
Journal of Functional Analysis 284 (2023) 109889
Contents lists available at ScienceDirect

Journal of Functional Analysis

journal homepage: www.elsevier.com/locate/jfa

Full Length Article

Subspaces of Hilbert-generated Banach spaces and 

the quantification of super weak compactness

G. Grelier, M. Raja ∗

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 
30100 Espinardo, Murcia, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 February 2022
Accepted 29 January 2023
Available online 14 February 2023
Communicated by T. Schlumprecht

Dedicated to our friend Gilles 
Godefroy with admiration and 
gratitude.

MSC:
46B03
46B08
46B26
46B50
47B07
54D30

Keywords:
Super weak compactness
Uniformly weakly null sets
Hilbert-generated spaces
Uniformly Eberlein compact sets

We introduce a measure of super weak noncompactness Γ
defined for bounded subsets and bounded linear operators 
in Banach spaces that allows to state and prove a charac-
terization of the Banach spaces which are subspaces of a 
Hilbert-generated space. The use of super weak compactness 
and Γ casts light on the structure of these Banach spaces and 
complements the work of Argyros, Fabian, Farmaki, Gode-
froy, Hájek, Montesinos, Troyanski and Zizler on this subject. 
A particular kind of relatively super weakly compact sets, 
namely uniformly weakly null sets, plays an important role 
and exhibits connections with Banach-Saks type properties.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

* Corresponding author.
E-mail address: matias@um.es (M. Raja).
https://doi.org/10.1016/j.jfa.2023.109889
0022-1236/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).

https://doi.org/10.1016/j.jfa.2023.109889
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2023.109889&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:matias@um.es
https://doi.org/10.1016/j.jfa.2023.109889
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 G. Grelier, M. Raja / Journal of Functional Analysis 284 (2023) 109889
1. Introduction

Along the paper X is a real Banach space, its unit ball is denoted BX and X∗ stands 
for the dual. In general, our notation is quite standard and the knowledge requirements 
minimal, however we can address the reader to [21,32] for any unexplained notation or 
concept. Ultrapowers are a powerful tool to provide brief equivalent definitions of the 
main notions here (see [29] for an account of that method in Banach space theory). 
Here we will consider only ultrafilters on N, although the theory is much richer allowing 
arbitrary cardinals. Given a free ultrafilter U , recall that XU is the quotient of �∞(X)
by the subspace of those (xn)n∈N such that limn,U ‖xn‖ = 0. A Banach space is said 
to be super-reflexive if for some (or, equivalently, any) nontrivial ultrafilter U on N, its 
ultrapower XU is reflexive. The most representative results on super-reflexive Banach 
spaces are James’ characterizations [31], Enflo’s uniformly convex renorming [17] and 
Pisier’s applications to Banach valued martingales and renormings with power type 
modulus [37]. See the books [7,21] for an account on the theory of super-reflexive spaces.

A localized version of super-reflexivity was introduced by the second named author 
in [38] for convex sets (and, somehow more generally, for non-linear maps) with the 
name of finitely dentable sets. The more natural name super weakly compactness was 
introduced in [11]. Given a bounded set A ⊂ X we will denote AU the subset of XU

whose elements have a representative in AN . A set A ⊂ X is said to be relatively super 
weakly compact (relatively SWC) if AU is a relatively weakly compact subset of XU for 
some (or, equivalently, any) free ultrafilter U . Moreover, A ⊂ X is said to be super weakly 
compact (SWC, of course) if it is relatively super weakly compact and weakly closed. 
The class of SWC sets lies strictly between the norm compact and the weakly compact 
subsets. The theory of SWC sets has been developed during the last 15 years in a series 
of papers [38,11,12,39,44,13,41,42,34,27].

Super weak compactness is more widespread than it may appear and some results in 
Banach space theory could be understood in terms of hidden super weak compactness. 
For instance, any weakly compact subset of L1(μ) (μ any measure) is super weakly 
compact, see [34, Proposition 6.1]. The classic Szlenk result establishing that a weakly 
convergent sequence in L1(μ) has a subsequence whose Cesàro means converge (to the 
same limit) is a consequence of two facts: the weakly compact subsets of L1(μ) are SWC; 
and the SWC sets have the Banach-Saks property [34, Corollary 6.3].

Recall that Banach space is said weakly compactly generated (WCG) if it that contains 
a weakly compact subset whose linear span is dense. Thanks to the celebrated interpola-
tion result of Davis, Figiel, Johnson and Pełczyński [14] (see also [21, Theorem 13.22]), 
a Banach space X is WCG if and only if there exists a reflexive space Z and an operator 
T : Z → X with dense range. Moreover, if the space Z can be taken a Hilbert space, 
we say that X is Hilbert-generated. The name Eberlein applies to the compact spaces 
that are homeomorphic to a weakly compact set of a Banach space. It is well known 
after Amir and Lindenstrauss (see [21, Corollary 13.17], for instance) that an Eberlein 
compact embeds as a weakly (equivalent, bounded and pointwise) compact subset of 
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c0(I) for I large enough. If such an embedding can be done into a Hilbert space �2(I), 
then the compact is said to be uniformly Eberlein.

The aim of this paper is to show that, actually, super weak compactness and, par-
ticularly, its quantification, may cast light on the structure of the subspaces of Hilbert-
generated Banach spaces. Indeed, we have realized that several “technical hypotheses” 
in papers of Troyanski [40], Argyros and Farmaki [3], and the series by Fabian, Godefroy, 
Hájek, Montesinos and Zizler [24,20,19,23] on the structure of Hilbert-generated spaces 
and uniformly Gâteaux renorming, can be understood in terms of a quantified version 
of super weak compactness. For a better comprehension of our main result, we will state 
firstly the “non uniform version” with the help of a measure of weak noncompactness. 
Let A ⊂ X be a bounded set, then take

γ(A) = inf{ε > 0 : Aw∗

⊂ X + εBX∗∗}.

We have that a set A is relatively weakly compact if and only if γ(A) = 0. This measure 
has been studied in [22,26,9], see also [30, Section 3.6], and there are several measures 
of weak noncompactness that turn out to be equivalent [1].

Theorem 1.1 ([8,25]). For a Banach space X the following statements are equivalent:

(i) X is a subspace of a WCG space;
(ii) (BX∗ , w∗) is an Eberlein compact;
(iii) For every ε > 0 there are sets (Aε

n) such that BX =
⋃∞

n=1 A
ε
n and γ(Aε

n) < ε.

The equivalence (i)⇔(ii) is due to Benyamini, Rudin and Wage [8]. The inner charac-
terization (iii) was obtained by Fabian, Montesinos and Zizler [25]. Note that the third 
statement in Theorem 1.1 is actually an internal characterization as it is written in terms 
of the space X, not an over-space or its dual. A different matter is if the computation 
of γ requires the use of the over-space X∗∗, as we will see later there are equivalent 
definitions of γ that does not appeal to the bidual space.

Let us prepare the way to state the uniform analogue of Theorem 1.1. We will require
the following measure of super weak noncompactness: for a bounded set A ⊂ X take

Γ(A) := γ(AU )

where U is a free ultrafilter and γ is computed in XU . Later we will see that Γ does not 
depend, essentially, on the choice of the ultrafilter U . Obviously, A is relatively SWC 
if and only if Γ(A) = 0. Now we are ready to state our main result. Please, note the 
parallelism with Theorem 1.1.

Theorem 1.2. For a Banach space X the following statements are equivalent:

(i) X is a subspace of a Hilbert-generated space;
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(ii) (BX∗ , w∗) is a uniform Eberlein compact;
(iii) For every ε > 0 there are sets (Aε

n) such that BX =
⋃∞

n=1 A
ε
n and Γ(Aε

n) < ε.

Again, the equivalence (i)⇔(ii) goes back to Benyamini, Rudin and Wage [8]. 
Subspaces of Hilbert-generated spaces have been investigated in a series of papers 
[24,20,19,23] (see also [30]), where there are many more characterizations that we do 
not include in order to stress the analogy with Theorem 1.1. Also, in relation with our 
Theorem 1.2, we will prove that we can change BX in (iii) by any linearly dense subset 
of X, see Theorem 5.2. Also, in order to apply statement (iii) is quite relevant the fact 
that Γ can be computed in several fashions, some of them without ultrapowers neither 
over-spaces, see Proposition 3.2.

Previous works on uniformly Gâteaux renorming by Fabian, Godefroy, Hájek and 
Zizler [19], as well as early results by Troyanski [40], unawarely contain estimations of 
Γ. The explanation will come through the following result.

Proposition 1.3. Let A ⊂ X a bounded subset and consider the two following numbers:

(ε1) is the infimum of the ε > 0 such that there is n1 ∈ N such that for every x∗ ∈ BX∗

then

|{x ∈ A : |x∗(x)| > ε}| ≤ n1;

(ε2) is the infimum of the ε > 0 such that there is n2 ∈ N such that for any finite set 
B ⊂ A with |B| ≥ n2 then

∥∥∥∥∥
1
|B|

∑
x∈B

x

∥∥∥∥∥ < ε.

Then ε1 = ε2 and in such a case Γ(A) ≤ ε1.

The sets satisfying the statements of Proposition 1.3 with ε1 = ε2 = 0 will be called 
uniformly weakly null sets. Note that a uniformly weakly null set becomes SWC by adding 
{0}. Together with unit balls of super-reflexive spaces, uniformly weakly null sets are the 
most prototypical examples of SWC sets. It can be shown that an unconditional Schauder 
basis that does not behave as the basis of �1 (in a very precise sense) is a uniformly weakly 
null set. Note that the second statement (ε2) is a sort of uniform Banach-Saks property 
(with unique limit 0). That will allow us to apply results of infinite combinatorics, such 
as the Erdös-Magidor [18] and Mercourakis [36] selections.

The structure of the paper is as follows. Section 2 deals with uniformly weakly null 
sets and the proof of Proposition 1.3. There, we show that the Eberlein-Šmulian theorem 
fails for super weak compactness. In section 3, we study the properties of the measure 
Γ and we show several different ways to compute or estimate it. Our results depend on
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some equivalent forms for γ, that may be of independent interest. Section 4 deals with 
the application of Γ to operators between Banach spaces. Particularly, we will prove 
quantified versions of some properties enjoyed by the super weakly compact operators. 
Section 5 is devoted to the proof of Theorem 1.2, actually a more general version.

2. Uniformly weakly null sets

Let us recall that a subset A ⊂ X is uniformly weakly null if for every ε > 0 there is 
n(ε) ∈ N such that, for every x∗ ∈ BX∗ ,

|{x ∈ A : |x∗(x)| > ε}| ≤ n(ε).

Note that any sequence made of different points of a uniformly weakly null set is a weakly 
null sequence. Therefore, uniformly weakly null sets are relatively weakly compact (and 
become weakly compact just by adding 0). We have something better.

Theorem 2.1. Let A ⊂ X be a uniformly weakly null set and let U be any free ultrafilter. 
Then AU is uniformly weakly null in XU and, therefore, A is relatively super weakly 
compact in X.

Proof. Let x1, . . . , xn ∈ AU be different vectors, x∗ ∈ B(XU )∗ and ε > 0 such that 
|x∗(xk)| > ε for every 1 ≤ k ≤ n. We claim that for ε′ < ε, there are different elements 
x1, . . . , xn ∈ A and x∗ ∈ BX∗ with |x∗(xk)| > ε′. Indeed, the proof that XU is finitely 
representable in X (see [7, p. 222] for instance), provides those x1, . . . , xn ∈ X in such 
a way that Z = span{x1, . . . , xn} and Y = span{x1, . . . , xn} are ε/ε′-isomorphic. More-
over, the vector xk is found on the “coordinates” of xk, so we may assume xk ∈ A for 
all k. Then T : Y → Z be the isomorphism. Let x∗ be the Hahn-Banach extension of 
(ε′/ε)x∗ ◦ T . Then, x∗ ∈ BX∗ and |x∗(xk)| > ε′ for all 1 ≤ k ≤ n as desired. That claim 
shows that AU have to be uniformly weakly null. Now we have AU is weakly compact in 
XU and thus A is SWC. �

A sequence (xn) that is a uniformly weakly null set is called a uniformly weakly null 
sequence. A sequence (xn) is uniformly weakly convergent to x if (xn − x) is a uniformly 
weakly null sequence. The fact that a uniformly weakly convergent sequence together 
its limit is a super weakly compact set was noted in [13]. Uniformly weakly convergent 
sequences are closely related to the Banach-Saks property. A sequence (xn) is said to be 
Cesàro convergent if the sequence of its arithmetic means

n−1
n∑

k=1

xk

converges (in norm) to some x ∈ X. A set A ⊂ X is said to have the Banach-Saks 
property if every sequence (xn) ⊂ A has a Cesàro convergent subsequence. Recall that 
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relatively SWC sets are Banach-Saks [34, Corollary 2.4]. The relations between both 
properties are an interesting topic, although we will not deal here with the Banach-Saks 
property in general. Let us introduce the following “ephemeral” definition. A set A ⊂ X

is said to be uniformly Banach-Saks null if for every ε > 0 there is n(ε) such that 
whenever B ⊂ A is finite with |B| ≥ n(ε) then

|B|−1

∥∥∥∥∥
∑
x∈B

x

∥∥∥∥∥ < ε.

Proposition 1.3 has the following consequence.

Corollary 2.2. Let A ⊂ X be a bounded subset. Then A is uniformly Banach-Saks null if 
and only if it is uniformly weakly null.

Proof of Proposition 1.3. Let r > 0 such that A ⊂ rBX . Take ε > ε1 and fix the 
corresponding number n1. For n > n1 and any B ⊂ A with |B| = n we have

|x∗(
∑
x∈B

x)| < n1r + (n− n1)ε

for every x∗ ∈ BX∗ . Therefore

n−1

∥∥∥∥∥
∑
x∈B

x

∥∥∥∥∥ <
n1r

n
+

(
1 − n1

n

)
ε

Since the bound can be taken arbitrarily closed to ε independently from B if n is large 
enough, we have that ε2 ≤ ε1. That proves the equality ε1 = ε2 in case ε1 = 0. Assume 
now that ε1 > 0 and take 0 < ε < ε1. Then, for every n ∈ N we can find C ⊂ A with 
|C| = 2n and x∗ ∈ BX∗ such that x∗(x) > ε or x∗(x) < −ε for all x ∈ C. Since at 
least one half of the elements satisfies the same inequality, we may find B ⊂ C such that 
|B| = n and

|x∗(
∑
x∈B

x)| > nε.

Therefore, we have

n−1

∥∥∥∥∥
∑
x∈B

x

∥∥∥∥∥ > ε,

that implies ε2 ≥ ε1. Now, note that the first statement implies

A
w∗

⊂ A ∪ ε1BX∗∗ ⊂ X + ε1BX∗∗
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and so γ(A) ≤ ε1. In order to pass to Γ, just follow the ideas in the proof of Theorem 2.1
or check that the property of the second statement is stable by ultrapowers. In any case, 
we get that Γ(A) ≤ ε1. �

Remark 2.3. The proof of the equivalence shows that it is enough to check condition (ε1) 
for x∗ from a norming subset of BX∗ .

Mercourakis [36] improvement of the Erdös-Magidor [18] dichotomy for bounded se-
quences can be stated in this way (see also [35] for related results and references).

Theorem 2.4 (Mercourakis). Let (xn) ⊂ X a bounded sequence. Then there exists a 
subsequence (xnk

) of (xn) for which one of the following statements holds:

(i) either, (xnk
) is uniformly weakly convergent;

(ii) or, no subsequence of (xnk
) is Cesàro convergent.

The celebrated Eberlein-Šmulian theorem, see [21] for instance, says that weak com-
pactness is determined by sequences. As an application, we get that there is no Eberlein-
Šmulian for super weak compactness. That is, the fact that every sequence has a relatively 
SWC subsequence does not imply that the set is relatively SWC.

Corollary 2.5. Let A ⊂ X be a relatively super weakly compact set. Then every se-
quence (xn) ⊂ A contains a uniformly weakly convergent subsequence. However, this 
property does not characterize the super weakly compactness. Actually, it characterizes 
the Banach-Saks property.

Proof. For a Banach-Saks set the dichotomy 2.4 always produces a uniformly weakly 
convergent subsequence. On the other hand, every uniformly convergent sequence is 
Cesàro convergent. Therefore, the Banach-Saks property is characterized by sequences. 
The other statements follow from the fact that relatively SWC sets are Banach-Saks and 
there exist Banach-Saks sets which are not relatively SWC [34, Corollary 2.5]. �

3. Different ways to quantify SWC

Measures of noncompactness can be defined in very general settings. Here we will 
restrict ourselves to the frame of topological vector spaces. Let X be a topological vector 
space and let K be a vector bornology of compact subsets (that just means the class is 
stable under some elementary operations). A measure of noncompactness associated to 
K is a nonnegative function μ defined on the bounded subsets of X that satisfies the 
following properties:

1. μ(A) = μ(A)
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2. μ(A) = 0 if and only if A ∈ K

3. μ(A ∪B) = max{μ(A), μ(B)}
4. μ(λA) = |λ|μ(A) for all λ ∈ R

5. μ(A + B) ≤ μ(A) + μ(B)
6. there exists k > 0 such that μ(conv(A)) ≤ k μ(A)

This list of conditions comes from the usual requirements in literature [2] and some 
properties enjoyed by several measures that are interesting for Banach space geometry, 
such as γ or the family of measures introduced in [33] in relation with the Szlenk index. 
Condition (6) is usually the most tricky and necessarily requires that the class K be 
stable by closed convex hulls (Krein-type theorem).

The quantification of the super weak non-compactness is linked to the quantification 
of the weak non-compactness. De Blasi (see [1], for instance) introduced a measure of 
weak noncompactness ω as follows

ω(A) = inf{ε > 0 : ∃K ⊂ X weakly compact, A ⊂ K + εBX}.

It is not hard to check that ω enjoys all the properties above. In particular, we have

ω(conv(A)) = ω(A),

that is, its “convexifiability constant” is 1. Another quite natural way to measure weak 
noncompactness, is the function γ mentioned in the introduction

γ(A) = inf{ε > 0 : Aw∗

⊂ X + εBX∗∗} = sup{d(X,x∗∗) : x∗∗ ∈ A
w∗

}.

It is easy to check that γ(A) ≤ ω(A) for any bounded set A ⊂ X. However, there is no 
constant c > 0 such that ω(A) ≤ c γ(A) in general, see [1, Corollary 3.4]. That fact says 
that ω and γ are not equivalent. The measure γ was introduced in [22] where the authors 
also proved ([26] independently, see also [30, Theorem 3.64]) that

γ(conv(A)) ≤ 2 γ(A)

for any bounded A ⊂ X. Notably, there are many different equivalent ways to deal 
with γ which are interesting to us because they have a “super” version. The following 
contains the quantified version of two classic James’ characterizations of relative weak 
compactness together with the quantified version of Grothendieck’s commutation of lim-
its criterion.

Proposition 3.1. Let A ⊂ X be a bounded set. Consider the following numbers:

(γ1) = γ(A);
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(γ2) the supremum of the numbers ε ≥ 0 such that there are sequences (xn) ⊂ A and 
(x∗

n) ⊂ BX∗ such that x∗
n(xm) = 0 if m < n and x∗

n(xm) ≥ ε if m ≥ n;
(γ3) the supremum of the numbers ε > 0 such that for any n ∈ N there are x1, . . . , xn ∈

C such that d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for all k = 1, . . . , n − 1;
(γ4) the infimum of the numbers ε ≥ 0 such that

| lim
n

lim
m

x∗
n(xm) − lim

m
lim
n

x∗
n(xm)| ≤ ε

whenever (xn) ⊂ A, (x∗
n) ⊂ BX∗ and the iterated limits exist.

Then γ1 ≤ γ2 ≤ γ3 ≤ γ4 ≤ 2γ1.

Proof. Take ε < γ(A) and let x∗∗ ∈ A
w∗

with d(X, x∗∗) > ε. We will build sequences 
satisfying the second statement for such an ε. Indeed, there exists x∗

1 ∈ BX∗ with 
|x∗∗(x∗

1)| > ε. Now take x1 ∈ A such that x∗
1(x1) ≥ ε. Assume we have xk and x∗

k

already built for 1 ≤ k < n and it is satisfied x∗∗(x∗
k) > ε. An elementary application of 

Helly’s theorem [21, p. 159] to X∗∗ allows us to choose x∗
n ∈ BX∗ such that x∗

n(xk) = 0
for 1 ≤ k < n and x∗∗(x∗

n) > ε. Now we take

xn ∈ A ∩ {x ∈ X : x∗
k(x) > ε, 1 ≤ k ≤ n}

since the set is nonempty. That finishes the construction of the sequence and proves 
γ1 ≤ γ2. The inequality γ2 ≤ γ3 follows straight. In order to prove γ3 ≤ γ4, take ε < γ3, 
and sequence (xn) as in the statement (γ3). For every n ∈ N, take x∗

n ∈ BX∗ such that 
x∗
n(y) ≤ ε + x∗

n(z) for every y ∈ conv{x1, . . . , xn} and z ∈ conv{xn+1, xn+2, . . . }. The 
sequences satisfy the following property

x∗
n(xp) ≤ ε + x∗

n(xq)

whenever p ≤ n < q. Passing to a subsequence, we may assume the existence of the 
limits limn x

∗
n(xm) and limm x∗

n(xm), as well as the existence of the iterated limits. In 
such a case we will get

lim
m

lim
n

x∗
n(xm) ≤ ε + lim

n
lim
m

x∗
n(xm)

which implies ε ≤ γ4, and therefore γ3 ≤ γ4. Finally, γ4 ≤ 2γ1 is proved in [1]. �

Now we will state the “super” version of Proposition 3.1, for which we prefer to avoid 
a uniform version of Grothendieck’s commutation of limits (fourth statement).

Proposition 3.2. Let A ⊂ X. Consider the following numbers:

(Γ1) = γ(AU ) measured in XU for U a free ultrafilter;
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(Γ2) the infimum of the numbers ε > 0 such that there are no arbitrarily long sequences 
(xk)n1 ⊂ A, (x∗

k)n1 ⊂ BX∗ with x∗
k(xj) = 0 if j < k and x∗

k(xj) > ε if j ≥ k;
(Γ3) the supremum of the numbers ε > 0 such that for any n ∈ N there are x1, . . . , xn ∈

C such that d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for all k = 1, . . . , n − 1;

Then Γ1 ≤ Γ2 ≤ Γ3 ≤ 2Γ1.

Proof. The fact Γ1 ≤ Γ2 follows straight by applying finite representability to inequality 
ε1 ≤ ε2 in Proposition 3.1. It is quite easy to get Γ2 ≤ Γ3, and Γ3 ≤ 2Γ1 follows using 
the standard ultrapower technique, (see also Theorem 3.4 below where the convex case 
is considered). �

Recall that Γ1 is the measure introduced at the introduction

Γ(A) := γ(AU )

that depends on the choice of U . From now on, we will assume the free ultrafilter U
is fixed when speaking of Γ or dealing with the ultrapowers. Note that the equivalent 
measures Γ2 and Γ3 does not depend on any ultrafilter. Moreover, Γ3 does not involve 
explicitly the dual space. In next section we will use Γs(A) = Γ2 as an alternative to 
Γ(A).

Proposition 3.3. Let T : X → Y be an operator and let A ⊂ X be a bounded set. Then 
Γ(T (A)) ≤ ‖T‖ Γ(A).

Proof. Firstly, we will prove a similar statement for γ. Consider T ∗∗ : X∗∗ → Y ∗∗ which 
is weak∗ to weak∗ continuous. For any bounded set A ⊂ X we have

T (A)
w∗

= T ∗∗(Aw∗

) ⊂ T (X) + εT ∗∗(BX∗∗) ⊂ Y + ε‖T‖BY ∗∗

where ε > γ(A). Therefore γ(T (A)) ≤ ‖T‖ γ(A). In order to prove the statement for Γ, 
consider the induced operator TU : XU → Y U . Then we have

Γ(T (A)) = γ(TU (AU )) ≤ ‖TU ‖γ(AU ) = ‖T‖Γ(A),

as we wished. �

In order to state the results from our paper [27] that we will need later, it is necessary 
to introduce a certain number of quantities related to sets in Banach spaces. Let us 
denote by H the set of all the open half-spaces of X, that is, all the sets of the form 
H = {x ∈ X, x∗(x) > α}, with x∗ ∈ X∗ and α ∈ R. A slice of D ⊂ X is a set of 
the form D ∩H = ∅, where H ∈ H. We say that a bounded closed convex set C ⊂ X
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is dentable if for any nonempty closed convex subset D ⊂ C has (nonempty) slices of 
arbitrarily small diameter. If C is dentable we may consider the following set derivation:

[D]′ε = {x ∈ D : diam(D ∩H) > ε, for any H ∈ H s.t. x ∈ H}.

Clearly, [D]′ε is what remains of D after removing all the slices of D of diameter at most 
ε. Consider the sequence of sets defined by [C]0ε = C and, for every n ∈ N, inductively 
by

[C]nε = [[C]n−1
ε ]′ε.

If there is an n in N such that [C]n−1
ε = ∅ and [C]nε = ∅ we set Dz(C, ε) = n. We say 

that C is finitely dentable if Dz(C, ε) is finite for every ε > 0. Given a convex set C ⊂ X, 
let us denote by Dent(C) the infimum of the numbers ε > 0 such that C has nonempty 
slices contained in balls of radius less than ε, and take Δ(C) = sup{Dent(B) : B ⊂ C}. 
The measure Δ was introduced in [10] as a way to quantify the lack of Radon-Nikodym 
property (RNP). Let ε > 0. A function f : X → R is said to be ε-uniformly convex with 
respect to some metric d if there is δ > 0 such that whenever d(x, y) ≥ ε, then

f

(
x + y

2

)
≤ f(x) + f(y)

2 − δ.

No mention to an explicit metric d means that we are using the norm metric. The 
function is said to be just uniformly convex if it is ε-uniformly convex for all ε > 0.

Theorem 3.4 ([27]). Let C ⊂ X be a bounded closed convex subset. Consider the following 
numbers:

(η1) = Γ(C);
(η2) the supremum of the numbers ε > 0 such that for any n ∈ N there are x1, . . . , xn ∈

C such that d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for all k = 1, . . . , n − 1;
(η3) the supremum of the ε > 0 such that there are ε-separated dyadic trees in C of 

arbitrary height;
(η4) = Δ(CU );
(η5) the infimum of the ε > 0 such that Dz(C, ε) < ω;
(η6) the infimum of the ε > 0 such that C supports a convex bounded ε-uniformly convex 

function.

Then η1 ≤ η2 ≤ 2η3 ≤ 2η4 ≤ 2η1 and η4 ≤ 2η5 ≤ 2η6 ≤ 2η2.

Let us finish this section by showing that Γ fulfills the all requirements for a genuine 
measure of noncompactness listed at the beginning.
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Proposition 3.5. The function Γ defined on bounded subsets of X has the following prop-
erties:

1. Γ(A) = Γ(A);
2. Γ(A) = 0 if and only if A is SWC;
3. Γ(A ∪B) = max{Γ(A), Γ(B)};
4. Γ(λA) = |λ|Γ(A) for all λ ∈ R;
5. Γ(A + B) ≤ Γ(A) + Γ(B);
6. Γ(conv(A)) ≤ 4 Γ(A).

Proof. (1) and (2) follow straightly from the definition of Γ. (3), (4) and (5) follow from 
set identities: (A ∪B)U = AU ∪BU , (λA)U = λAU and (A +B)U = AU +BU . Statement 
(6), the most tricky, was proved in [27, Theorem 6.7]. �

4. Quantifying uniform convexity for operators

In this section we will discuss the application of the measure of weak noncompactness 
to operators. Firstly, let us recall a few facts about super weak compactness for operators. 
An operator T : X → Y is said to super weakly compact (SWC) if the induced operator 
TU : XU → Y U is weakly compact for any ultrafilter U (equivalently, a free ultrafilter on 
N). Note that we can think of taking ultrapowers for a fixed ultrafilter U as a functor 
on the category of Banach spaces. The definition goes back to Beauzamy [5], although 
he introduced it in a different but equivalent fashion, namely uniformly convexifying 
operators. The set of super weakly compact operators is an operator ideal denoted by 
Wsuper. Notably, Wsuper is a symmetric ideal, that is, T ∈ Wsuper if and only if T ∗ ∈
Wsuper. See [5,6,16,28] for more properties of Wsuper and its relation with other operator 
ideals, and see also [43] for characterizations in terms of martingale type and cotype. All 
the operators considered in this paper are supposed to be linear and bounded.

For an operator T : X → Y , we will write Γ(T ) := Γ(T (BX)). Obviously, an operator 
T : X → Y is SWC if and only if Γ(T (BX)) = 0. We have the following.

Proposition 4.1. Let A ⊂ X be a convex symmetric bounded set with Γ(A) < ε. Then 
there exists a Banach space Z and an operator T : Z → X such that ‖T‖ = 1, A ⊂ T (BZ)
and Γ(T ) < ε.

Proof. Without loss of generality we may assume that A is closed. Then, just take 
Z = span(A), endow it with the norm given by the Minkowski functional of A and take 
T the identity operator. �

If we consider the alternative measure of weak noncompactness Γs introduced after 
Proposition 3.2, we have the following quantified version of the symmetry of the operator 
ideal Wsuper.
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Theorem 4.2. Let T : X → Y and operator. Then Γs(T ∗) = Γs(T ).

Proof. We will assume firstly that Γs(T ) > 0. Take 0 < ε < Γs(T ). Then, for every 
N ∈ N there are elements (xn)Nn=1 ⊂ BX and (x∗

n)Nn=1 ⊂ BX∗ such that

〈x∗
n, T (xm)〉 = 0 for m < n,

〈x∗
n, T (xm)〉 ≥ ε for m ≥ n.

But this is exactly the same that

〈T ∗(x∗
n), xm〉 = 0 for m < n,

〈T ∗(x∗
n), xm〉 ≥ ε for m ≥ n.

By reversing the order of 1, . . . , N , we get Γs(T ∗) ≥ ε. That gives Γs(T ∗) ≥ Γs(T ). 
Suppose now that Γs(T ∗) > 0 and take 0 < ε < Γs(T ∗). Then, for every N ∈ N there 
are elements (x∗∗

n )Nn=1 ⊂ BX∗∗ and (x∗
n)Nn=1 ⊂ BX∗ such that

〈x∗∗
n , T ∗(x∗

m)〉 = 0 for m < n,

〈x∗∗
n , T ∗(xm)〉 ≥ ε for m ≥ n.

Fix λ > 1. Helly’s theorem [21, p. 159] allows us to find (xn)Nn=1 ⊂ λBX such that

〈x∗∗
n , T ∗(x∗

m)〉 = 〈xn, T
∗(x∗

m)〉

for every 1 ≤ n, m ≤ N . That implies Γs(T ) ≥ λ−1ε, after reversing the order of 1, . . . , N . 
By the arbitrarily choice of constants, we get Γs(T ) ≥ Γs(T ∗).
So far we have proved that Γs(T ) > 0 if and only if Γs(T ∗) > 0 and, in such a case, 
Γs(T ) = Γs(T ∗). That also implies Γs(T ) = 0 if and only if Γs(T ∗) = 0, therefore the 
proof is complete. �

Corollary 4.3. Let T : X → Y be an operator. Then 2−1Γ(T ) ≤ Γ(T ∗) ≤ 2Γ(T ).

Remark 4.4. Using γ2 as a measure of weak noncompactness for sets and operators, the 
quantified version of Gantmacher theorem [1] would become an equality.

De Blasi’s measure applied to operators does not satisfy a similar quantified Gant-
macher result, as observed in [1] after an example from [4], neither does the measure on 
super weak noncompactness introduced by Tu [42], inspired by De Blasi’s definition, as

σ(T ) = inf{ε > 0 : ∃K ⊂ Y,K is SWC, T (BX) ⊂ K + εBY }

Indeed, Tu provides a sequence of operators Tn such that and σ(T ∗
n) = 1 for all n ∈ N

and limn σ(Tn) = 0.
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Now we will consider a notion of uniform convexity for operators. In order to make 
notation shorter, for a convex function f we will write

Δf (x, y) = f(x) + f(y)
2 − f

(
x + y

2

)
.

An operator T : X → Y is called uniformly convex if for every ε > 0 there is a δ > 0
such that ‖T (x) − T (y)‖ ≤ ε whenever x, y ∈ BX are such that Δ‖·‖2(x, y) < δ. An 
operator T : X → Y is called uniformly convexifying if it becomes uniformly convex 
after a suitable renorming of X. It turns out that the class of uniformly convexifying 
operators agrees with Wsuper.

We will say that T is ε-uniformly convex (ε-UC) if there is δ > 0 such that ‖T (x) −
T (y)‖ ≤ ε whenever x, y ∈ BX are such that Δ‖·‖2(x, y) < δ. The following result 
contains two alternative forms of the ε-UC property that we will need later.

Lemma 4.5. For an operator T : X → Y and ε > 0, the following statements are 
equivalent:

(i) T is ε-UC;
(ii) lim supn ‖T (xn) − T (yn)‖ ≤ ε whenever xn, yn ∈ BX are such

lim
n

Δ‖·‖2(xn, yn) = 0;

(iii) there is δ > 0 such that ‖T (x) − T (y)‖ ≤ ε whenever x, y ∈ X are such that 
‖x‖ = ‖y‖ = 1 and ‖x + y‖ > 2(1 − δ).

Proof. The proof is left to the reader. �

For the construction of a quantified uniformly convex norm we will use this result.

Theorem 4.6 ([27]). Let (X, ‖ · ‖) be a Banach space, let f : X → [0, +∞] be a proper 
convex function and let C ⊂ dom(f) be a bounded convex set. Assume f is Lipschitz on 
C. Then given δ > 0 there exists an equivalent norm | | | · | | | on X and ζ > 0 such that 
Δf (x, y) < δ whenever x, y ∈ C satisfy Δ|||·|||2(x, y) < ζ. Therefore, if f was moreover 
ε-uniformly convex for some ε > 0 (with respect to a pseudo-metric) on C, then | | | · | | |2
would be ε-uniformly convex on C (with respect to the same pseudo-metric).

We are ready to prove the quantified Beauzamy’s renorming result.

Theorem 4.7. Let (X, ‖ · ‖) be a Banach space, and let T : X → Y be an operator such 
that Γ(T ) < ε. Then there exists an equivalent norm | | | · | | | on X such that | | | · | | | ≤ ‖ · ‖ and 
such that T is ε-UC on (X, | | | · | | |).
Moreover, in case X and Y are dual Banach spaces and T is an adjoint operator, then 
the norm | | | · | | | making T is ε-UC can be taken to be a dual one.



G. Grelier, M. Raja / Journal of Functional Analysis 284 (2023) 109889 15
Proof. Take Γ(T ) = ε′ < ε and 1 < λ < ε/ε′. By Theorem 3.4, the set B = λT (BX)
supports a convex bounded ε-uniformly convex function f that we may assume also 
Lipschitz, see [27, Proposition 5.4]. The function f ◦T is ε-uniformly convex with respect 
to the pseudo-metric d(x, y) = ‖T (x) − T (y)‖ on λBX . By Theorem 4.6, there is an 
equivalent norm ‖ · ‖u on X such that ‖ · ‖2

u is ε-uniformly convex with respect to d on 
the set λBX . All the norms defined by the formula

||| · |||2 = λ−2‖ · ‖2 + ξ‖ · ‖2
u

are ε-uniformly convex with respect to d on the set λBX . By taking ξ > 0 small enough 
we may assume that

λ−1‖ · ‖ ≤ ||| · ||| ≤ ‖ · ‖.

Since the unit ball of | | | ·| | | contains λBX , we get that T becomes ε-UC when X is endowed 
with | | | · | | |.
Assume now that X and Y are dual spaces and T is an adjoint operator, and therefore 
it is weak∗ to weak∗ continuous. By the first part, we may assume that X is already 
endowed with a (non dual) norm such that T is ε-UC. We claim that the norm | | |.| | |
on X having BX

w∗

as the unit ball makes T ε-UC too. By Lemma 4.5 there is δ > 0
such that x, y ∈ BX and ‖x + y‖ > 2(1 − δ) implies ‖T (x) − T (y)‖ ≤ ε. Therefore, 
diam(T (H ∩ BX)) ≤ ε whenever H is a halfspace such that H ∩ (1 − δ)BX = ∅. Take 
x, y ∈ X with | | |x| | | = | | |y| | | = 1 and | | |x + y| | | > 2(1 − δ/2). Note that the condition implies 
that the segment [x, y] does not meet (1 − δ)BX

w∗

. Take H a weak∗-open halfspace such 

that [x, y] ⊂ H and H ∩ (1 − δ)BX
w∗

= ∅. By the weak∗ to weak∗-continuity of T we 
have

T (H ∩BX
w∗

) ⊂ T (H ∩BX)
w∗

.

As diam(T (H ∩BX)
w∗

) = diam(T (H ∩ BX)) ≤ ε by the weak∗ semicontinuity of the 
norm of Y and the previous observation, we get that ‖T (x) − T (y)‖ ≤ ε as wished. �

5. Proof of the main result and final remarks

The norm of the Banach space (X, ‖ · ‖) is said to be uniformly Gateaux smooth if for 
every h ∈ X

sup{‖x + th‖ + ‖x− th‖ − 2 : x ∈ SX} = o(t) when t → 0.

It is well known [15, Theorem 6.7] that the norm on X is uniformly Gâteaux smooth if and 
only if the dual norm on X∗ is weak∗ uniformly rotund (W∗UR), that is, weak∗-limn(x∗

n−
y∗n) = 0 whenever x∗

n, y
∗
n ∈ BX∗ are such that limn Δ‖·‖2(x∗

n, y
∗
n) = 0.
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Lemma 5.1. Let A ⊂ X be a subset and let ε > 0. Assume that A =
⋃∞

k=1 Ak with Ak

bounded and Γ(Ak) < ε for every k ∈ N. Then, there exists an equivalent norm | | | · | | | on 
X such that the dual norm on X has the following property: whenever (x∗

n), (y∗n) ⊂ BX∗

are such that limn Δ‖·‖2(x∗
n, y

∗
n) = 0, then

lim sup
n

|x∗
n(x) − y∗n(x)| ≤ 8ε

for every x ∈ A.

Proof. Let Bk be the symmetric convex hull of Ak. By Proposition 3.5, we have Γ(Bk) <
4ε. Let Tk : Zk → X the operator given by Proposition 4.1 such that Γ(Tk) < 4ε and 
Ak ⊂ Bk ⊂ Tk(BZk

). Now, by Corollary 4.3 Γ(T ∗
k ) < 8ε, and, by Theorem 4.7, T ∗

k

became 8ε-UC with an equivalent dual norm ‖ · ‖k ≤ ‖ · ‖. Consider the equivalent dual 
norm on X∗ defined by the formula

||| · |||2 =
∞∑
k=1

2−k‖ · ‖2
k.

Suppose given (x∗
n), (y∗n) ⊂ BX∗ with limn Δ‖·‖2(x∗

n, y
∗
n) = 0. Then, for every k ∈ N, we 

have limn Δ‖·‖2
k
(x∗

n, y
∗
n) = 0 and therefore lim supn ‖T ∗

k (x∗
n) − T ∗

k (y∗n)‖ ≤ 8ε on Z∗
k . In 

particular, for every z ∈ Zk, we get

lim sup
n

|〈Tk(z), x∗
n〉 − 〈Tk(z), y∗n〉| = lim sup

n
|〈z, T ∗

k (x∗
n)〉 − 〈z, T ∗

k (y∗n)〉| ≤ 8ε.

Having in mind that Ak ⊂ T (BZk
), we obtain lim supn |x∗

n(x) − y∗n(x)| ≤ 8ε for every 
x ∈ Ak. Since this is true for every k ∈ N, the lemma is proved. �

By [8], the following statement is equivalent to Theorem 1.2.

Theorem 5.2. Let X be a Banach space. The following statements are equivalent:

(i) X is a subspace of a Hilbert-generated space;
(ii) For every ε > 0 there are sets (Bε

n) such that BX =
⋃∞

n=1 B
ε
n and Γ(Bε

n) < ε;
(iii) There exists a linearly dense set A ⊂ X such that for every ε > 0 it can be decom-

posed as A =
⋃∞

n=1 A
ε
n where each Aε

n is bounded and Γ(Aε
n) < ε;

(iv) X admits an equivalent uniformly Gâteaux norm.

Proof. (i)⇒(ii) It is enough to prove statement (ii) for a Hilbert-generated space since 
that property is clearly inherited by subspaces. Let H be a Hilbert space and T : H → X

an operator with dense range. For every 0 < ε′ < ε we have

BX ⊂
∞⋃

(nT (BH) + ε′BX).

n=1
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We have Γ(nT (BH) + ε′BX) ≤ ε′ and we can take Bε
n = BX ∩ (nT (BH) + ε′BX).

(ii)⇒(iii) It is obvious.
(iii)⇒(iv) By Lemma 5.1, for every k ∈ N there exists an equivalent dual norm ‖ · ‖k on 
X∗ such that: whenever (x∗

n), (y∗n) ⊂ BX∗ are such that limn Δ‖·‖2
k
(x∗

n, y
∗
n) = 0, then

lim sup
n

|x∗
n(x) − y∗n(x)| ≤ 1/k

for every x ∈ A. The dual norm defined by

||| · |||2 =
∞∑
k=1

2−k‖ · ‖2
k

satisfies then lim supn |x∗
n(x) − y∗n(x)| = 0 whenever x ∈ span(A) and (x∗

n), (y∗n) ⊂
BX∗ are such that limn Δ|||·|||2(x∗

n, y
∗
n) = 0. As the sequences (x∗

n), (y∗n) are bounded and 
span(A) is dense, we have lim supn |x∗

n(x) − y∗n(x)| = 0 for every x ∈ X. Therefore, the 
norm | | | · | | | is W∗UR and its predual norm on X is uniformly Gâteaux.
(iv)⇔(i) It was proved in [20] (see also [30, Theorem 6.30]). �

The result of Fabian, Godefroy and Zizler [20] (see also [30, Theorem 6.30]) gives 
actually more information: a subspace of a Hilbert-generated Banach space is generated 
by a linearly dense set which can be decomposed, for every ε > 0, in countably many 
pieces which are uniformly weakly null up to ε in the sense of Proposition 1.3. It is 
natural, therefore, to wonder if a SWC subset can be replaced by a uniformly weakly 
null set spanning the same subspace. However, we do not know the general answer to 
this problem.

Problem 5.3. Is every super WCG Banach space generated by a uniformly weakly null 
set?

We can provide an answer within the Banach spaces of density up to ω1 as a conse-
quence of a result of Fabian, Godefroy, Hájek and Zizler.

Proposition 5.4. Let X be a super WCG Banach space of density at most ω1. Then X is 
generated by a uniformly weakly null set.

Proof. According to [39], X is strongly UG renormable. By [19, Theorem 4], there is an 
injective weak∗ to weak continuous linear operator T : X∗ → c0(ω1) such that for every 
ε > 0 there is n ∈ N satisfying

|{γ ∈ ω1 : |Tx∗(γ)| > ε‖x∗‖}| < n for all x∗ ∈ X∗.

Note that Tx∗(γ) = x∗(xγ) for some xγ ∈ X and the set K = {xγ : γ ∈ ω1} is uniformly 
weakly null. �
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Note as well that any Hilbert-generated Banach space is generated by a uniformly 
weakly null set (the image of the orthonormal basis), however the converse is false. 
Indeed, the space �3/2(I) for I uncontable is generated by a uniformly weakly null set 
(just take its canonical basis) but it is not Hilbert-generated after [19, p. 316].
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