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TOPOLOGIES RELATED TO (I)-ENVELOPES

ONDŘEJ F.K. KALENDA AND MATIAS RAJA

Abstract. We investigate the question whether the (I)-envelope of any subset of a dual to a Banach
space X may be described as the closed convex hull in a suitable topology. If X contains no copy of ℓ1

then the weak topology generated by functionals of the first Baire class in the weak∗ topology works.
On the other hand, if X contains a complemented copy of ℓ1 or X = C([0, 1]) no locally convex topology
works. If we do not require the topology to be locally convex, the problem is still open. We further
introduce and compare several natural intermediate closure operators on a dual Banach space. Finally,
we collect several intringuing open problems related to (I)-envelopes.

1. Introduction

If X is a Banach space and A is any subset of its dual X∗, the (I)-envelope of A is defined by

(I)-env(A) =
⋂







conv

∞
⋃

n=1

convAn
w∗

‖·‖

; A =

∞
⋃

n=1

An







.

This notion was introduced in [8], inspired by the notion of (I)-generation from [4]. It was used to analyze
James’ characterization of reflexivity in [9] or to investigate a quantitative version of the Grothendieck
property in [2, 11].

One of the main advantages of the notion of (I)-envelope is provided by the fact that it can be viewed
as a geometric counterpart of Simons’ equality (see [8, Lemma 2.1 and Remark 2.2] or Lemma 1.2 below).

The prefix (I) means intermediate as it is easy to see that

convA
‖·‖

⊂ (I)-env(A) ⊂ convA
w∗

(1.1)

for any A ⊂ X∗. In this paper we address the following natural question.

Question 1.1. Let X be a Banach space. Is there a (locally convex) topology τ on X∗ such that

(I)-env(A) = convA
τ
for each A ⊂ X∗?

In some case the answer is easily seen to be positive. For example, if X∗ is separable, then τ can be
the norm topology (cf. [8, Remark 1.1(ii)]). In this paper we give some results in the positive direction
and some results in the negative direction.

We start by recalling a key lemma characterizing the (I)-envelope via a separation by a bounded
sequence. Note that the equivalence (1) ⇔ (4) provides the above-mentioned relationship to the Simons
equality.

Lemma 1.2. Let X be a Banach space, A ⊂ X∗ and η ∈ X∗. The following assertions are equivalent.

(1) η /∈ (I)-env(A).
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(2) There is a sequence (xn) in BX such that

sup
ξ∈A

lim sup
n→∞

Re ξ(xn) < inf
n∈N

Re η(xn).

(3) There is a sequence (xn) in BX such that

sup
ξ∈A

lim sup
n→∞

Re ξ(xn) < lim inf
n→∞

Re η(xn).

(4) There is a sequence (xn) in BX such that

sup
ξ∈A

lim sup
n→∞

Re ξ(xn) < lim sup
n→∞

Re η(xn).

Proof. This lemma is proved in [8, Lemma 2.1] for real Banach spaces. The complex setting follows by
looking at the complex Banach space as to a real one. We are going to give a proof of (1)⇒(4) using only
the Hahn-Banach theorem (the proof given in [8] uses a minimax theorem from [15]).

Assume η /∈ (I)-env(A). Then there is a sequence (An) of sets such that An ր A and

η /∈
∞
⋃

n=1

convAn
w∗

‖·‖

.

Hence, d = dist(η,
⋃∞

n=1 convAn
w∗

) > 0. For each n ∈ N we have (η + d
2BX∗) ∩ convAn

w∗

= ∅.
Since these two sets are convex and weak∗-closed, and, moreover, the first one is weak∗-compact, by the
Hahn-Banach theorem we get xn ∈ BX with

inf

{

Re ξ(xn); ξ ∈ η +
d

2
BX∗

}

> sup{Re ξ(xn); ξ ∈ convAn
w∗

},

i.e.,

Re η(xn)−
d

2
> sup

ξ∈An

Re ξ(xn).

Let ξ ∈ A be arbitrary. Then there is n0 ∈ N such that ξ ∈ An for n ≥ n0. Then

Re ξ(xn) < Re η(xn)−
d

2

for n ≥ n0. Thus

lim sup
n→∞

Re ξ(xn) ≤ lim sup
n→∞

Re η(xn)−
d

2
.

It follows that the inequality from (4) is fulfilled. �

As an easy consequence we obtain an improvement of (1.1). To formulate it we need the following
notation. If X is a Banach space, we set

B1(X) = {x∗∗ ∈ X∗∗; ∃(xn) a sequence in X : xn
w∗

−→ x∗∗},

C(X) = {x∗∗ ∈ X∗∗; ∃C ⊂ X countable : x∗∗ ∈ C
w∗

}.
(1.2)

Proposition 1.3. Let X be a Banach space and A ⊂ X∗. Then

convA
σ(X∗,C(X))

⊂ (I)-env(A) ⊂ convA
σ(X∗,B1(X))

.

Proof. We will use Lemma 1.2 and the Hahn-Banach theorem.
Assume that η /∈ (I)-env(A). By Lemma 1.2 there is a sequence (xn) in BX with

sup
ξ∈A

lim sup
n→∞

Re ξ(xn) < inf
n∈N

Re η(xn).
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Let x∗∗ be any weak∗-cluster point of (xn). Then x∗∗ ∈ C(X). Moreover,

Rex∗∗(η) ≥ inf
n∈N

Re η(xn) > sup
ξ∈A

lim sup
n→∞

Re ξ(xn) ≥ sup
ξ∈A

Rex∗∗(ξ),

hence η /∈ convA
σ(X∗,C(X))

. This completes the proof of the first inclusion.

Next suppose that η /∈ convA
σ(X∗,B1(X))

. By the Hahn-Banach separation theorem there is x∗∗ ∈
B1(X) such that

Rex∗∗(η) > sup
ξ∈A

Rex∗∗(ξ).

Since x∗∗ ∈ B1(X), there is a sequence (xn) in X with xn
w∗

−→ x∗∗. By the uniform boundedness principle
this sequence is bounded, so, up to multiplying it by a positive constant we may assume that xn ∈ BX

for n ∈ N. Then

sup
ξ∈A

lim sup
n→∞

Re ξ(xn) = sup
ξ∈A

Rex∗∗(ξ) < Rex∗∗(η) = lim sup
n→∞

Re η(xn),

hence η /∈ (I)-env(A) by Lemma 1.2. This completes the proof of the second inclusion. �

The next lemma provides a consequence of Lemma 1.2 for linear subspaces of X∗.

Lemma 1.4. Let X be a Banach space.

(a) Let Y ⊂ X∗ be a linear subspace. Then

(I)-env(Y ) = {η ∈ X∗; ∀(xn) sequence in BX : xn
σ(X,Y )
−→ 0 ⇒ η(xn) → 0}.

(b) Assume that x∗∗ ∈ X∗∗. Then

(I)-env(kerx∗∗) =

{

kerx∗∗ x∗∗ ∈ B1(X)

X∗ x∗∗ /∈ B1(X).

Proof. (a) This is a mild generalization of [9, Lemma 1.2]. We observe that

sup
ξ∈Y

lim sup
n→∞

Re ξ(xn) =

{

0 if xn
σ(X,Y )
−→ 0,

+∞ otherwise

and then use Lemma 1.2.
(b) Assume first that x∗∗ ∈ B1(X). Then kerx∗∗ is σ(X∗, B1(X))-closed, thus

kerx∗∗ ⊂ (I)-env(kerx∗∗) ⊂ kerx∗∗
σ(X∗,B1(X))

= kerx∗∗,

where the second inclusion follows from Proposition 1.3.
Conversely, assume that (I)-env(kerx∗∗) = kerx∗∗. If x∗∗ = 0, then x∗∗ ∈ B1(X). So, assume

x∗∗ 6= 0. Take η ∈ X∗ with x∗∗(η) = 1. By (a) there is a sequence (xn) is BX such that xn
σ(X,ker x∗∗)

−→ 0
but η(xn) 6→ 0. Hence, up to passing to a subsequence we may assume that η(xn) → c 6= 0. Then
1
c
xn

w∗

−→ x∗∗, hence x∗∗ ∈ B1(X). This completes the proof. �

2. The case of locally convex topologies

In this section we address the version of Question 1.1 dealing with locally convex topologies. The first
observation is the following consequence of Lemma 1.4

Corollary 2.1. Let X be a Banach space. Assume that there is a locally convex topology τ on X∗ such
that (I)-env(A) = convA

τ
for each A ⊂ X∗. Then (X∗, τ)∗ = B1(X).
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Proof. If x∗∗ ∈ B1(X), by Lemma 1.4(b) we have (I)-env(kerx∗∗) = kerx∗∗, hence kerx∗∗ is τ -closed,
i.e., x∗∗ is τ -continuous (cf. [10, §15.9.(1)]).

Conversely, assume x∗∗ ∈ (X∗, τ)∗. Then kerx∗∗ is τ -closed, hence (I)-env(kerx∗∗) = kerx∗∗. By
(1.1) we deduce that kerx∗∗ is norm-closed, hence x∗∗ ∈ X∗∗. By Lemma 1.4(b) we conclude that
x∗∗ ∈ B1(X). �

Using the previous corollary and Mazur’s theorem we get the following equivalence.

Proposition 2.2. Let X be a Banach space. The following assertions are equivalent.

(1) There is a locally convex topology τ on X∗ such that (I)-env(A) = convA
τ
for each A ⊂ X∗.

(2) (I)-env(A) = convA
σ(X∗,B1(X))

for each A ⊂ X∗.

We continue by a partial positive answer to Question 1.1.

Theorem 2.3. Assume that X is a Banach space not containing an isomorphic copy of ℓ1. Then
B1(X) = C(X), hence for any set A ⊂ X∗ we have

(I)-envA = convA
σ(X∗,B1(X))

.

Proof. The formula for the (I)-envelope follows from the equality B1(X) = C(X) and Proposition 1.3.
So, it is enough to prove the equality. Since obviously B1(X) ⊂ C(X), it suffices to prove the converse

inclusion. To this end fix x∗∗ ∈ C(X). It follows that there is a countable set C ⊂ X with x∗∗ ∈ C
w∗

. Set
Y = spanC. Then Y is a separable subspace of X , hence it is a separable Banach space not containing
an isomorphic copy of ℓ1. By the main result of [14] we have B1(Y ) = Y ∗∗. Since Y ∗∗ is canonically

identified with Y
w∗

and x∗∗ ∈ Y
w∗

, we deduce that x∗∗ ∈ B1(Y ) ⊂ B1(X). �

The next result is the basic counterexample to the ‘locally convex’ variant of Question 1.1.

Example 2.4. There is no locally convex topology τ on (ℓ1)∗ such that (I)-env(A) = convA
τ
for each

A ⊂ (ℓ1)∗.

Proof. Recall that the space ℓ1 is weakly sequentially complete, i.e., B1(ℓ
1) = ℓ1. Hence the topology

σ((ℓ1)∗, B1(ℓ
1)) coincides with the weak∗-topology on (ℓ1)∗.

Recall further that (ℓ1)∗ = ℓ∞. Let A = c0 be the canonical copy of c0 in ℓ∞. Then A
w∗

= ℓ∞ (by the
Goldstine theorem) but (I)-envA = A = c0 as A is separable. Hence we conclude using Corollary 2.1. �

One of the important tools in the previous example was the weak sequential completeness of ℓ1. It
turns out that this may be used to provide a counterexample in a more general situation.

Proposition 2.5. Let X be a weakly sequentially complete Banach space. The following are equivalent.

(1) There is a locally convex topology τ on X∗ such that (I)-env(A) = convA
τ
for each A ⊂ X∗.

(2) Any closed norm-separable subspace of X∗ is weak∗-closed.
(3) X is reflexive.

Proof. (3) ⇒ (1) This follows for example from (1.1) (τ may be the norm topology).
(1) ⇒ (2) Since X is weakly sequentially complete, we get B1(X) = X , hence by Proposition 2.2 we

may assume τ = w∗. Since (I)-env Y = Y for any closed separable subspace of X∗, we deduce that any
closed separable subspace of X∗ is also weak∗-closed.

(2) ⇒ (3) To prove that X is reflexive it is enough to show that X∗ is reflexive. It follows from
Eberlein-Šmulyan theorem that it suffices to prove that any separable subspace of X∗ is reflexive.

So fix a closed separable subspace Y ⊂ X∗. By the assumption we know that Y is weak∗-closed,
so Y = Z∗ where Z = X/Y⊥. If Y is not reflexive, there is some z∗∗ ∈ Z∗∗ \ Z. Then ker z∗∗ is a
weak∗-dense subpace of Z∗ = Y . On the other hand, ker z∗∗ is a closed separable subspace of X∗, so it
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is weak∗-closed by the assumption. This is a contradiction. (Note that on Y the topologies σ(Z∗, Z) and
σ(X∗, X) coincide.) �

Another generalization of Example 2.4 can be proved using the following easy statement.

Lemma 2.6. Let X be a Banach space. Let Y ⊂ X be a complemented subspace and let P : X → Y be
a projection witnessing it. Let P ∗ : Y ∗ → X∗ be the adjoint map. Then the following assertions hold.

(a) P ∗is an isomporhic embedding, which is, moreover, weak∗-to-weak∗ and σ(Y ∗, B1(Y ))-to-σ(X∗, B1(X))
homeomorphic.

(b) (I)-envP ∗(A) = P ∗((I)-envA) for each A ⊂ Y ∗.

Proof. We start by observing that the space X is canonically isomorphic to Y ⊕ Z, where Z = kerP .
Then X∗ is isomorphic to Y ∗ ⊕ Z∗, where P ∗ : Y ∗ → X∗ is defined by η 7→ (η, 0). Further, X∗∗ is
canonically isomorphic to Y ∗∗ ⊕ Z∗∗.

Now we are ready to prove all the statements.
(a) Since P : X → Y is a surjection, necessarily P ∗ is an isomorphic embedding. It is a weak∗-to-weak∗

homeomorphism since in the above representation (X∗, w∗) is obviously homeomorphic to (Y ∗, w∗) ×
(Z∗, w∗).

Finally, since clearly B1(Y ⊕Z)∩Y ∗∗×{0} = B1(Y )×{0}, we deduce that P ∗ is also a σ(Y ∗, B1(Y ))-
to-σ(X∗, B1(X)) homeomorphism.

(b) This follows easily from the definition of the (I)-envelope using the fact that P ∗ is a linear injection
which is a homeomorphism both in the norm and in the weak∗-topologies and, morerover, its range is
weak∗-closed. �

Combining Example 2.4 with Lemma 2.6 we immediately deduce the following result.

Proposition 2.7. Let X be a Banach space which contains a complemented isomorphic copy of ℓ1. Then
there is a closed separable subspace Y ⊂ X∗ such that

Y $ Y
σ(X∗,B1(X))

.

In particular, there is no locally convex topology τ on X∗ such that (I)-env(A) = convA
τ
for each A ⊂ X∗.

If we compare Theorem 2.3 with Proposition 2.7, we see that they do not cover all Banach spaces. It
is not clear what happens if a Banach space contains an isomorphic copy of ℓ1, but not a complemented
one. We will settle the problem for spaces C(K) of continuous functions on a metrizable compact space
K.

Theorem 2.8. Let K be an uncountable metrizable compact space. Then there is no locally convex
topology τ on C(K)∗ such that (I)-env(A) = convA

τ
for each A ⊂ C(K)∗.

Proof. Recall that, due to the Riesz theorem, C(K)∗ is canonically isometric to M(K), the space of
(signed or complex) Radon measures on K equipped with the total variation norm. The bidual C(K)∗∗ =
M(K) is not easy to describe in general, but it contains a nice subspace which may be easily described.
It is the space Bb(K) of all bounded Borel-measurable functions on K equipped by the supremum norm.
If g ∈ Bb(K), it acts on C(K)∗ = M(K) by

µ 7→

∫

g dµ.

Then C(K) is a closed subspace of Bb(K) and this inclusion corresponds to the canonical embedding of
C(K) into C(K)∗∗. Moreover, B1(C(K)) coincides with Bb

1(K), the space of bounded Baire-one functions
on K considered as a subspace of Bb(K).
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Now we proceed with the proof itself. By the Miljutin theorem [13] C(K) is isomorphic to C[0, 1], so
we may assume without loss of generality that K = [0, 1]. Denote by λ the Lebesgue measure on [0, 1].
Then we have:

There is an Fσ set E ⊂ [0, 1] such that for any nonempty open set G ⊂ [0, 1]

we have both λ(E ∩G) > 0 and λ(G \ E) > 0.
(2.1)

Indeed, set H = [0, 1] \ Q. Then H is a dense Gδ-subset of [0, 1] with empty interior and full measure.
Let (Gn) be a countable open base of [0, 1] consisting of nonempty sets. Using regularity of the Lebesgue
measure we may construct by induction compact sets Fn,1, Fn,2 for n ∈ N such that for each n ∈ N we
have

• λ(Fn,1) > 0 and λ(Fn,2) > 0;
• Fn,1 ⊂ (Gn ∩H) \

⋃

k<n(Fk,1 ∪ Fk,2);

• Fn,2 ⊂ (Gn ∩H) \
(

Fn,1 ∪
⋃

k<n(Fk,1 ∪ Fk,2)
)

.

It is enough to take E =
⋃

n∈N
Fn,1.

Next we set

Y = {µ ∈ M([0, 1]); µ ≪ λ & µ(E) = 0},

where ≪ denotes absolute continuity. Then Y is a norm-closed linear subspace of M([0, 1]). Moreover,
since the space {µ ∈ M([0, 1]); µ ≪ λ} is isometric to L1([0, 1]) (by the Radon-Nikodým theorem), we
deduce that Y is separable. Hence (I)-env(Y ) = Y .

On the other hand, λ|E ∈ Y
σ(M([0,1]),Bb

1([0,1])\Y . Indeed, assume that λ|E /∈ Y
σ(M([0,1]),Bb

1([0,1]). Then,
by the Hahn-Banach theorem, there is a function g ∈ Bb

1([0, 1]) such that

〈λ|E , g〉 6= 0 & ∀µ ∈ Y : 〈µ, g〉 = 0.

The second condition implies
∫

fg = 0 whenever f ∈ L1([0, 1]), f |E = 0,

hence g = 0 almost everywhere on [0, 1] \ E. The first condition means
∫

E
g 6= 0.

Assume now that A,B ⊂ E are two Borel sets of positive measure. Then

1

λ(A)
λ|A −

1

λ(B)
λ|B ∈ Y,

hence
1

λ(A)

∫

A

g =
1

λ(B)

∫

B

g.

It follows that g is essentially constant on E, i.e., there is a constant c such that g = c almost everywhere
on E. Necessarily c 6= 0.

It follows that g = 0 on a dense set and g = c on a dense set as well. Hence g has no point of continuity,
so it cannot be of the first Baire class. This contradiction completes the proof. �

We finish this section by two open problems. The first one concerns possible converse to Theorem 2.3

Question 2.9. Assume that X is a Banach space containing an isomorphic copy of ℓ1. Does there exist
a convex subset A ⊂ X∗ such that

(I)-envA $ A
σ(X∗,B1(X))

?

In particular, is it true for X = C(K), where K is any compact space which is not scattered?
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We know that the answer is possitive if X contains a complemented copy of ℓ1, if X is weakly sequen-
tially complete or for X = C(K) where K is an uncountable metrizable compact space.

Another question is what happens if we restrict our attention just to bounded sets. Note that the
original motivation for introducing (I)-envelopes comes from (I)-generation used in [4] to investigate
James boundaries of weak∗ compact convex sets, so in this case the (I)-envelope is applied to a bounded
set. The study of (I)-envelopes of unbounded sets, in particular of subspaces, is also natural (see e.g., [9,
Theorem 2.1] where it is used to provide an easy characterization of Grothendieck spaces), however the
main focus is on bounded sets. Therefore the following question seems to be natural.

Question 2.10. Let X be a Banach space. Is there a locally convex topology τ on X∗ such that
(I)-env(A) = convA

τ
for each bounded A ⊂ X∗?

Note that the counterexamples in Example 2.4 and Theorem 2.8 are based on Corollary 2.1 which
follows from Lemma 1.4 describing the (I)-envelope of subspaces (which are, of course, unbounded). So,
our methods do not help to solve Question 2.10.

3. Several intermediate topologies

In the previous section we analyzed the problem of existence of a locally convex topology which may
be used to describe the (I)-envelopes. We saw that in some cases it exists and in some cases it does not
and that the full characterization is still missing.

Next we will look at the problem of existence any such topology, not necessarily locally convex. This
requires a completely different approach. We will define several natural closure operators and analyze
their mutual relationships and connections to the (I)-envelope.

We start by recalling what is a closure operator. Let X be a nonempty set. By a closure operator on
X we understand a mapping γ : P(X) → P(X) (note that P(X) denotes the power set of X) with the
following properties (cf. [12, Remark on p. 7]).

(i) γ(∅) = ∅;
(ii) γ(A) ⊃ A for each A ⊂ X ;
(iii) γ(A ∪B) = γ(A) ∪ γ(B) for A,B ⊂ X .

If γ satisfies moreover

(iv) γ(γ(A)) = γ(A) for each A ⊂ X ;

it is called idempotent closure operator.
If γ is a closure operator, we call a set A ⊂ X γ-closed if γ(A) = A. It is well known and easy to

see that the collection of all γ-closed sets is the collection of all closed sets in a topology on X . If γ is
moreover idempotent, then γ(A) is the closure of A in this topology (cf. [3, Proposition 1.2.7]).

Next we present an abstract lemma on properties of ‘intermediated closure operators’.

Lemma 3.1. Let X be a nonempty set, β : P(X) → P(X) a closure operator and α : P(X) → P(X)
a monotone mapping satisfying conditions (i) and (ii) from the definition of a closure operator and,
moreover, α(A) ⊃ β(A) for each A ⊂ X. Let us set

γ1(A) =
⋂

{

β

(

n
⋃

k=1

α(Ak)

)

; A =

n
⋃

k=1

Ak

}

,

γ2(A) =
⋂

{

β

(

∞
⋃

n=1

α(An)

)

; A =

∞
⋃

n=1

An

}

.

Then the following assertions hold:

(a) Both γ1 and γ2 are closure operators.
(b) β(A) ⊂ γ2(A) ⊂ γ1(A) ⊂ α(α(A)) for A ⊂ X.
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(c) If α is idempotent, then γ1 is idempotent as well.
(d) Assume that:

• X is a topological vector space and β is the closure in the toplogy of X;
• α is idempotent;
• there is U , a base of neighborhoods of zero in X formed by balanced sets such that α(α(A)+U) =

α(A) + U for any A ⊂ X and any U ∈ U .
Then γ2 is idempotent as well and, moreover,

β(A) ⊂ γ2(A) ⊂ γ1(A) ⊂ α(A) for A ⊂ X.

Proof. (a) It is clear that both γ1 and γ2 satisfy properties (i) and (ii). It is further easy to check that
that both mappings are monotone. Therefore, the inclusion ‘⊃’ in (iii) follows. Let us prove the converse
one.

Assume that x ∈ X \ (γ1(A) ∪ γ1(B)). Then there are coverings

A = A1 ∪ · · · ∪ An, B = B1 ∪ · · · ∪Bm

such that

x /∈ β





n
⋃

j=1

α(Aj)



 ∪ β





m
⋃

j=1

α(Bj)



 = β





n
⋃

j=1

α(Aj) ∪
m
⋃

j=1

α(Bj)



 ,

so clearly x /∈ γ1(A ∪ B). The proof for γ2 is completely analogous. Hence γ1 and γ2 are indeed closure
operators.

(b) The first inclusion follows from the monotonicity of β. The second one is easy (note that a finite
cover may be extended to an infinite one by adding empty sets and α(∅) = ∅). The last follows by taking
the cover of A by just one set – A – hence γ1(A) ⊂ β(α(A)) ⊂ α(α(A)).

(c) Fix A ⊂ X . Clearly γ1(γ1(A)) ⊃ γ1(A). To prove the converse, pick any x /∈ γ1(A). Then there is
a cover A =

⋃n
k=1 Ak such that

x /∈ β

(

n
⋃

k=1

α(Ak)

)

.

Then

γ1(A) ⊂ β

(

n
⋃

k=1

α(Ak)

)

=
n
⋃

k=1

β(α(Ak)) ⊂
n
⋃

k=1

α(α(Ak)) =
n
⋃

k=1

α(Ak),

hence

γ1(γ1(A)) ⊂ β

(

n
⋃

k=1

α(α(Ak))

)

= β

(

n
⋃

k=1

α(Ak)

)

,

so x /∈ γ1(γ1(A)).
(d) Fix A ⊂ X . Clearly γ2(γ2(A)) ⊃ γ2(A). To prove the converse, pick any x /∈ γ2(A). Then there is

a cover A =
⋃∞

n=1 An such that

x /∈
∞
⋃

n=1

α(An).

Then there U , a neighborhood of zero in X , such that

(x + U) ∩
∞
⋃

n=1

α(An) = ∅.

Let V ∈ U be such that V + V ⊂ U . Then

(x+ V ) ∩
∞
⋃

n=1

(α(An) + V ) = ∅.
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Since

γ2(A) ⊂
∞
⋃

n=1

α(An) ⊂
∞
⋃

n=1

(α(An) + V ),

we get

γ2(γ2(A)) ⊂
∞
⋃

n=1

α(α(An) + V ) ⊂
∞
⋃

n=1

α(An) + V =

∞
⋃

n=1

(α(An) + V ).

Hence, x /∈ γ2(γ2(A)).
The ‘moreover’ part follows from (b). �

Next we going to define several concrete intermediate closure operators. Their properties will be
collected later. Assume that X is a Banach space and A ⊂ X∗.

We start by the following pair of operators:

(I)-cl(A) =
⋂







∞
⋃

n=1

An
w∗

‖·‖

; A =
∞
⋃

n=1

An







,

(I)-ccl(A) =
⋂







∞
⋃

n=1

convAn
w∗

‖·‖

; A =

∞
⋃

n=1

An







.

These two operators are inspired by the definition of (I)-envelope – in the first case we just omit the
convex hulls in the formula, in the second case we omit the outer convex hull. There are further variants
inspired by the Mazur theorem: In the definition of the (I)-envelope we use the weak∗-closure and the
norm-closure. Since we apply these closures to convex sets, it does not matter which of the topologies
with the same dual we use. However, if we apply the respective closures to non-convex sets, the results
may differ. There are many possibilities, we point out two extreme ones:

(I)-mn(A) =
⋂







∞
⋃

n=1

An
µ(X∗,X)

‖·‖

; A =

∞
⋃

n=1

An







,

(I)-ww(A) =
⋂

{

∞
⋃

n=1

convAn
w∗

w

; A =

∞
⋃

n=1

An

}

.

Note that µ(X∗, X) denotes the respective Mackey topology.
Next we define two more closure operators, this time using the notion of (I)-envelope. For A ⊂ X∗ we

set

clIF (A) =
⋂







n
⋃

j=1

(I)-env(Aj); A =
n
⋃

j=1

Aj







,

clIC(A) =
⋂







∞
⋃

n=1

(I)-env(An)

‖·‖

; A =

∞
⋃

n=1

An







.
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We finally introduce one more pair of closure operators, inspired by Proposition 1.3. We again choose
two extremes from the possibilities of the topologies with prescribed dual. For A ⊂ X∗ we set

(I)-bcl(A) =
⋂







∞
⋃

n=1

An
µ(X∗,B1(X))

µ(X∗,C(X))

; A =

∞
⋃

n=1

An







,

(I)-cbcl(A) =
⋂







∞
⋃

n=1

convAn
σ(X∗,B1(X))

σ(X∗,C(X))

; A =

∞
⋃

n=1

An







.

Next we establish basic properties of the above-defined operators.

Proposition 3.2. Let X be a Banach space.

(a) The eight above-defined mappings are closure operators on X∗.
(b) The operators (I)-cl, (I)-ccl, clIF are idempotent.
(c) Let γ be a closure operator on X∗ such that γ(A) ⊂ (I)-env(A) for each A ⊂ X∗. Then γ(A) ⊂

clIF (A) for each A ⊂ X∗

Proof. Note that clIF is of the form γ1 and the remaining six mappings are of the form γ2 from Lemma 3.1
for suitable choices of α and β. Let us review these choices in the individual cases.

(I)-cl: β(A) = A
‖·‖

, α(A) = A
w∗

;

(I)-ccl: β(A) = A
‖·‖

, α(A) = convA
w∗

;

(I)-mn: β(A) = A
‖·‖

, α(A) = A
µ(X∗,X)

;

(I)-ww: β(A) = A
w
, α(A) = convA

w∗

;

clIF : β(A) = A
‖·‖

, α(A) = (I)-env(A);

clIC : β(A) = A
‖·‖

, α(A) = (I)-env(A);

(I)-bcl: β(A) = A
µ(X∗,C(X))

, α(A) = A
µ(X∗,B1(X))

;

(I)-cbcl: β(A) = A
σ(X∗,C(X))

, α(A) = convA
σ(X∗,B1(X))

.

In all cases β is a closure operator and α has the required properties. So, assertion (a) is proved.
Let us continue by proving (b). For clIF we may use Lemma 3.1(c). In the remaining cases we will

use Lemma 3.1(d). Indeed, for (I)-cl and (I)-ccl the operator β is the norm closure and α is in both cases
idempotent. It remains to prove that in these cases we have

α(α(A) + U(0, r)) = α(A) + U(0, r)
‖·‖

for A ⊂ X∗. So, fix A ⊂ X∗. Then

A
w∗

+ U(0, r)
w∗

⊂ A
w∗

+ U(0, r) ⊂ A
w∗

+ U(0, r)
‖·‖

as U(0, r) is weak∗-compact by the Banach-Alaoglu theorem and hence A
w∗

+ U(0, r) is weak∗-closed.
The second case is similar, we only use that the sum of two convex sets is again convex.

(c) Let A =
⋃n

k=1 Ak Then

γ(A) =

n
⋃

k=1

γ(Ak) ⊂
n
⋃

k=1

(I)-env(Ak).

By taking intersection over all finite covers of A we get γ(A) ⊂ clIF (A). �

We continue by the following theorem which characterizes Banach spaces in which the (I)-envelope
can be described using a closure in a topology. Let us point out that it is still not clear whether this
condition is satisfied by any Banach space.
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Theorem 3.3. Let X be a Banach space. The following assertions are equivalent.

(1) There is a topology τ on X∗ such that (I)-env(A) = convA
τ
for each A ⊂ X∗.

(2) If A1, . . . , An are convex subsets of X∗ such that A1 ∪ · · · ∪ An is also convex, then

(I)-env(A1 ∪ · · · ∪ An) = (I)-env(A1) ∪ · · · ∪ (I)-env(An).

(3) (I)-env(A) = clIF (convA) for each A ⊂ X∗.

Proof. (1) ⇒ (2): Let τ be the topology provided by (1). Then (I)-env(A) = A
τ
for each convex set

A ⊂ X∗. Since

A1 ∪ · · · ∪An
τ
= A1

τ
∪ · · · ∪An

τ
,

assertion (2) easily follows.
(2) ⇒ (3) : Assume (2) holds. Since (I)-env(A) = (I)-env(convA), it is enough to prove the equality

from (3) in case A is convex. So, fix a convex set A ⊂ X∗. Fix A1, . . . , An such that A = A1 ∪ · · · ∪ An.
Then

n
⋃

j=1

(I)-env(Aj) =

n
⋃

j=1

(I)-env(convAj) = (I)-env





n
⋃

j=1

convAj



 = (I)-env(A),

where we used assumption (2) and the convexity of A. Now it follows that clIF (A) = (I)-env(A) and the
proof is complete.

(3) ⇒ (2) : This follows from the fact that clIF is an idempotent closure operator. �

The previous theorem says, in particular, that to answer the key question of our paper it would be
enough to understand the closure operator clIF . However, we think that the other intermediate closure
operators are also natural and interesting, so we are going to study their mutual relationships. In the
following proposition we summarize inclusions which hold in general and in some important special cases.

Proposition 3.4. Let X be a Banach space and let A ⊂ X∗ be arbitrary.

(a) The following inclusions hold:

(I)-cl(A) = (I)-ccl(A) ⊂ (I)-ww(A) ⊂ clIF (A) ⊂ (I)-env(A) ∩ A
w∗

⋃ ⋃ ⋂

(I)-mn(A) clIC(A) A
w∗

⋃

⋃

⋃

A
‖·‖

⊂ A
µ(X∗,C(X))

⊂ (I)-bcl(A) ⊂ (I)-cbcl(A) ⊂ A
σ(X∗,B1(X))

(b) Assume A is norm-separable. Then

(I)-ccl(A) = A
‖·‖

, (I)-ww(A) = clIF (A) = A
w
, (I)-env(A) = convA

‖·‖
.

(c) Assume X is separable. Then

A
‖·‖

= A
µ(X∗,C(X))

, (I)-bcl(A) ⊂ (I)-mn(A) and (I)-cbcl(A) ⊂ (I)-ww(A).

(d) Assume X is a separable Banach space not containing an isomorphic copy of ℓ1. Then

(I)-env(A) = convA
‖·‖

, (I)-cbcl(A) = (I)-ww(A) = clIF (A) = A
w
,

Proof. (a) We start by the first equality on the first row. Inclusion ‘⊂’ is obvious. To prove the converse
take any x∗ ∈ X∗ \ (I)-cl(A). It means that there is a sequence (An) of sets covering A such that

x∗ /∈
⋃

n∈N

An
w∗

.
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I.e., there is some r > 0 such that

x∗ + rBX∗ ∩
⋃

n∈N

An
w∗

= ∅.

For each y∗ ∈
⋃

n∈N
An

w∗

there are, by the Hahn-Banach theorem, some xy∗ ∈ X and cy∗ ∈ R such that

∀z∗ ∈ BX∗ : Re y∗(xy∗) < cy∗ ≤ x∗(xy∗) + rz∗(xy∗).

Set

Hy∗ = {z∗ ∈ X∗; z∗(xy∗) < cy∗}.

Then Hy∗ is a weak∗-open half-space disjoint with z∗ + rBX∗ and containing y∗. Hence the system

Hy∗ , y∗ ∈
⋃

n∈N

An
w∗

is a cover of
⋃

n∈N
An

w∗

by weak∗-open sets. The set
⋃

n∈N
An

w∗

, being weak∗-Fσ and hence σ-compact
in the weak∗-topology, is weak∗-Lindelöf. It follows that there is a countable subcover. I.e., there is a
sequence (y∗k) such that

⋃

n∈N

An
w∗

⊂
⋃

k∈N

Hy∗

k
.

We deduce that
⋃

k∈N

Hy∗

k

w∗

is a cover of A by convex weak∗-closed sets disjoint with the norm interior of the ball x∗ + rBX∗ . Hence
x∗ /∈ (I)-ccl(A), which completes the proof of inclusion ‘⊃’ and hence of the equality.

Continuing the first row, the second inclusion is obvious. The third one follows from Proposition 3.2(c)
since (I)-ww is a closure operator and clearly (I)-ww(A) ⊂ (I)-env(A) for A ⊂ X∗.

Let us prove the fourth inclusion. The first part, i.e., the inclusion clIF (A) ⊂ (I)-env(A) is obvious.

Let us prove that clIF (A) ⊂ A
w∗

.

Assume that x∗ /∈ A
w∗

. Then there are x1, . . . , xn ∈ X and ε > 0 such that

{y∗ ∈ X∗; |Re(y∗(xj)− x∗(xj))| < ε for j = 1, . . . , n} ∩ A = ∅.

For j = 1, . . . , n set

A+
j = {y∗ ∈ X∗; Re y∗(xj) ≥ Rex∗(xj) + ε} and A−

j = {y∗ ∈ X∗; Re y∗(xj) ≤ Rex∗(xj)− ε}.

Then

A ⊂
n
⋃

j=1

(A+
j ∪ A−

j )

and, moreover, the sets A+
j and A−

j are convex and weak∗-closed. Hence clIF (A) ⊂
⋃n

j=1(A
+
j ∪A−

j ) and

therefore x∗ /∈ clIF (A).
All vertical inclusions are obvious and the first three inclusions on the last line as well.

The last inclusion, (I)-cbcl(A) ⊂ A
σ(X∗,B1(X))

may be proved in the same way as the inclusion

clIF (A) ⊂ A
w∗

(we just use elements of B1(X) instead of X).

(b) Assume A is norm-separable. Then (I)-env(A) = convA
‖·‖

by [8, Remark 1.1(ii)]. Using the

same argument coming from [4, Proposition 2.2(a)] we may show that (I)-ccl(A) = A
‖·‖

. Let us give the
argument for the sake of completeness.
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Let (x∗
n) be a norm-dense sequence in A. Let ε > 0 be arbitrary. Then A ⊂

⋃

n(x
∗
n + εBX∗). Since

the set x∗
n + εBX∗ is convex and weak∗-closed for each n, we deduce that

(I)-ccl(A) ⊂
⋃

n

(x∗
n + εBX∗)

‖·‖

⊂ A+ 2εBX∗ .

Since ε > 0 is arbitrary, we deduce that (I)-ccl(A) ⊂ A
‖·‖

. The converse inclusion follows from (a).
Further, we have

A
w
⊂ (I)-ww(A) ⊂ clIF (A).

Indeed, the first inclusion is obvious and the second one follows from (a). To prove the converse inclusions

fix x∗ /∈ A
w
. Then there are x∗∗

1 , . . . , x∗∗
n ∈ X∗∗ and ε > 0 such that

{y∗ ∈ X∗;
∣

∣Rex∗∗
j (y∗ − x∗)

∣

∣ < ε for j = 1, . . . , n} ∩ A = ∅.

For j = 1, . . . , n set

A+
j = {y∗ ∈ X∗; Rex∗∗

j (y∗ − x∗) ≥ ε} and A−
j = {y∗ ∈ X∗; Rex∗∗

j (y∗ − x∗) ≤ −ε}.

Then

A ⊂
n
⋃

j=1

(A+
j ∪ A−

j )

and, moreover, the sets A+
j and A−

j are convex and norm-closed. Hence

clIF (A) ⊂
n
⋃

j=1

((I)-env(A+
j ∩ A) ∪ (I)-env(A−

j ∩ A)) =

n
⋃

j=1

(

conv(A+
j ∩ A)

‖·‖
∪ conv(A−

j ∩ A)
‖·‖
)

⊂
n
⋃

j=1

(A+
j ∪ A−

j )

and therefore x∗ /∈ clIF (A).
(c) If X is separable, then C(X) = X∗∗. Hence the topology σ(X∗, C(X)) coincides with the weak

topology and the topology µ(X∗, C(X)) coincides with the norm topology. Hence the statement easily
follows.

(d) If X is separable and does not contain a copy of ℓ1, then B1(X) = C(X) = X∗∗, hence the
topologies σ(X∗, B1(X)) and σ(X∗, C(X)) coincide with the weak topology on X∗ and the topologies
µ(X∗, B1(X)) and µ(X∗, C(X)) coincide with the norm topology on X∗.

The equality (I)-env(A) = convA
‖·‖

then follows (for example) from Theorem 2.3.

The equalities (I)-ww(A) = clIF (A) = A
w
may be proved by copying the argument from (b). Furhter,

clearly A
w
⊂ (I)-cbcl(A) ⊂ (I)-ww(A), hence (I)-cbcl(A) = A

w
. �

Corollary 3.5. Let X be a separable Banach space and A ⊂ X∗ a norm-separable subset. Then

A
‖·‖

= (I)-ccl(A) = (I)-bcl(A) ⊂ A
w
= (I)-ww(A) = clIF (A) = (I)-cbcl(A).

If X does not contain a copy of ℓ1, then additionally (I)-cbcl(A) = A
σ(X∗,B1(X))

.

Proof. The first two equalities follow from Proposition 3.4(a)–(c). The equalities A
w

= (I)-ww(A) =
clIF (A) follow from Proposition 3.4(b). By Proposition 3.4(c) we get (I)-cbcl(A) ⊂ clIF (A). The inclusion

A
w
⊂ (I)-cbcl(A) is obvious. Finally, (I)-ccl(A) ⊂ (I)-ww(A) by Proposition 3.4(a).

If X does not contain a copy of ℓ1, then B1(X) = X∗∗, hence A
w
= A

σ(X∗,B1(X))
. �

Next we focus on distinguishing the individual closure operators. At first we look at the case of a
norm-separable subset of the dual to a separable Banach space.
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Example 3.6. (1) Let X be an infinite dimensional separable reflexive space (for example X = ℓ2).
Then X∗∗ = C(X) = B1(X) = X . Hence the topologies σ(X∗, B1(X)) and σ(X∗, C(X)) coincide with
the weak (and also with the weak∗) topology. Futher, topologies µ(X∗, C(X)) and µ(X∗, B1(X)) coincide
with the norm topology. Let A = SX∗ , the unit sphere of X∗. Using Corollary 3.5 we get

(I)-ccl(A) = (I)-bcl(A) = A
‖·‖

= A (= SX∗),

(I)-ww(A) = clIF (A) = (I)-cbcl(A) = A
w∗

= (I)-env(A) = BX∗ .

In particular,
(I)-ccl(A) $ (I)-ww(A) and (I)-bcl(A) $ (I)-cbcl(A),

and, further
(I)-cbcl(A) 6⊂ (I)-ccl(A) and (I)-ww(A) 6⊂ (I)-bcl(A).

(2) Let X be an infinite dimensional nonreflexive space with separable dual (for example X = c0).
Then X∗∗ = C(X) = B1(X). Hence the topologies σ(X∗, B1(X)) and σ(X∗, C(X)) coincide with the
weak (but not with the weak∗) topology. Futher, topologies µ(X∗, C(X)) and µ(X∗, B1(X)) coincide
with the norm topology.

If A = SX∗ , the unit sphere of X∗, we get the same equalities as in (1).
Further, let ϕ ∈ X∗∗ \X and let Y = kerϕ. Set B = SY , the unit sphere of Y . Then we get

(I)-ccl(B) = (I)-bcl(B) = B
‖·‖

= B (= SY ),

(I)-ww(B) = clIF (B) = (I)-cbcl(B) = B
w
= (I)-env(B) = B

σ(X∗,B1(X))
= BY ,

B
w∗

% BY .

Indeed, the equalities on the first two lines follow from Corollary 3.5, the inclusion on the third line
follows from the fact that Y is not weak∗ closed (and the same holds for B).

In particular,

(I)-env(B) ∩B
w∗

$ B
w∗

and B
σ(X∗,B1(X))

$ B
w∗

.

(3) Let X = J∗, where J is the James space (see [6] or [1, Section 3.4]). Again X∗∗ = C(X) =
B1(X), the topologies σ(X∗, B1(X)) and σ(X∗, C(X)) coincide with the weak topology and the topologies
µ(X∗, C(X)) and µ(X∗, B1(X)) coincide with the norm topology. If A = SJ ⊂ J∗∗ = X∗, then

(I)-ccl(A) = (I)-bcl(A) = A
‖·‖

= A (= SJ ),

(I)-ww(A) = clIF (A) = (I)-cbcl(A) = A
w
= (I)-env(A) = A

σ(X∗,B1(X))
= BJ ,

A
w∗

= BX∗ = BJ∗∗ % BJ .

This follows similarly as (2) above, using moreover the Goldstine theorem.
(4) Let X = ℓ1. Then C(X) = X∗∗ and B1(X) = X . Hence the topology σ(X∗, C(X)) coincides with

the weak topology and µ(X∗, C(X)) coincides with the norm topology. Further, σ(X∗, B1(X)) coincides
with the weak∗ topology. The topology µ(X∗, B1(X)) is the topology of uniform convergence on weakly
compact subsets of X (by the Mackey-Arens theorem). Since X = ℓ1 has the Schur property (see, e.g., [1,
Theorem 2.3.6]), it further coincides with the topology of uniform convergence on norm-compact subspace
of X , so on bounded sets it coincides with the weak∗-topology.

Let A = Sc0 , the unit sphere of c0 canonically embedded into X∗ = ℓ∞. Then we get

(I)-ccl(A) = (I)-bcl(A) = A
‖·‖

= A (= Sc0),

(I)-ww(A) = clIF (A) = (I)-cbcl(A) = A
w
= (I)-env(A) = Bc0 ,

A
σ(X∗,B1(X))

= A
w∗

= BX∗ = Bℓ∞ .
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Again, the first two lines follow from Corollary 3.5 and the third line follows from the Goldstine theorem.
In particular,

(I)-cbcl(A) $ A
σ(X∗,B1(X))

and A
σ(X∗,B1(X))

6⊂ (I)-env(A).

(5) Let X = c0 and A = {±e∗n; n ∈ N}, where e∗n are the canonical basic vectors in ℓ1 = c∗0. Then A

is weakly closed, A
w∗

= A ∪ {0} and (I)-env(A) = convA
‖·‖

= BX∗ . In particular, by Corollary 3.5 we
deduce that

clIF (A) $ (I)-env(A) ∩ A
w∗

.

Further, since B1(X) = X∗∗, A is also σ(X∗, B1(X))-closed, we get

(I)-env(A) ∩A
w∗

6⊂ A
σ(X∗,B1(X))

.

The previous example witnesses that in case X is separable and A ⊂ X∗ is norm separable, no more
inclusions hold, besides those from Proposition 3.4(a) completed by Corollary 3.5.

We continue by distinguishing the closure operators in the general case, without assuming separability.

Example 3.7. (1) Let X = ℓ1(Γ) for an uncountable set Γ and A = {e∗γ ; γ ∈ Γ}, the canonical unit
vectors in X∗ = ℓ∞(Γ). Then A is norm-closed.

Since X has the Schur property, weakly compact subsets in X are norm-compact. It follows that the

topology µ(X∗, X) coincides with the weak∗-topology on bounded sets. Thus, 0 ∈ B
µ(X∗,X)

for any
infinite B ⊂ A. It follows that 0 ∈ (I)-mn(A), hence

A
‖·‖

$ (I)-mn(A).

Similarly we deduce that 0 ∈ (I)-env(B) for any uncountable B ⊂ A. Therefore, 0 ∈ clIC(A), so

A
‖·‖

$ clIC(A).

Further, since X is weakly sequentially complete, we have B1(X) = X , so µ(X∗, B1(X)) = µ(X∗, X).
Hence, similarly as in the previous paragraph we see that 0 ∈ (I)-bcl(A). It follows that

A
‖·‖

$ (I)-bcl(A).

(2) Let X = ℓ2(Γ) for an uncountable set Γ and A = {e∗γ ; γ ∈ Γ}, the canonical unit vectors in
X∗ = ℓ2(Γ). Then A is norm-closed.

Since X is reflexive, we have B1(X) = C(X) = X = X∗∗. In particular, the topologies µ(X∗, X),
µ(X∗, C(X)) and µ(X∗, B1(X)) coincide with the norm topology. It follows that (I)-mn(A) = (I)-bcl(A) =

A
‖·‖

= A.

On the other hand, for any uncountable B ⊂ A we have 0 ∈ A
w∗

(= A
w
). Thus 0 ∈ (I)-cl(A). We

deduce that

(I)-mn(A) $ (I)-cl(A) and (I)-cl(A) 6⊂ (I)-bcl(A).

(3) Let X = c0(Γ) for an uncountable set Γ. Then X∗ = ℓ1(Γ) and X∗∗ = ℓ∞(Γ). Moreover, B1(X) =
C(X) = ℓc∞(Γ), the subset of ℓ∞(Γ) formed by element with countable support. Since C(X) $ X∗∗, we
deduce that the topology µ(X∗, C(X)) is strictly weaker than the norm topology. Indeed, µ(X∗, C(X)) is
the topology of uniform convergence on absolutely convex σ(C(X), X∗)-compact subsets of C(X). Since
any σ(C(X), X∗)-compact subset of C(X) is weak∗-compact (hence bounded) as a subset of X∗∗, we
deduce that µ(X∗, C(X)) is weaker than the norm topology. Since the dual of (X∗, µ(X∗, C(X))) is
C(X) $ X∗∗, we deduce that µ(X∗, C(X)) must be strictly weaker. It follows that there is a normed-
closed subset A ⊂ X∗ which is not µ(X∗, C(X))-closed, hence

A
‖·‖

$ A
µ(X∗,C(X)

.
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Next we focus on the closure operators applied to convex sets. Let us start by the following abstract
result.

Lemma 3.8. Let X be a vector space. Let α, β be two mappings with properties from Lemma 3.1. Let
γ1 and γ2 be the closure operators defined as in Lemma 3.1. Then the following assertions are valid.

(a) Assume that for any A ⊂ X we have

∀λ ∈ F : α(λA) = λα(A) & β(λA) = λβ(A).

Then for any A ⊂ X we have

∀λ ∈ F : γ1(λA) = λγ1(A) & γ2(λA) = λγ2(A).

(b) Assume that α, β are translation invariant, i.e., α(x +A) = x+ α(A) and β(x +A) = x+ β(A) for
each x ∈ X and A ⊂ X. Then

γj(A) + γj(B) ⊂ γj(γj(A+B)), A,B ⊂ X, j = 1, 2.

Proof. (a) Let us provide a proof for γ2. The case of γ1 is completely analogous.
Fix λ ∈ F. Assume A =

⋃

n An. Then λA =
⋃

n λAn and hence

γ2(λA) ⊂ β

(

⋃

n

α(λAn)

)

= λβ

(

⋃

n

α(An)

)

.

Since (An) is an arbitrary cover of A, we deduce that γ2(λA) ⊂ λγ2(A). The converse inclusion is obvious
for λ = 0. If λ 6= 0, then

λγ2(A) = λγ2

(

1

λ
· λA

)

⊂ λ ·
1

λ
γ2(λA) = γ2(λA).

This completes the proof of assertion (a).
(b) If α, β are translation invariant, clearly γ1, γ2 are translation invariant as well. So, for any A,B ⊂ X

we have

A+ γj(B) =
⋃

x∈A

(x+ γj(B)) =
⋃

x∈A

γj(x+B) ⊂ γj

(

⋃

x∈A

x+B

)

= γj(A+B),

hence

γj(A) + γj(B) ⊂ γj(γj(A) +B) ⊂ γj(γj(A+B)).

�

It is natural to ask whether the results of the above closure operators applied to a convex set are again
convex. It seems not to be clear.

Proposition 3.9. Let X be a Banach space and let A ⊂ X∗ be a convex set.

(a) The following inclusions hold:

(I)-cl(A) = (I)-ccl(A) ⊂ (I)-ww(A) ⊂ clIF (A)
⋃ ⋃

⋂

(I)-mn(A) clIC(A) (I)-env(A) ⊂ A
σ(X∗,B1(X))

⊂ A
w∗

⋃

⋃ ⋃

⋃

A
‖·‖

⊂ A
µ(X∗,C(X))

⊂ (I)-bcl(A) ⊂ (I)-cbcl(A)
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(b) If A is norm-separable, then the following inclusions hold:

(I)-cl(A) = (I)-ccl(A) = (I)-ww(A) = clIF (A)
‖ ‖ ‖

(I)-mn(A) clIC(A) = (I)-env(A) ⊂ A
σ(X∗,B1(X))

⊂ A
w∗

‖ ‖ ‖
⋃

A
‖·‖

= A
µ(X∗,C(X))

= (I)-bcl(A) = (I)-cbcl(A)

(c) If X does not contain a copy of ℓ1, then the following inclusions hold:

(I)-cl(A) = (I)-ccl(A) ⊂ (I)-ww(A) ⊂ clIF (A)
⋃ ⋃

‖

(I)-mn(A) clIC(A) (I)-env(A) = A
σ(X∗,B1(X))

⊂ A
w∗

⋃

⋃

‖ ‖

A
‖·‖

⊂ A
µ(X∗,C(X))

= (I)-bcl(A) = (I)-cbcl(A)

Proof. (a) This follows from Proposition 3.4(a) and Proposition 1.3.

(b) In this case we have (I)-env(A) = A
‖·‖

(see Proposition 3.4(b)). Hence, using (a) we get most of
the equalities, except for the second and the third one on the last row.

Let us prove (I)-cbcl(A) ⊂ A
‖·‖

. Let (x∗
n) be a norm dense sequence in A. Fix ε > 0. Then

A ⊂
⋃

n(x
∗
n + εBX∗). It follows that

(I)-cbcl(A) ⊂
⋃

n

(x∗
n + εBX∗)

σ(X∗,C(X))

⊂ A+ εBX∗

σ(X∗,C(X))
⊂ (I)-env(A+ εBX∗).

Further,

A+ εBX∗ ⊂
⋃

n

(x∗
n + 2εBX∗),

hence

(I)-env(A+ εBX∗) ⊂ conv
⋃

n

(x∗
n + 2εBX∗)

‖·‖

⊂ A+ 2εBX∗

‖·‖
.

Since ε > 0 is arbitrary, we deduce that (I)-cbcl(A) ⊂ A
‖·‖

which completes the proof.

(c) We start by using (a). Further, by Theorem 2.3 we have B1(X) = C(X). Hence A
µ(X∗,C(X))

=

A
σ(X∗,B1(X))

, which proves the equalities on the second and the third rows.

By Theorem 2.3 we further get and (I)-env(B) = convB
σ(X∗,B1(X))

for any B ⊂ X∗. Hence

B
σ(X∗,B1(X))

⊂ (I)-env(B) for each B ⊂ X∗. By Proposition 3.2(c) we deduce that B
σ(X∗,B1(X))

⊂
clIF (B) for B ⊂ X∗.

Hence, if A is convex, then

(I)-env(A) = A
σ(X∗,B1(X))

⊂ clIF (A) ⊂ (I)-env(A),

hence the remaining equality holds. �

In the next example we show that in case A is convex and norm separable, no more equalities hold.

Example 3.10. (1) Let X = ℓ1 and A = c0 ⊂ ℓ∞ = (ℓ1)
∗. Then

(I)-env(A) = c0 $ ℓ∞ = A
σ(X∗,B1(X))

by Example 2.4.
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(2) Let X = c0. Then X∗ = ℓ1 and X∗∗ = ℓ∞. Let ϕ ∈ X∗∗ \X and A = Kerϕ. Then

A
σ(X∗,B1(X))

= A $ ℓ1 = A
w∗

.

We continue by collecting examples in duals to spaces not containing ℓ1.

Example 3.11. (1) To show that we may have A
σ(X∗,B1(X))

$ A
w∗

we may use Example 3.10(2).
(2) Let X = c0(Γ) for an uncountable set Γ, as in Example 3.7(3). Then X∗ = ℓ1(Γ), X

∗∗ = ℓ∞(Γ)
and B1(X) = C(X) = ℓc∞(Γ). Let

A =

{

f ∈ ℓ1(Γ);
∑

γ

f(γ) = 0

}

.

Then A is a norm closed linear subspace which is not µ(X∗, C(X))-closed. Hence, A
µ(X∗,C(X))

= X∗

(note that A is a hyperplane and its closure is a linear subspace). Thus

A
‖·‖

$ A
µ(X∗,C(X))

.

Next we observe that (I)-cl(A) = X∗. To this end take f ∈ X∗ \A. Then

c =
∑

γ

f(γ) 6= 0

and spt f is countable. Further,

B = {f − ceγ ; γ ∈ Γ \ spt f} ⊂ A.

If A =
⋃

An, then there is some n ∈ N with B ∩ An uncountable. Then

f ∈ An ∩B
w∗

⊂ An
w∗

.

Since the cover (An) is arbitrary, we deduce f ∈ (I)-cl(A).
We continue by showing that (I)-mn(A) = A. To this end take f ∈ X∗ \A. Then

c =
∑

γ

f(γ) 6= 0.

Fix an arbitrary ε ∈ (0, |c|
4 ). Find a finite set F ⊂ Γ with

∑

γ∈Γ\F

|f(γ)| ≤ ε.

For n ∈ N set

Zn =







g ∈ ℓ1(Γ); ∃H ⊂ Γ: cardH ≤ n &
∑

γ∈Γ\H

|g(γ)| < ε







Then (Zn) is an increasing cover of X∗ and, moreover, each Zn is weak∗ closed. (This easily follows from
the fact that g ∈ Zn if and only if g = g1 + g2 such that card spt g1 ≤ n and ‖g2‖ ≤ ε.) We are going to
show that

f /∈
⋃

n

A ∩ Zn
µ(X∗,X)

‖·‖

.

Note that the set {0}∪{eγ; γ ∈ Γ} is weakly compact in X = c0(Γ), hence the norm ‖·‖∞ is µ(X∗, X)-
continuous on X∗ = ℓ1(Γ). Further, for each k ∈ N set

pk(g) = sup







∑

γ∈H

|g(γ)| ; H ⊂ Γ, cardΓ ≤ k}, g ∈ ℓ1(Γ)







.
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Then pk is a norm on ℓ1(Γ) which is equivalent to ‖·‖∞ (note that ‖·‖∞ ≤ pk ≤ k · ‖·‖∞), hence it is also
µ(X∗, X)-continuous.

Set m = cardF . Assume that g ∈ A ∩ Zn. Then there is H ⊂ Γ with cardH ≤ n such that
∑

γ∈Γ\H |g(γ)| < ε. Then

∑

γ∈F∪H

|f(γ)− g(γ)| ≥

∣

∣

∣

∣

∣

∣

∑

γ∈F∪H

(f(γ)− g(γ))

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

∑

γ∈Γ

(f(γ)− g(γ))

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∑

γ∈Γ\F∪H

(f(γ)− g(γ))

∣

∣

∣

∣

∣

∣

≥ c− 2ε,

hence pm+n(f − g) ≥ c− 2ε, Since g ∈ A ∩ Zn is arbitrary, we get

pm+n − dist(f,A ∩ Zn) ≥ c− 2ε.

Since pm+n is µ(X∗, X)-continuous, we deduce that

pm+n − dist(f,A ∩ Zn
µ(X∗,X)

) ≥ c− 2ε.

SInce pm+n ≤ ‖·‖1, we deduce that

‖·‖1 − dist(f,A ∩ Zn
µ(X∗,X)

) ≥ c− 2ε,

hence

‖·‖1 − dist

(

f,
⋃

n

A ∩ Zn
µ(X∗,X)

)

≥ c− 2ε,

so f /∈ (I)-mn(A).
We thus have

(I)-mn(A) $ (I)-cl(A).

Further, similarly as (I)-cl(A) = X∗ we may prove clIC(A) = X∗.
Summarizing, we have

A
‖·‖

$ A
µ(X∗,C(X))

, A
‖·‖

$ clIC(A), (I)-mn(A) $ (I)-cl(A)

and also

clIC(A) 6⊂ (I)-mn(A), A
µ(X∗,C(X))

6⊂ (I)-mn(A).

(3) Let X = C([0, ω1]), the space of continuous functions on the ordinal interval [0, ω1]. Then X∗ =
ℓ1([0, ω1]) (note that [0, ω1] is a scattered compact space and hence each Radon measure on it is countably
supported) and X∗∗ = ℓ∞([0, ω1]). Observe that

B1(X) = C(X) = {f ∈ ℓ∞([0, ω1]); f is continuous at ω1}.

Set
A = {g ∈ ℓ1([0, ω1]); g(ω1) = 0}.

Then A is a norm-closed hyperplane in X∗. It is not µ(X∗, C(X))-closed (since the characteristic function

of {ω1} does not belong to C(X)), hence A
µ(X∗,C(X))

= X∗.
Next we are goint to show that (I)-mn(A) = X∗. To this end fix g ∈ X∗ \ A. Then g = g0 + cδω1

,
where g0 is supported by [0, ω1) and c 6= 0. Fix γ < ω1 such that g0|(γ,ω1] = 0. Set

Γ = {α ∈ (γ, ω1); α is a limit ordinal}

Then Γ is a closed unbounded set in [0, ω1) and

B = {g0 + cδα; α ∈ Γ} ⊂ A.

Let (An) be a countable cover of A. It follows from [7, Theorem 8.3] there is some n ∈ N such that the
set

Γn = {α ∈ Γ; g0 + cδα ∈ An}
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is stationary (i.e., it intersects each closed unbounded set, see, e.g., [7, Definition 8.1]). We claim that

g ∈ B ∩ An
µ(X∗,X)

.

Assume not. Then there is a weakly compact set L ⊂ C([0, ω1]) such that

inf
h∈B∩An

sup
f∈L

|〈h− g, f〉| > 0.

Fix ε > 0 such that

inf
h∈B∩An

sup
f∈L

|〈h− g, f〉| > ε.

Then for each α ∈ Γn there is some fα ∈ L such that

|〈g0 + cδα − g, fα〉| > ε,

i.e.,

|c(fα(α) − fα(ω1))| > ε.

Since each α ∈ Γn is a limit ordinal and each fα is a continuous function, there is γα < α such that

|c(fα(γ)− fα(ω1))| > ε for γ ∈ (γα, α].

By Fodor’s Pressing down lemma (see, e.g., [7, Theorem 8.7]) there is a stationary set Γ′ ⊂ Γn and β < ω1

such that

γα = β for α ∈ Γ′.

We now construct a sequence (αn) in Γ′ as follows:

• α1 ∈ Γ′ is arbitrary.
• Given αn, we find αn+1 ∈ Γ′ such that αn+1 > αn and fαn

|[αn+1,ω1] is constant.

Since L is weakly compact, the sequence (fαn
) has a subsequence pointwise converging to a continuous

function f . Let α = supn αn, Then f[α,ω1] is constant and |f(θ)− f(ω1)| ≥ ε for θ ∈ (β, α). Since α is a
limit ordinal, this contradicts the continuity if f .

So, we have proved that g ∈ B ∩ An
µ(X∗,X)

. Since the cover (An) was arbitrary, we deduce that
g ∈ (I)-mn(A). Thus

A
‖·‖

$ (I)-mn(A).

We note that clIC(A) = X∗ as well. Indeed, assume that g ∈ X∗ \ A. Let Γ and B be as above. If
A =

⋃

n An, there is some n ∈ N such that B ∩ An is uncountable. Further, let An =
⋃

m An,m. Then

there is some m such that B ∩Am,n is uncountable. Then g ∈ B ∩ Am,n
w∗

. Since (An,m) is an arbitrary
cover of An, we deduce that g ∈ (I)-cl(An) ⊂ (I)-env(An). Since (An) is an arbitrary cover of A, we
conclude that g ∈ clIC(A).

Example 3.12. Let X = C([0, 1]) and let A be the set of countably supported probability measures on
[0, 1], considered as a subset of C([0, 1])∗.

Since A contains all Dirac measures which are exactly extreme points of P ([0, 1]), by [4, Theorem 2.3]

we deduce that (I)-env(A) = A
w∗

= P ([0, 1]).
We are going to show that (I)-cl(A) = A. To this end, given n ∈ N, denote by An the set of probabilities

supported by a set of cardinality at most n. Then each An is weak∗-compact and
⋃

n An is norm dense
in A. Hence, for any ε > 0 we have

(I)-cl(A) ⊂
⋃

n

An + εBX∗

‖·‖

⊂ A+ εBX∗

‖·‖
⊂ A+ 2εBX∗ ,

hence (I)-cl(A) ⊂ A
‖·‖

= A.
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Question 3.13. Let X be a Banach space and A ⊂ X∗. Do the equalities

clIC(A) = (I)-ccl(A), (I)-ww(A) = clIF (A), A
µ(X∗,C(X))

= (I)-bcl(A)

hold?

4. Final remarks and open problems

The answer to the ‘locally convex’ variant of Question 1.1 is for some Banach spaces positive and for
some Banach spaces negative as witnessed by the results of Section 2. However, a characterization of
those Banach spaces for which the answer is positive is still missing as pointed in Question 2.9.

The ‘topological’ variant of Question 1.1 is widely open. We have no counterexample to it, but we
do not have either any example for which the ‘topological’ variant has a positive answer but the ‘locally
convex’ variant has a negative answer. In view of Theorem 3.3 the following problem is natural to ask:

Question 4.1. Assume that X is a Banach space and A,B ⊂ X∗ are two convex sets such that A ∪ B
is also convex. Is (I)-env(A ∪B) = (I)-env(A) ∪ (I)-env(B)?

Further, Question 2.10 suggests that there may be a substantial difference between (I)-envelopes of
bounded and unbounded sets. It seems that the following question is interesting and open.

Question 4.2. Let X be a Banach space and A ⊂ X∗. Is the set

(I)-envb(A) =
⋃

n∈N

(I)-env(A ∩ nBX∗)

norm-dense in (I)-env(A)?

Note that obviously (I)-envb(A) = (I)-env(A) if A is bounded. For unbounded set A this equality may
or may not hold as witnessed by the following example.

Example 4.3. (1) Let X = (ℓ∞)∗ and A = ℓ∞ canonically embedded into X∗ = (ℓ∞)∗∗. It follows from
[8, Example 4.1] that (I)-envb(A) = (I)-env(A) = X∗.

(2) More generally, let Y be a c-Grothendieck space for some c ≥ 1 (see [2]). Let X = Y ∗ and
consider Y canonically embedded into X∗ = Y ∗∗. It follows from [2, Proposition 2.2] that (I)-envb(Y ) =
(I)-env(Y ) = X∗.

Examples of 1-Grothendieck spaces include ℓ∞(Γ) for any set Γ, L∞(µ) for a σ-finite measure µ and
quotients of these spaces (see [2, Section 4]) and also C(K) spaces from the class addressed in [11].

(3) Let Y be a Grothendieck space which is not c-Grothendieck for any c ≥ 1. Such a space is provided
in [2, Theorem 1.2]. Let X = Y ∗ and consider Y canonically embedded into X∗ = Y ∗∗. By [9, Theorem
2.1] we have (I)-env(Y ) = X∗. However, it follows from [2, Proposition 2.2] that (I)-envb(Y ) $ X∗ as
(I)-envb(Y ) is of first category in X∗. It seems not to be clear whether (I)-envb(Y ) is norm-dense in X∗.

Another problem concerns a quantitative version of Lemma 1.2. If X is a Banach space and A ⊂ X∗,
define for η ∈ X∗ the following two quantities:

d1(η) = dist(η, (I)-env(A)),

d2(η) = sup

{

inf
n∈N

Re η(xn)− sup
ξ∈A

lim sup
n→∞

Re ξ(xn); (xn) ⊂ BX

}

.



22 ONDŘEJ F.K. KALENDA AND MATIAS RAJA

It follows from Lemma 1.2 that d1(η) = 0 if and only if d2(η) = 0. It is easy to check that d2(η) ≤ d1(η):
If ζ ∈ (I)-env(A) and (xn) ⊂ BX , then

inf
n∈N

Re η(xn)− sup
ξ∈A

lim sup
n→∞

Re ξ(xn)

= inf
n∈N

Re η(xn)− lim sup
n→∞

Re ζ(xn) + lim sup
n→∞

Re ζ(xn)− sup
ξ∈A

lim sup
n→∞

Re ξ(xn)

≤ inf
n∈N

Re η(xn)− lim sup
n→∞

Re ζ(xn) ≤ lim inf
n→∞

Re(η(xn)− ζ(xn)) ≤ ‖η − ζ‖ .

It follows that d2(η) ≤ ‖η − ζ‖ for any ζ ∈ (I)-env(A), so indeed d2(η) ≤ d1(η). Validity of a kind of
converse is an open problem.

Question 4.4. Is there a universal constant c ≥ 1 such that d1 ≤ c · d2?

It seems that a solution to this question would substantially deepen the understanding of (I)-envelopes.
It follows from the proof of Lemma 1.2 that

d2(η) = inf







dist



η, conv

∞
⋃

n=1

convAn
w∗

‖·‖


 ; A =

∞
⋃

n=1

An







.

It easily follows that d1 = d2 whenever A is norm-separable, but the general case is widely open.
We finish by formulating the following intriguing problem on (I)-envelopes:

Question 4.5. Let X be a separable Banach spaces. Is the dual unit ball BX∗ equal to the (I)-envelope
of the set of its weak∗-exposed points?

This question is closely related to the problem asked by G. Godefroy in [5, Question V.1]. Indeed, the
quoted question asks whether the norm-closed convex hull of the set of weak∗-exposed points of BX∗ is
the whole unit ball provided X is separable and does not contain an isomorphic copy of ℓ1. In view of
Theorem 2.3 (see also [4, Proposition 2.2(b)]) it is a special case of our last question.
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