ≥ 0 be a convex and ε-uniformly quasi-
convex function. Then f2 is ε-uniformly convex.

Proof. The following inequality can be checked easily: if for some real numbers
a, b, c we have a+ b ≥ 2c ≥ 0 then

(1)

(
a+ b

2
− c

)2

+

(
a− b

2

)2

≤ a2 + b2

2
− c2.

Assume ∥x − y∥ ≥ ε and let δ > 0 be given by the definition of ε-uniform quasi-
convexity. If |f(x)− f(y)| > δ the previous inequality implies

f(x)2 + f(y)2

2
− f

(
x+ y

2

)2

≥ δ2

4
.

On the other hand, if |f(x)− f(y)| ≤ δ then

f

(
x+ y

2

)
≤ max{f(x), f(y)} − δ ≤ f(x) + f(y)

2
− δ

2

and thus

f(x)2 + f(y)2

2
− f

(
x+ y

2

)2

≥ δ2

4

using again the inequality (1).

Example 2.10. A uniformly quasi-convex non-convex (concave) function.

Proof. Take f(x) = x for x < 0, and f(x) = x/2 for x ≥ 0.
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3. Convexifying the ε-uniform convexity

In order to cover previous developments around finite dentability [26] we will
consider uniformly convex functions with respect to a pseudometric d defined on
the domain of f . The norm of the Banach space will still play an important
role and we requiere that d be uniformly continuous with respect to the norm.
Therefore, along this section we will assume that ε-uniform convexity refers to d.
We will refer as d-diameter of a subset in X ×R the diameter with respect to d of
the projection of the set onto X. Let ϖ be the modulus of uniform continuity (the
standard symbol is “ω” but we are using it as the first countable ordinal later),
that is, the following inequality holds

d(x, y) ≤ ϖ(∥x− y∥)
and limt→0+ ϖ(t) = 0.

Proposition 3.1. Let f be a function and let ε > 0. Then

(1) If f is ε-uniformly convex then every slice of epi(f) disjoint from epi(f +
δf (ε)) has d-diameter less than ε.

(2) If f ∈ Γ(X) and there is δ > 0 such that every slice of epi(f) disjoint from
epi(f + δ) has d-diameter less than ε then f is ε-uniformly convex with
modulus δf (ε) ≥ δ/2.

Proof. For the first statement, assume that (x, f(x)), (y, f(y)) belong to such a
slice. The separation from epi(f + δf (ε)) implies

f(x) + f(y)

2
< f

(
x+ y

2

)
+ δf (ε)

and so d(x, y) < ε. On the other hand, let δ > 0 as in statement 2 and take
x, y ∈ X such that the following inequality holds

f(x) + f(y)

2
− f

(
x+ y

2

)
<

δ

2
.

It implies that
(
x+y
2 , f(x)+f(y)

2

)
does not belong to epi(f + δ/2). We may take an

affine function h such that h < f + δ/2 and h(x+y
2 ) > f(x)+f(y)

2 . It is evident that
either f(x) < h(x) or f(y) < h(y). We may assume without loss of generality that
the first inequality holds as the scenario is symmetric for x and y. Now we have

f(y) < 2h

(
x+ y

2

)
− f(x) = h(x) + h(y)− f(x) < h(y) +

δ

2
.

That implies both (x, f(x)) and (y, f(y)) belong to the slice defined by h+ δ/2

S = {(x, t) ∈ epi(f) : t < h(x) + δ/2}.
By our choices, we have S ∩ epi(f + δ) = ∅ and thus d(x, y) < ε by the hypothesis.
We deduce in this way that δ/2 ≤ δf (ε).

Corollary 3.2. Let ε > 0 and let f be a convex and ε-uniformly convex function.
Then

f(x) ≤
n∑

k=1

λkf(xk)− δf (ε)

whenever x, x1, . . . , xn ∈ dom(f) satisfy that d(x, xk) ≥ ε and x =
∑n

k=1 λkxk
with λk ≥ 0 and

∑n
k=1 λk = 1.
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Proof. If the inequality does not hold, then (x,
∑n

k=1 λkf(xk)) does not belong
to epi(f + δf (ε)) so it can be separated from that set with a slice. Necessarily, one
of the points (xk, f(xk)) belongs to the slice. That implies that the d-diameter of
the slice is at least ε which contradicts the previous proposition.

The following result is based on the techniques of the geometrical study of the
Radon–Nikodym property (RNP), see [6]. Note that the technique works only on
bounded domains.

Lemma 3.3. Let ε > 0 and let f be a bounded below function with bounded
domain. Let m > 0 be an upper bound for the norm diameter of dom(f) and let
τ > 0 be such that τ/m < 1. Assume that the set

{x ∈ X : f(x) < inf f + δ}
has d-diameter less than ε. Then the set

{x ∈ X : f̆(x) < inf f + δτ/m}
has d-diameter less than ε+ 2ϖ(τ).

Proof. Consider the sets

A = {(x, r) ∈ X × R : f(x) ≤ r < inf f + δ};
B = {(x, r) ∈ X × R : r ≥ inf f + δ, f(x) ≤ r}.

Note that the epigraph of f is A ∪ B. Consider their closed convex hulls Ă =
conv(A) and B̆ = conv(B) and note that conv(Ă ∪ B̆) is dense in the epigraph of

f̆ . Assume that (x, r) ∈ conv(Ă∪B̆) and r < inf f+δτ/m. There is λ ∈ [0, 1] such

that (x, r) = λ(y, t) + (1− λ)(z, s) where (y, t) ∈ Ă and (z, s) ∈ B̆. The condition
λt+ (1− λ)s < inf f + δτ/m implies 1− λ < τ/m. Indeed, suppose 1− λ ≥ τ/m.
As s ≥ inf f + δ, then

(1− λ)s ≥ (1− λ) inf f + δτ/m

On the other hand, λt ≥ λ inf f . Adding these inequalities we get λt+ (1− λ)s ≥
inf f + δτ/m, which contradicts the assumption. Therefore

∥x− y∥ = ∥(λ− 1)y + (1− λ)z∥ = (1− λ)∥y − z∥ < τ.

In order to estimate the d-diameter of

S = {(x, t) : x ∈ X, f̆(x) ≤ t < inf f + δτ/m},

we may consider only points on the dense set S∩conv(Ă∪B̆). Therefore, consider

(x1, r1), (x2, r2) ∈ conv(Ă ∪ B̆) with r1, r2 < inf f + δτ/m. The convex decompo-

sition above shows that for some λ1, λ2 ∈ [0, 1] and points (y1, t1), (y2, t2) ∈ Ă and

(z1, s1), (z2, s2) ∈ B̆ we have

(x1, r1) = λ1(y1, t1) + (1− λ1)(z1, s1),

(x2, r2) = λ2(y2, t2) + (1− λ2)(z2, s2).

By the previous estimations, we have ∥x1− y1∥, ∥x2− y2∥ ≤ τ , which implies that
d(x1, y1), d(x2, y2) ≤ ϖ(τ), and thus, by the assumption on A,

d(x1, x2) ≤ d(x1, y1) + d(y1, y2) + d(x2, y2) ≤ ε+ 2ϖ(τ)

as desired.
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We will deal now with the transfer of the ε-uniform convexity property to the
lower semicontinuous convex envelope. Note that ε-uniform convexity is referred
to a uniformly continuous pseudometric, however we require the hypothesis that
the domain be norm bounded.

Theorem 3.4. Let ε > 0 and let f be a bounded below ε-uniformly convex function
with bounded domain . Then f̆ is ε+-uniformly convex and given ε′ > ε, the
modulus of convexity δf̆ (ε

′) depends only on ε′, δf (ε), ϖ and the norm diameter

of dom(f).

Proof. Letm an upper bound for the diameter of dom(f) and δ > 0 the parameter
given by the definition of ε-uniform convexity. Take τ > 0 such that τ/m < 1.

We will estimate the d-diameter of any slice of epi(f̆) not meeting epi(f̆ + δτ/m).
Suppose that the slice is given by x∗ ∈ X∗. Note that the estimation of the d-
diameter of the slice we need is equivalent to the same for an horizontal slice of
epi(f̆−x∗) not meeting epi(f̆−x∗+δτ/m), which is the same as taking the points

of epi(f̆−x∗) whose scalar coordinate is less than inf(f̆−x∗)+δτ/m. Since f̆−x∗

equals the convex envelope of the function f − x∗, which is ε-uniformly convex
with parameter δ, the set

{x ∈ X : f(x)− x∗(x) < inf(f − x∗) + δ}

has diameter less than ε by Proposition 3.1. The previous lemma applies to get
that

{x ∈ X : f̆(x)− x∗(x) < inf(f − x∗) + δτ/m}

has diameter less than ε+ 2ϖ(τ). Thanks to Proposition 3.1, it follows that f̆ is
ε + 2ϖ(τ)-uniformly convex. Given ε′ > ε, we only have to set τ > 0 such that
2ϖ(τ) < ε′ − ε.

The following result is the key to deal with unbounded domains.

Proposition 3.5. Let ε > 0 and let f be an ε-uniformly convex function such
that f̆ is proper. Then the value of f̆(x) for x ∈ dom(f) depends only on the set
of values {f(y) : ∥y−x∥ < ε}. Namely, if g is the function defined by g(y) = f(y)

if ∥y − x∥ < ε and g(x) = +∞ otherwise, then f̆(x) = ğ(x).

Proof. Let us roughly explain the idea of the proof before going into details. A
priori, the computation of f̆(x) may involve values of f at points arbitrarily far

away from x. Namely, (x, f̆(x)) can be approximated by a convex combination of
points of the form (xk, f(xk)). As we want the points xk to be close to x, we will
describe an algorithm that will modify the set {xk} by the substitution of one (or
several points) at each step until the resulting set is contained in B(x, ε). The
algorithm consist in switching a farthest point xi by the middle point between it
and an “opposite point” xj which is not farther from x as xi is. If d(xi, xj) ≥ ε,
the ε-uniform convexity of f will imply that we do not loose information about
f̆(x) when switching xi by (xi + xj)/2. Once, xi has disappear from the the set,
we choose a new farthest point and start over. Actually, the method bring the
points closer to x with respect to a prefixed direction x∗ ∈ X∗. The repetition of
the algorithm with several directions will eventually finish with the modified set
of points contained into B(x, ε). Now we will resume the proof.
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The definition of f̆ implies that the following set{
(x, t) : t ≥

n∑
k=1

λkf(xk) with x =

n∑
k=1

λkxk a convex combination

}
is dense in epi(f̆). Fix x ∈ dom(f) and suppose x =

∑n
k=1 λkxk is a convex

combination. Now, we are going to describe the announced algorithm that will
transform the set of points S = {x1, . . . , xn} into a set S′ = {x′1, . . . , x′n′} ⊂ B(x, ε)

such that still we have
∑n′

k=1 λ
′
kx

′
k = x, where

∑n′

k=1 λ
′
kx

′
k = x with λ′

k ≥ 0,∑n′

k=1 λ
′
k = 1, and

n′∑
k=1

λ′
kf(x

′
k) ≤

n∑
k=1

λkf(xk).

In order to do that, without loss of generality, we may assume x = 0. Fix x∗ ∈ SX∗ .
Let a = supx∗(S) ≥ 0 and b = − inf x∗(S). As a and b can be exchanged just
taking −x∗ instead, without loss of generality we may assume a ≥ max{b, ε}. Also,
without loss of generality, we may assume x∗(x1) = a. Since x1 is the farther point
(with respect to x∗), its “mass” λ1 compensates with masses on the side x∗ ≤ 0.
Suppose firstly that x∗(x2) ≤ 0 and λ2 ≥ λ1. We have ∥x1 − x2∥ ≥ ε. We claim
that it is possible to switch x1 by x′1 = (x1 + x2)/2. Indeed,

2λ1x
′
1 + (λ2 − λ1)x2 + λ3x3 + · · ·+ λnxn = 0

which is still a convex combination. Note that

2λ1f(x
′
1) + (λ2 − λ1)f(x2) + λ3f(x3) + · · ·+ λnf(xn)

≤ λ1(f(x1) + f(x2)) + (λ2 − λ1)f(x2) + λ3f(x3) + · · ·+ λnf(xn)

= λ1f(x1) + λ2f(x2) + λ3f(x3) + · · ·+ λnf(xn)

where we have used f(x′1) ≤ (f(x1) + f(x2))/2 (see the definition of ε-uniform
convexity). The inequality means that S1 = {x′1, x2, . . . , xn} is an improvement

of S in the sense of the approximation to f̆ . Note also that x∗(x′1) ≤ a/2.
In case, λ1 > λ2, we will use several vectors xk with x∗(xk) ≤ 0 to compensate
x1. This is possible because a ≥ b implies that the “mass” lying on the halfspace
x∗ < 0 is not lesser than λ1. In this case, λ1 could be cancelled with several λk’s.
In any case, we will get a new set S1 whose cardinal is not larger than that of S
and conv(S1) ⊂ conv(S). After that, suppose that, unfortunately, we still have
supx∗(S1) = a. In such a case, the maximizing vector cannot be x1, so it is a new
vector, say x3. We will apply the argument with x3 in order to replace it by an-
other vector x′3 and S1 by a new set S2. Eventually, we will get supx∗(Sn) ≤ a/2
after a finite number of steps. Then, with the same x∗, we have to change the
constants a, b > 0 by new ones. This can be done with the same x∗ until we get
max{a, b} < ε, so it is not possible to go further.
If the set of points it is not yet inside B(0, ε) then find a new x∗ ∈ SX∗ such that
supx∗(Sn) ≥ ε and then run again the algorithm. Since conv(S) is finite dimen-
sional, it is enough to do this procedure over finitely many x∗ ∈ SX∗ in order to
get Sn ⊂ B(0, ε) eventually.

Proof of Theorem 1.3. For the proof it would be convenient to represent
a convex combination in X by means of a vector integral instead of the usual
symbol “

∑
”. Namely, given a convex combination

∑n
k=1 λkxk, the weights λk are
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changed by n disjoint intervals Ik of lengths λk and whose union is [0, 1]. In this
way, the convex combination is represented as the integral of the simple function
x defined on [0, 1] by x(t) = xk whenever t ∈ Ik. As we will deal only with simple
functions, no further knowledge of vector integration theory is required.
We resume the proof. If f̆ is proper then it is bounded below by an affine function,
so by adding an affine function (that does not alter the ε-uniform convexity), we
may suppose that f is bounded below (actually that is true without modifications,
see Corollary 5.1). Given x, y ∈ dom(f), if ∥x− y∥ ≥ 3ε then

f̆

(
x+ y

2

)
≤ f̆(x) + f̆(y)

2
− δf (ε).

Indeed, fix η > 0. By Proposition 3.5, we may take (xn) a sequence of simple
functions defined on [0, 1] such that ∥xn(t)− x∥ < ε for all t ∈ [0, 1], n ∈ N, with

lim
n

∫ 1

0
xn(t) dt = x, and lim

n

∫ 1

0
f(xn(t)) dt = f̆(x).

Let (yn) and analogous sequence of simple functions playing the same role for

y and f̆(y). Clearly we have ∥xn(t) − yn(t)∥ ≥ ε for all t ∈ [0, 1] and n ∈ N.
Therefore

f̆

(
x+ y

2

)
≤ lim inf

n

∫ 1

0
f

(
xn(t) + yn(t)

2

)
dt

≤ lim
n

∫ 1

0

(
f(xn(t)) + f(yn(t))

2
− δf (ε)

)
dt ≤ f̆(x) + f̆(y)

2
− δf (ε).

Since η > 0 was arbitrary we get the claimed inequality provided ∥x− y∥ ≥ 3ε.
Now we will suppose ε ≤ ∥x − y∥ < 3ε. Proposition 3.5 implies that reducing

the domain of f to [x, y] +B(0, ε) does not affect to the values of f̆(x), f̆(y) and

f̆(x+y
2 ). Fix ε′ > ε. Theorem 3.4 says that δf̆ (ε

′) depends only on ε′, δf (ε), ϖ,

which are fixed, and the diameter of the domain, which is bounded by 5ε.

4. Building uniformly convex functions

Most of the constructions of uniformly convex functions on a Banach spaces that
one can find in the literature are based on modifications of a uniformly convex
norm, see [5]. Nevertheless, the existence of a finite uniformly convex function
whose domain has nonempty interior implies that X has an equivalent uniformly
convex norm, see [3, Theorem 2.4]. In any case, the constructions dealing with
the composition of a uniformly convex norm and a suitably chosen function can
be quite tricky, except for the Hilbert space. Here we will exploit a method based
on “discretization” and uniformly quasi-convex functions.

Lemma 4.1. Let ε > 0 and let f : X → R be a bounded below ε-uniformly quasi-
convex function with modulus δ > 0. Then the function h◦f is ε-uniformly convex,
where h(t) = 3t/δ.

Proof. The function h is increasing and satisfies the property 3h(t) = h(t + δ).
Take

η = 4−1 inf{h(t+ δ)− h(t) : t ≥ inf f} = 2−1 · 3inf f/δ

and note that it depends only on f . If x, y ∈ dom(f) are such that d(x, y) ≥ ε take
a = f(x), b = f(y) and c = f(x+y

2 ). The hypothesis says that c ≤ max{a, b} − δ.
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With no loss of generality, we may assume b ≤ a. We have

h(c) ≤ h(a)− 4η.

Since 3h(c) ≤ h(a) and h(b) > 0, we also have

3h(c) ≤ h(a) + 2h(b)

and adding the previous inequality, we get

4h(c) ≤ 2h(a) + 2h(b)− 4η

and thus

h(c) ≤ h(a) + h(b)

2
− η

which is the ε-uniform convexity of h ◦ f .

If X is uniformly convex, it is well known that x → ∥x∥2 is a uniformly convex
function on bounded convex subsets. The usual construction of a global uniformly
convex functions involves additional properties of the norm, such as having a power
type modulus of uniform convexity. Here there is a simple alternative construction
based in our methods.

Proposition 4.2. If X has a uniformly convex norm then there exists a real
function ϕ such that x → ϕ(∥x∥) is a uniformly convex function defined on X.

Proof. Fix ε > 0. Take a1 = ε/2 and define inductively a sequence (an) by the
implicit equation

an−1 =

(
1− δX

(
ε

an

))
an

which has a unique solution thanks to the continuity of δX on [0, 2), [17, Lemma
5.1]. The sequence (an) is increasing with limn an = +∞ and has the following
property: if ∥x∥, ∥y∥ ≤ an and ∥x− y∥ > ε then ∥(x+ y)/2∥ ≤ an−1.
Define a function as fε(x) = n if an−1 < ∥x∥ ≤ an. Note that fε satisfies the
hypothesis of Lemma 4.1 with δ = 1, and so h ◦ fε is ε+-uniformly convex. Now,
for ε = 1/n, take fn the convex envelope of h ◦ fε and cn = 2−n(sup fn(nBX))−1.
The series

∑∞
n=1 cnfn converges uniformly on bounded sets to a uniformly con-

vex function f . By construction, f(x) depends only on ∥x∥. Therefore, we may
define a real function by ϕ(t) = f(x) if t = ∥x∥, for t ≥ 0. Clearly, f(x) = ϕ(∥x∥).

Now we will explain constructions using trees. The definition of ε-separated
(dyadic) tree was given in the introduction. Bushes are defined in a very similar
way, however the index set is

⋃n
k=0Nk and xs =

∑
k λs⌢kxs⌢k where λs⌢k ≥ 0,

λs⌢k = 0 except for finitely many k’s and
∑

k λs⌢k = 1. We say that a bush
{xs : |s| ≤ n} is ε-separated if ∥xs⌢k−xs∥ ≥ ε for all k such that λs⌢k > 0. In this
way, an ε-separated tree is a particular case of an ε/2-separated bush. Separated
trees and bushes are obstructions to the existence of bounded uniformly convex
functions.

Proposition 4.3. Let ε > 0 and let C ⊂ X be a convex set that supports an
ε-uniformly convex function f with values in [a, b]. Then (b − a)/δf (ε) is the
maximum height of

(1) any ε-separated tree contained in C;
(2) any ε+-separated bush contained in C.
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Proof. If {xs} is an ε-separated tree then we have

f(xs) ≤ max{f(xs⌢0), f(xs⌢1)} − δf (ε)

that gives the estimation. In the case of bushes, the argument is the same after
passing to f̆ , which is ε+-uniformly convex by Theorem 1.3, and applying Corol-
lary 3.2.

Our following result is quite a converse.

Theorem 4.4. Let ε > 0 and let C ⊂ X be a convex set such that contains not
arbitrarily high ε-separated trees (with respect some uniformly continous pseudo-
metric). Then C supports a bounded ε-uniformly convex function, and a bounded
convex ε+-uniformly convex function (with respect the same pseudometric).

Proof. Define a function for x ∈ C by

f(x) = −max{height(xs) : (xs) ⊂ C ε-sep. tree, x∅ = x}
and f(x) = +∞ otherwise. We claim that f is ε-uniformly quasi-convex. Indeed,
consider points x, y ∈ C with d(x, y) ≥ ε. Take ε-separated trees contained into
C {xs′ : |s′| ≤ n′} and {ys′′ : |s′′| ≤ n′′} of maximal length with the property that
x∅ = x and y∅ = y. The trees can be “glued” as follows. Take n = min{n′, n′′}.
Define a new tree (zs), for |s| ≤ n+ 1, as z∅ = x+y

2 , z0⌢s = xs and z1⌢s = ys for

|s| ≤ n. Now (zs) is a ε-separated tree rooted at x+y
2 of height min{n′, n′′} + 1.

That means in terms of the function f the uniform quasi-convex inequality

f

(
x+ y

2

)
≤ max{f(x), f(y)} − 1

for d(x, y) ≥ ε. Now, Lemma 4.1 says that h ◦ f is ε-uniformly convex and its
convex hull is ε+-uniformly convex after Theorem 1.3.

Proof of Theorem 1.5. It just follows from Theorem 4.4 and Proposition 4.3.

Finally we will explain constructions based on the dentability index. Let C be
a bounded closed convex set of X, (M,d) a pseudometric space and F : C → M
a map. We say that F is dentable if for any nonempty closed convex subset
D ⊂ C and ε > 0, it is possible to find an open halfspace H intersecting D such
that diam(F (D ∩H)) < ε, where the notation “diam” stands for the diameter is
computed with respect to d. If F is dentable, we may consider the following set
derivation

[D]′ε = {x ∈ D : diam(F (D ∩H)) > ε, ∀H ∈ H, x ∈ H}.
Here H denotes the set of all the open halfspaces of X. Clearly, [D]′ε is what
remains ofD after removing all the slices whose diameter through F is less or equal
than ε. A useful trick is the so called (nonlinear) Lancien’s midpoint argument:
if a segment satisfies [x, y] ⊂ D and [x, y] ∩ [D]′ε = ∅ then d(F (x), F (y)) ≤ 2ε,
see the beginning of [26, Theorem 2.2]. Consider the sequence of sets defined by
[C]0ε = C and, for every n ∈ N, inductively by

[C]nε = [[C]n−1
ε ]′ε.

If there is n ∈ N such that [C]n−1
ε ̸= ∅ and [C]nε = ∅ we say that Dz(F, ε) = n.

We say that F is finitely dentable if Dz(F, ε) < ω for every ε > 0 (ω stands for
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the first infinite ordinal number). All these notions can be applied to the identity
map of a convex set where there is a pseudometric defined. The following result
is the quantified version of [26, Theorem 2.2]. For convenience we will write

∆Φ(x, y) =
Φ(x) + Φ(y)

2
− Φ

(
x+ y

2

)
.

Theorem 4.5. Let C ⊂ X be a bounded closed convex set, let M be a pseudometric
space, let F : C → M be a uniformly continuous map, and let ε > 0.

(1) Suppose that there exists a bounded lower semi-continuous convex function
Φ defined on C and δ > 0 such that d(F (x), F (y)) ≤ ε whenever x, y ∈ C
satisfy ∆Φ(x, y) ≤ δ. Then Dz(F, ε) < ω.

(2) On the other hand, if Dz(F, ε) < ω then for every ε′ > 2ε there exits a
bounded lower semi-continuous convex function Φ defined on C and δ > 0
such that d(F (x), F (y)) ≤ ε′ whenever x, y ∈ C satisfy ∆Φ(x, y) ≤ δ.

Proof. Let s = sup f(C). The hypothesis implies [C]′ε ⊂ {f ≤ s − δ}. Iterating
this we will eventually get to the empty set. For the second part, we need to
introduce some notation. Firstly put d′(x, y) = d(F (x), F (y)) which is a pseudo-
metric uniformly continuous with respect to ∥ · ∥. Derivations and diameters will
be referred to d′. The slice of a set A with parameters x∗ ∈ X∗ and α > 0 is

S(A, x∗, α) = {x ∈ A : x∗(x) > supx∗(A)− α}.
The “half-derivation” of a convex set is defined as

⟨D⟩′ε = {x ∈ D : x∗(x) ≤ α, ∀x∗, α > 0 such that diam(S(D,x∗, 2α)) > ε}.
The geometric interpretation is that we remove half of the slice, in sense of the
width, for every slice of d′-diameter less than ε. This derivation can be iterated
by taking ⟨C⟩nε = ⟨⟨C⟩n−1

ε ⟩′ε. It is not difficult, but rather tedious, to show that
if Dz(F, ε) < ω then for every ε′ > 2ε there is some N ∈ N such that ⟨C⟩nε′ = ∅.
The idea is the following. Firstly note that every slice of C not meeting [C]′ε has
diameter 2ε at most by Lancien’s argument. Taking “half a slice” of the slice given
by some x∗ ∈ X∗, we deduce that

supx∗(⟨C⟩′2ε)− supx∗([C]′ε) ≤ 2−1(supx∗(C)− supx∗([C]′ε)).

Iterating, we would get

supx∗(⟨C⟩n2ε)− supx∗([C]′ε) ≤ 2−n(supx∗(C)− supx∗([C]′ε))

for every x∗ ∈ X∗. If η > 0, we will get for some n large enough that

⟨C⟩n2ε ⊂ [C]′ε +B(0, η).

We can do that for every set [C]kε . A perturbation argument, using the room
between ε and ε′, will allow us to fill the gap between the sequences of sets. In
this way we will get that ⟨C⟩nε′ = ∅ for some n ∈ N large enough.

Now we define a function g on C by g(x) = −n if x ∈ ⟨C⟩nε′ \ ⟨C⟩n+1
ε′ following the

notation above. We claim that g satisfies Lemma 4.1 with separation ε′. Indeed,
if d′(x, y) > ε′ and n = −max{g(x), g(y)} then x, y ∈ ⟨C⟩nε′ . If x+y

2 ̸∈ ⟨C⟩n+1
ε′

then the segment [x, y] would be fully contained into a slice of diameter less than
ε′ and so d′(x, y) ≤ ε′ which is a contradiction. Therefore x+y

2 ∈ ⟨C⟩n+1
ε′ and so

g(x+y
2 ) ≤ −n − 1. Now f(x) = 3g(x) is ε′-uniformly convex with respect to d′.

Take Φ = f̆ to get the desired function.
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If F in Theorem 4.5 (2) were finitely dentable, a standard argument using a
convergent series would lead to this results, which is essentially [16, Proposition
3.2 ] with a uniformly convex function instead of a norm.

Corollary 4.6. Let C ⊂ X be a bounded closed convex set, let M be a pseudo-
metric space, and let F : C → M be a uniformly continuous finitely dentable map.
Then there exits a bounded convex function Φ defined on C such that for every
ε > 0 there is δ > 0 such that d(F (x), F (y)) ≤ ε whenever x, y ∈ C are such that
∆Φ(x, y) ≤ δ.

5. Improving functions and domains

So far, the best improvement we have done on an existing ε-uniformly convex
function is taking its lower semicontinuous convex envelope provided this last one
is proper. The aim in this section is to manipulate the functions in order to im-
prove their qualities. We will begin by proving the results about global behaviour.

Proof of Theorem 1.2. Since f̆ ≤ f , it is enough to prove that the property
holds for an ε-convex and convex proper function. Actually the same proof for a
uniformly convex function done in Zalinescu’s book [32, Proposition 3.5.8] works
in this case because lim inft→+∞ t−2pf (t) ≥ ε−2pf (ε) > 0.
For the second part, without loss of generality we may assume that x∗0 = 0 (just

change f by f +x∗0). Let δ = δf̆ (ε
′) and take η = inf f + δ− f̆(x0) > 0. Note that

inf f = inf f̆ . By the property established in the first part applied to f̆ −x∗, there
is R > 0 such that f̆(x) ≥ f̆(x0)−x∗(x−x0) for any x∗ ∈ BX∗ and ∥x−x0∥ ≥ R.
Now, fix x∗ such that ∥x∗∥ ≤ η/R. Then we have

f̆(x) + x∗(x) ≥ f̆(x0) + x∗(x0)− δ

for all x ∈ X such that ∥x − x0∥ ≤ R, and therefore the inequality holds for all

x ∈ X. That implies epi(f̆ + x∗ + δ) does not meet the horizontal slice

S = {(x, t) ∈ epi(f̆ + x∗) : t ≤ f̆(x0) + x∗(x0)}

By Proposition 3.1, the projection of S on X has diameter less than ε′. Moreover,
if f + x∗ attains a minimum at x, then the same holds for f̆ + x∗ and so x ∈ S.
Since x0 ∈ S we have ∥x−x0∥ ≤ ε′. The existence of a dense set of x∗’s such that

f̆ + x∗ attains a minimum is guaranteed by Brøndsted–Rockafellar [4, Theorem
4.3.2] (or Bishop–Phelps [14, Theorem 7.4.1] applied to the epigraph).

As a consequence, we characterize when an ε-uniformly convex function has a
proper convex envelope.

Corollary 5.1. Let ε > 0 and let f be an ε-uniformly convex function. Then the
following statements are equivalent:

(1) f̆ is proper;
(2) f is bounded below;
(3) f is bounded below by an affine continuous function.

For a ε-uniformly quasi-convex function we can say the following
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Proposition 5.2. Let ε > 0 and let f be an ε-uniformly quasi-convex function
that is bounded below. Then f is coercive and moreover

lim inf
∥x∥→+∞

f(x)

∥x∥
> 0.

Proof. By adding a constant, we may suppose that inf f = 0. Take x0 ∈ X
such that f(x0) < δ/2. For any x ∈ X such that ∥x − x0∥ ≥ ε we have
f(x) ≥ δ. Indeed, otherwise it would be f(x) < δ and by the ε-uniformly quasi-
convexity, f(x+x0

2 ) < inf f , an obvious contradiction. Now, if ∥x− x0∥ ≥ 2ε, then

∥x+x0
2 − x0∥ ≥ ε. That implies f(x+x0

2 ) ≥ δ and therefore f(x) ≥ 2δ. Inductively,
we will get that if ∥x − x0∥ ≥ 2nε then f(x) ≥ 2nδ. Now, the statement follows
easily.

The following results will show that, given a ε-uniformly convex function, we
can make modifications in both the function and its domain in order to get a new
function with additional properties.

Proposition 5.3. Let ε > 0, let f be an ε-uniformly convex function that is
locally bounded below and let η > 0. Then there exists a lower semicontinuous
(ε + 2η)-uniformly convex function defined on dom(f) + B(0, η). In particular,

dom(f) admits a lower semicontinuous ε+-uniformly convex function.

Proof. Define g(x) = inf{f(y) : ∥y−x∥ < η} on dom(f)+B(0, η). This function
g is (ε + 2η)-uniformly convex (the simple verification of this fact is left to the
reader). Now take its lower semicontinuous envelope.

The following result will be done for ε-uniformly convexity with respect to a
metric because such a degree of generality will be needed later.

Proposition 5.4. Let ε > 0, let f be an ε-uniformly convex function (with respect
to a metric d with modulus of uniform continuity ϖ) and let C ⊂ dom(f) be convex
such that f is bounded on it. Then for any ε′ > ε, there exists g ∈ Γ(X) Lipschitz
(with respect to the norm of X) such that g|C is ε′-uniformly convex.

Proof. Without loss of generality, we may assume that f is convex. Take η > 0
such that ϖ(η) < (ε′−ε)/2, m = sup{f(x)−f(y) : x, y ∈ C} and c = m/η. Define

g(x) = inf{f(y) + c∥x− y∥ : y ∈ C}

which is convex and c-Lipschitz. Let x ∈ C and ξ > 0. Then either g(x) = f(x)
and the infimum is attained with y = x, or g(x) < f(x). In the last case, the
infimum can be computed over the y ∈ C such that f(y) + c∥x − y∥ < f(x).
Therefore, we can find y ∈ C such that f(y) + c∥x− y∥ < g(x) + ξ and ∥x− y∥ <
m/c = η, which implies d(x, y) < (ε′−ε)/2. Now, for x1, x2 ∈ C with d(x1, x2) ≥ ε′

find y1, y2 ∈ C as above. Clearly we have d(y1, y2) ≥ ε, and so

g

(
x1 + x2

2

)
≤ f

(
y1 + y2

2

)
+ c

∥∥∥∥x1 + x2
2

− y1 + y2
2

∥∥∥∥
≤ f(y1) + f(y2)

2
− δ +

c

2
∥x1 − y1∥+

c

2
∥x2 − y2∥ ≤ g(x1) + g(x2)

2
− δ + 2ξ.

Since ξ > 0 was arbitrary, we get the ε′-uniform convexity of g as wished.
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Remark 5.5. A Baire category argument shows that an ε-uniformy convex func-
tion f is bounded in an open ball if dom(f) has nonempty interior. However, we
do not know how to ensure that f will be bounded on a larger set.

Now we will show how to change an ε-uniformly convex function by a norm
with the same property.

Theorem 5.6. Let (X, ∥ · ∥) be a Banach space, let f ∈ Γ(X) be a non negative
function and let C ⊂ dom(f) be a bounded convex set. Assume f is Lipschitz
on C. Then given δ > 0 there exists an equivalent norm ||| · ||| on X and ζ > 0
such that ∆f (x, y) < δ whenever x, y ∈ C satisfy ∆|||·|||2(x, y) < ζ. Therefore, if f
was moreover ε-uniformly convex for some ε > 0 (with respect to a pseudometric)
on C, then ||| · |||2 would be ε-uniformly convex on C (with respect to the same
pseudometric).

Proof. Taking f(x) + f(−x) + ∥x∥ instead, we may indeed assume that f is
symmetric and attains a strong minimum at 0. Let M = sup f(C) and m =
min f(C) + δ/2. The Lipschitz condition easily implies that there is η > 0 such
that if r ≤ M then

{f ≤ r − δ}+B(0, η) ⊂ {f ≤ r}.
For r ∈ [m,M ] let ∥ · ∥r the Minkowski functional of the set {f ≤ r}, which is an
equivalent norm on X. Let N = sup{∥x∥ : x ∈ C} and note that λ = (1+ η/N)−1

has the property

{f ≤ r − δ} ⊂ λ {f ≤ r}.
We deduce the following property: if x, y ∈ C, ∥x∥r, ∥y∥r ≤ 1 and ∆f (x, y) ≥ δ
then ∥∥∥∥x+ y

2

∥∥∥∥
r

≤ λ.

Consider a partition m = a1 < a2 < · · · < ak = M such that aj/aj+1 < λ1/2 and
put ||| · |||j = ∥ · ∥aj . Let x, y ∈ C such that ∆f (x, y) ≥ δ. Assume f(x) ≥ f(y) for

instance. There is some 1 ≤ j < k such that 1 ≥ |||x|||j ≥ λ1/2. Since |||x+y
2 |||j ≤ λ,

we have ∣∣∣∣∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣∣∣∣∣
j

≤ max{|||x|||j , |||y|||j} − (λ1/2 − λ).

Following the same computations that in the proof of Proposition 2.9, we have∣∣∣∣∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣∣∣∣∣2
j

≤
|||x|||2j + |||y|||2j

2
− (λ1/2 − λ)2

4
.

Therefore, if we define an equivalent norm by ||| · |||2 =
∑k

j=1 ||| · |||2j we will have∣∣∣∣∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣∣∣∣∣2 ≤ |||x|||2 + |||y|||2

2
− (λ1/2 − λ)2

4
.

whenever x, y ∈ C satisfies ∆f (x, y) ≥ δ, meaning that the statement is true with

ζ = 4−1(λ1/2 − λ)2.

Proof of Theorem 1.4. Consider the sets Cn = {f ≤ n} that eventually will
“capture” any set where f is bounded. Fixed n ∈ N, by Proposition 5.4, we may
assume that f is already norm-Lipschitz and finite on X provided we change ε by
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ε+. Let ||| · |||n the norm given by Theorem 5.6, which is ε+-uniformly convex on
Cn. Let α > 0 and let (αn) be a sequence of positive numbers such that

||| · |||2 = α||| · |||2 +
∞∑
n=1

αn||| · |||2n

converges uniformly on bounded sets. Clearly, ||| · ||| will be ε+-uniformly convex
on bounded sets too. The last affirmation follows just taking α > 0 small enough.

Finally we will discuss the approximation by differences of convex functions in
terms of the index of dentability improving [26, Theorem 1.4] and [16, Theorem
4.1], which in turn are based in the seminal work [9]. A real function defined on
a convex set is called DC-Lipschitz if it is the difference of two convex Lipschitz
functions with the same domain. For convenience, we have to make explicit the
domain C. The symbol ∥ · ∥C stands for the supremum norm on C.

Theorem 5.7. Let C ⊂ X be a bounded closed convex set and let f : C → R be
a uniformly continuous function. Consider the following numbers:

(ε1) the infimum of the ε > 0 such that Dz(f, ε) < ω;
(ε2) the infimum of the ε > 0 such that there exists a DC-Lipschitz function g

such that ∥f − g∥C < ε.

Then ε1/2 ≤ ε2 ≤ 2ε1.

Proof. Let ε > ε2 and find a DC-Lipschitz function g such that ∥f − g∥C < ε.
We know by [26, Proposition 5.1] that g is finitely dentable, which easily implies
that f is 2ε-finitely dentable.
For the reverse inequality, take ε > 2ε1 and M = sup{f(x) − f(y) : x, y ∈
C} < +∞. Apply Theorem 4.5 to get a function Φ such that |f(x) − f(y)| ≤ ε
if ∆Φ(x, y) < δ. By Proposition 5.4 we may suppose that Φ is Lipschitz too,
and by Theorem 5.6, there is an equivalent norm ||| · ||| defined on X such that
∆|||·|||2(x, y) < ζ implies ∆Φ(x, y) < δ. Take c > M/ζ. Consider the function

g(x) = inf
y∈C

{
f(y) + c

(
|||x|||2 + |||y|||2

2
−
∣∣∣∣∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣∣∣∣∣2
)}

= inf
y∈C

{f(y) + c∆|||·|||2(x, y)}

which is actually an inf-convolution with the Cepedello’s kernel, see [9] or [2,
Theorem 4.21]. For every x ∈ C, the infimum can be computed just on the set

A(x) = {y ∈ C : f(y) + c∆|||·|||2(x, y)} ≤ f(x)}.
If x ∈ C and y ∈ A(x), we have

0 ≤ c∆|||·|||2(x, y) ≤ f(x)− f(y) ≤ M.

Then ∆|||·|||2(x, y) ≤ ζ by the choice of c and thus 0 ≤ f(x)− f(y) ≤ ε. Fix η > 0
and take y ∈ A(x) such that

f(y) + c∆|||·|||2(x, y) ≤ g(x) + η.

Then
f(x)− g(x) ≤ f(x)− f(y)− c∆|||·|||2(x, y) + η ≤ ε+ η.

We deduce that ∥f(x)− g(x)∥C ≤ ε and

g(x) =
c

2
|||x|||2 − sup

y∈C

{
c

∣∣∣∣∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣∣∣∣∣2 − c

2
|||y|||2 − f(y)

}
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which is an explicit decomposition of g as a difference of two convex Lipschitz
functions on C, as wanted.

6. Quantifying the super weakly compactness

The notion of super weak compactness was introduced in [10]. However, some
results were established independently in [26] for an equivalent notion (finite
dentable) within the convex sets. Here we will use a definition based on ultra-
powers. Given a free ultrafilter U on a set N, recall that XU is the quotient of
ℓ∞(X) by the subspace of those (xn)n∈N such that limn,U ∥xn∥ = 0. We take KU

as the image of K by the canonical embedding x 7→ (x)n∈N. A subset K ⊂ X is
said to be relatively super weakly compact if KU is a relatively weakly compact
subset of XU for a (equivalently all) free ultrafilter U on N, and K is said to be
super weakly compact if it is moreover weakly closed. The following result gathers
several equivalent properties, see [10, 26, 27, 22], in order to compare with their
quantified versions (Theorem 6.3).

Theorem 6.1. Let C ⊂ X be a bounded closed convex subset. The following
statements are equivalent:

(1) Given ε > 0 it is not possible to find arbitrarily long sequences x1, . . . , xn ∈
C such that

d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε

for all k = 1, . . . , n− 1 (d stands for the norm distance between two sets);
(2) C contains not arbitrarily high ε-separated dyadic trees for every ε > 0;
(3) CU is relatively weakly compact in XU , for U a free ultrafilter on N (equiv-

alently, C is relatively SWC, by definition);
(4) CU is dentable in XU , for U a free ultrafilter on N;
(5) C is finitely dentable;
(6) C supports a convex bounded uniformly convex function.

In order to state our results we need to introduce some quantities related to
sets in Banach spaces. Firstly, a measure of non weakly compactness that has
been studied in several papers [15, 18, 7], see also [19, Section 3.6]. Given A ⊂ X
consider A ⊂ X∗∗ by the natural embedding and take

γ(A) = inf{ε > 0 : A
w∗

⊂ X + εBX∗∗}.

It turns out that γ(A) = 0 if and only if A is relatively weakly compact, thus γ
quantifies the non-weakly compactness of subsets inX. This measure is considered
more suitable than De Blasi’s measure for some problems in Banach space theory.
Given a convex set A ⊂ X, let us denote by Dent(A) the infimum of the numbers
ε > 0 such that A has nonempty slices contained in balls of radius less than ε,
and take ∆(A) = sup{Dent(C) : C ⊂ A}. The measure Dent was introduced in
[8] in relation with the quantification of the RNP property, and actually we may
think of ∆ as a measure of non RNP. Note that (X∗)U for U a free ultrafilter on
N can be identified with an 1-norming subspace of (XU )∗ by means of

⟨(x∗n), (xn)⟩ = lim
n,U

x∗n(xn),

where the notation ⟨, ⟩ is intended to avoid the confusion of dealing with too many
brackets.
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Lemma 6.2. Let A ⊂ X be a closed convex bounded subset, U a free ultrafilter
on N and ε > 0. Then

[AU ]′2ε ⊂ ([A]′ε)
U .

Proof. Given (xn) ∈ AU \ ([A]′ε)
U , we have to find a slice of AU containing (xn)

of diameter not greater than 2ε. As (xn) ̸∈ ([A]′ε)
U , then for some α > 0

{n : d(xn, [A]′ε) ≥ α} ∈ U .
Indeed, otherwise the sequence (xn) would be equivalent to a sequence in [A]′ε. It
is possible to find xn ∈ BX∗ such that x∗n(xn) ≥ α+ supx∗n([A]′ε) for those indices
n from the previous set, for the other n’s the choice of xn ∈ BX∗ does not make
a difference. Consider the functional (x∗n) ∈ (X∗)U ⊂ (XU )∗. By construction,

⟨(x∗n), (xn)⟩ ≥ α+ sup⟨(x∗n), ([A]′ε)
U ⟩.

Now, we will estimate the diameter of the slice defined by (x∗n). Suppose that
(yn), (zn) ∈ AU and

min{⟨(x∗n), (yn)⟩, ⟨(x∗n), (zn)⟩} ≥ α+ sup⟨(x∗n), ([A]′ε)
U ⟩.

Then, for a subset in U of indices n, we have yn, zn ∈ A ∩ {x : x∗n(x) ≥ α +
supx∗n(An)} and thus ∥yn − zn∥ ≤ 2ε by Lancien’s midpoint argument. That
implies ∥(yn) − (zn)∥ ≤ 2ε, so the diameter of the slice is not greater than 2ε as
wished.

The following result is the quantitative counterpart of Theorem 6.1.

Theorem 6.3. Let C ⊂ X be a bounded closed convex subset. Consider the
following numbers:

(µ1) the supremum of the numbers ε > 0 such that for any n ∈ N there are
x1, . . . , xn ∈ C such that d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for
all k = 1, . . . , n− 1;

(µ2) the supremum of the ε > 0 such that there are ε-separated dyadic trees of
arbitrary height;

(µ3) = ∆(CU ), for U a free ultrafilter on N;
(µ4) = γ(CU ), for U a free ultrafilter on N;
(µ5) the infimum of the ε > 0 such that Dz(C, ε) < ω;
(µ6) the infimum of the ε > 0 such that C supports a convex bounded ε-

uniformly convex function.

Then µ1 ≤ µ2 ≤ 2µ3 ≤ 2µ4 ≤ 2µ1 and µ4 ≤ 2µ5 ≤ 2µ6 ≤ 2µ2.

Proof. We will label the steps of the proof by the couple of numbers associated
to the inequality.
(1-2) If ε < µ1, the separation between convex hulls applied to 2n elements allows
the construction of a ε-separated dyadic trees of height n. Therefore µ2 ≥ µ1.
(2-3) If ε < M2 then ∆(CU ) ≥ ε/2. Indeed, CU contains an infinite ε-separated
dyadic tree T , therefore any nonempty slice of T cannot be covered by finitely
many balls of radius less than ε/2.
(3-4) By [8, Proposition 6.1], Dent(A) ≤ γ(A), therefore ∆(CU ) ≤ γ(CU ).

(4-1) Let ε < µ4. Then there is x ∈ C
w∗

which is at distance greater than ε
from X. Following Oja’s proof of James theorem [14, Theorem 3.132], it is posible
to find an infinite sequence (xn) with convex separation greater than ε. Finite
representativity gives arbitrarily large sequences in X with the same separation,
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thus µ1 ≥ µ4.
(4-5) If ε > M5 then there is a finite sequence of sets C = C1 ⊃ C2 ⊃ · · · ⊃ Cn

given by the ε-dentability process. Taking weak∗ closures in the bidual, we have

C
w∗

= (C1
w∗

\ C2
w∗

) ∪ · · · ∪ (Cn−1
w∗

\ Cn
w∗

) ∪ Cn
w∗

.

Now, take any x ∈ C
w∗

that belongs to one of those sets. The w∗-open slice

separating x from the smaller set, say Ck+1
w∗

(∅ for the last set) in the difference
is contained in the w∗-closure of a slice of Ck not meeting Ck+1 which has diameter
less than 2ε (Lancien’s midpoint argument). Since w∗-closures does not increase
the diameter, we have d(x,X) ≤ 2ε. The argument actually implies γ(C) ≤ 2ε.
However, we can apply it to the sequence of sets in XU

CU = CU
1 ⊃ CU

2 ⊃ · · · ⊃ CU
n

which has the same slice-separation property by Lemma 6.2.
(5-6) If ε > µ6, there is a bounded convex and ε-uniformly convex function f that,
without loss of generality, we may suppose lower semicontinuous. By Proposition
3.1, any slice of the set {x ∈ C : f(x) ≤ a} not meeting the set {x ∈ C : f(x) ≤
a+ δ} has diameter less than ε. A judicious arranging of these sets shows that C
is ε-finitely dentable. Thus µ5 ≤ µ6.
(6-2) Take ε > µ2. Then the ε-separated dyadic trees are uniformly bounded in
height. By Theorem 4.4, that implies the existence of ε′-uniformly convex function
for every ε′ > ε. Thus µ6 ≤ µ2.

Remark 6.4. The equivalence between µ3 and µ4 is both a local and a quantitative
version of the well know statement saying that super-RNP is the same that super-
reflexivity. Let us point out that some other relations between the quantities µi for
i = 1, . . . , 6 can be established and so improving the equivalence constants. For
instance µ2 ≤ 2µ5, which is somehow straightforward, or µ6 ≤ µ5 as a consequence
of Proposition 4.3.

We will need the following estimation of the distance to the points added by the
closure with respect to the topology induced by a norming subspace of the dual.

Lemma 6.5. Let X a Banach space and F ⊂ X∗ an 1-norming subspace. Then
for any bounded convex A ⊂ X and any ε > γ(A) we have

A
σ(X,F ) ⊂ A+ 2εBX .

Proof. By [19, Proposition 3.59]), A
w∗

⊂ A+2εBX∗∗ . The linear map p : X∗∗ →
F ∗ defined by p(x∗∗) = x∗∗|F has norm 1 and satisfies p(A

w∗
) = A

σ(F ∗,F )
. We may

identify p(X) = X isometrically into F ∗ and so we have A
σ(F ∗,F ) ⊂ A + 2εBF ∗ .

Therefore A
σ(X,F ) ⊂ A+ 2εBX as wished.

We will need the following result that appears as a fact inside the proof of [30,
Theorem 3.1]. The 1-norming subspace (X∗)U ⊂ (XU )∗ will play an important
role.

Lemma 6.6. For any (x∗n) ∈ (X∗)U and (an) ∈ conv(A)U , there is (bn) ∈
conv(AU ) such that ⟨(x∗n), (an)⟩ ≤ ⟨(x∗n), (bn)⟩.

Among the quantities given by Theorem 6.3 only µ4 does not requiere convexity,
so we can propose it as a natural measure of super weak noncompactness. The
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following is a quantitative version (in terms of µ6) of [30, Theorem 3.1] establishing
that the super weak compactness is stable by closed convex hulls. Note that the
measure of super weak noncompactness introduced by K.Tu in [30] is different
from ours and so our result is not equivalent to [30, Theorem 4.2].

Theorem 6.7. Let A ⊂ X be a bounded subset and U a free ultrafilter. Then

γ(conv(A)U ) ≤ 4γ(AU ).

Proof. Consider F = (X∗)U which is an 1-norming subspace of (XU )∗. Take
ε > γ(AU ). By Lemma 6.5,

convσ(X,F )(AU ) ⊂ conv(AU ) + 2εBXU .

We claim that (conv(A))U ⊂ conv(AU ) + 2εBXU . If it is not the case, then we

could separate a point (conv(A))U from convσ(X,F )(AU ) by a functional from F .
That leads to a contradiction with Lemma 6.6. Now, we have

γ((conv(A))U ) ≤ 2γ(AU ) + 2ε

which implies the statement.

7. A new glance at Enflo’s theorem

Let us show how Enflo’s theorem follows from our results.

Theorem 7.1 (Enflo [13]). Let X be a super-reflexive Banach space. Then X has
an equivalent uniformly convex norm.

Proof. The unit ball BX endowed with the weak topology is SWC. Therefore,
for every ε > 0, there is a bounded convex ε-uniformly convex function defined on
BX by Theorem 1.5. Now, by Theorem 1.4, there is an equivalent norm ∥·∥ε on X
whose square is an ε-uniformly convex function on BX . Without loss of generality,
we may assume that ∥ · ∥ ≤ ∥ · ∥ε ≤ 2∥ · ∥. The series ||| · |||2 =

∑∞
n=1 2

−n∥ · ∥21/n
defines an equivalent uniformly convex norm.

Enflo’s original proof of the uniformly convex renorming of super-reflexive Ba-
nach spaces has remain practically unchanged in books, see [14, pages 438-442] for
instance. We believe that the reason is that the proof is difficult to follow from
a geometrical point of view. One of the original aims of this paper was to cast
some light on the renorming of super-reflexive spaces. Since the geometrical ideas
are now diluted along this paper, we would like to offer to the interested reader a
more direct pathway to Enflo’s theorem in several steps.

• From the usual definition of super-reflexivity with finite representation, it
is easy to prove that the unit ball BX of a super-reflexive space has the
finite tree property, that is, given ε > 0, the uniform boundedness in height
of all the ε-separated dyadic trees [20].

• The maximal height of an ε-separated tree with root x ∈ BX is an ε-
uniformly concave function h(x). This is the main idea in the proof of
Theorem 4.4. Note that this function is also symmetric.

• g(x) = 3−h(x) is a symmetric ε-uniformly convex function taking values in
[0, 1]. This comes from Lemma 4.1 and is just an arithmetical fact.

• f = ğ is convex, symmetric and 3ε-uniformly convex. The key idea is that
f(x) is computed with the values of g(y) with ∥y − x∥ < ε. The technical
details can be carried out as in the proof of Theorem 1.3, which relies on
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Figure 3. Antoine de Saint-Exupéry’s “Le Petit Prince”

Proposition 3.5. Nevertheless, the idea is very intuitive: Planet Earth is
a non-convex ε-uniformly convex radial body for ε = 800 km at most (see
Figure 3). That implies you do not need the Rocky Mountains neither the
Himalayas to compute the convex hull over France.

• Let fn be the function given in the previous steep for ε = 1/n. The
function

F (x) = ∥x∥+
∞∑
n=1

2−nfn(x)

is uniformly convex, symmetric, Lipschitz on the balls rBX for 0 < r < 1
and it attains a strong minimum at 0. Moreover, elementary computations
can show that F (0) ≤ 1/17 and F (x) ≥ 1 for x ∈ SX .

• The set B = {x : F (x) ≤ inf F + 1/2} is the unit ball of an equivalent
uniformly convex norm ||| · |||. The idea is to use the Lipschitz property of
F to show that for any δ > 0, there is λ(δ) ∈ (0, 1) such that

{x : F (x) ≤ inf F + 1/2− δ} ⊂ λ(δ)B.

Therefore, if |||x||| = |||y||| = 1 and ∥x − y∥ ≥ ε then F (x) = F (y) =
inf F +1/2 and F (x+y

2 ) ≤ inf F +1/2− δ for some δ = δ(ε) > 0, and thus

|||x+y
2 ||| ≤ λ(δ).
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[1] D. Azé, J. P. Penot, Uniformly convex and uniformly smooth convex functions, Annales
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