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Abstract

The isometric universality of the spaces C(K) for K a non scattered
Hausdorff compact does not take into account the “quality” of the repre-
sentation. Indeed, the existence of an isometric copy of a separable Banach
space X into C(K) made of regular enough functions, say Lipschitz with re-
spect to a lower semicontinuous metric defined on K, imposes severe restric-
tions to both X and K. In this paper, we present a systematic treatment
of the representation of Banach spaces into C(K) by Lipschitz functions
improving previous results of the author.

1 Introduction

A celebrated result of Banach and Mazur says that any separable Banach space X
can be found linearly isometrically embedded into C[0, 1], the space of continuous
functions over the unit interval endowed with the supremum norm. A different
matter is to find explicit representations simple Banach spaces. For instance,

(x, y)→ x cos(πt) + y sin(πt), t ∈ [0, 1]

gives a representation of the Euclidean plane (R2, ‖ · ‖2) into C[0, 1] by fairly nice
functions. However, it is not easy at all to the same with (R3, ‖ · ‖2). Indeed, the
functions witnessing the isometric embedding cannot be even Lipschitz. The rea-
son, first noticed by W. F. Donoghue [4], is related to gap between the topological
dimensions of the interval [0, 1] and of the sphere S2 = ∂BR3 . We may consider
a more general problem: given a Hausdorff compact space K and a finer metric
d, study the Banach spaces that isometrically embed into C(K) as a subset of
d-Lipschitz functions.

Some results about this topic appeared scattered in several papers [16, 17,
18, 9]. The aim of this note is to bring together the main ideas on Lipschitz
subspaces of C(K) with improvements and some new results. Despite the quite
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mathematical insignificance of our original problem, we have found very inter-
esting the connections between Topology and Banach space theory motivated by
this research. Moreover, there are some ties with other trending topics, such as
lineability (or spaceability) and Lipschitz-free Banach spaces.

The paper is organised as follows. The next section gathers some tools and
generalities on compact spaces endowed with a lower semicontinuous metric. The
third section deals with properties of Lipschitz subspaces both from the isomor-
phic and isometric points of view, however the results in the isometric theory are
much more satisfactory. The fourth section covers the case when the metric ac-
tually metrizes K. The fifth section is devoted to the use of fragmentability, the
main property making a difference for strictly finer lower semicontinuous metrics.
So far in our paper, the only infinite-dimensional Lipschitz subspaces identified
into C(K) are copies of c0 or `1, thus the last section deals with Lipschitz embed-
dings and obstructions for other Banach spaces. In order to make this note more
independent of our previous work on the subject, we have included some sketched
proofs of the quoted key results, or complete proofs in case they are simpler here
or lead to a statement more general than in the original paper.

All the Banach spaces considered are real. Our notation is totally standard
and we address to generic references for any unexplained definition [10, 5].

2 The bitopological setting

In Banach space theory is usual to deal with more than one topology: the norm
and weak topologies, the weak∗ in case of dual Banach spaces, or the pointwise for
function spaces. That bitopological setting, actually one topology and a metric
generating a finer topology, can be discussed more generally. We will assume
compactness for the coarse topology, so we will mainly use K to denote the space,
and lower semicontinuity (lsc) for the metric as a function d : K ×K → [0,+∞).

Theorem 2.1. Let K be a compact Hausdorff space and d be a lower semicon-
tinuous metric defined on K. Then:

(a) the topology generated on K by d is finer;

(b) K is complete when endowed with d;

(c) for every closed subset H ⊂ K and r > 0, the set

B[H, r] = {x ∈ K : d(H,x) ≤ r}

is closed;

(d) every f ∈ C(K) is d-uniformly continuous.

Proof. Statements (a), (b) and (c) are proved in [8]. We left (d), which is an easy
exercise, to the reader.
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From now on K will be a compact Hausdorff space together with a lower semi-
continuous metric denoted d. In case K is a weak∗ compact of a dual Banach
space (notably, the dual unit ball), the metric d will be the one induced by the
norm, unless otherwise stated.

The Lipschitz constant of a real function f : K → R is defined as follows

L(f) = sup

{
|f(t1)− f(t2)|

d(t1, t2)
: t1, t2 ∈ K, t1 6= t2

}
.

A real function f defined on K is said to be Lipschitz if L(f) < +∞. The set of
Lipschitz functions defined on K will be denoted Lip(K). We will also consider
Lipschitz mappings between metric spaces, for whom the Lipschitz constant is
defined likewise.

The following important result due to Eva Kopecká [13] implies, among other
things, the great availability of functions that are both continuous and d-Lipschitz.

Theorem 2.2. Let H ⊂ K be closed and let f : H → [a, b] be continuous and
Lipschitz. Then there exists f̃ : K → [a, b] being continuous and Lipschitz with
L(f̃) = L(f) such that f̃ |H = f .

Now we will see two ways to linearize compacta with lower semicontinuous
metrics. Fix a point t0 ∈ K and let

Lip0(K) = {f ∈ Lip(K) : f(t0) = 0}.

The following result of Jayne, Namioka and Rogers appears in [8]. We include
a simpler proof using Theorem 2.2.

Theorem 2.3. Let K be a compact Hausdorff space and d be a lower semicontin-
uous metric. There exists a Banach space X such that K imbeds as w∗-compact
subset of X∗ and d coincides with the metric induced by the norm of X∗.

Proof. Take X = Lip0(K)∩C(K) with the Lipschitz seminorm L, that is an actual
norm here. Denote by t̂(f) = f(t) the evaluation. Obviously, the assignment
t → t̂ is an homeomorphism. Note that for any t1, t2 ∈ K with t1 6= t2 there is
f ∈ C(K) ∩ Lip(K) with L(f) = 1 such that f(t2) − f(t1) = d(t1, t2). Indeed,
apply Theorem 2.2 to f defined on {t1, t2} by f(t1) = 0, f(t1) = d(t1, t2). Adding
a constant we may even get that f(t0) = 0 and thus f ∈ BX . Now, for any two
points t1, t2 ∈ K, we have

d(t1, t2) = sup{|f(t1)− f(t2)| : f ∈ BX}

= sup{|t̂1(f)− t̂2(f)| : f ∈ BX} = ‖t̂1 − t̂2‖,

as wished.

The previous construction allows the linearization of mappings in the follow-
ing sense: a continuous mapping between compacts that is also Lipschitz extend
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to a linear weak∗ continuous mapping, obviously Lipschitz for the norms. Let
us mention the relation to the Lipschitz free spaces. The seminorm L is a norm
when restricted to Lip0(K). It is possible to prove that (Lip0(K), L) is isometric
to a dual Banach space. The Lipschitz free space generated by K is a predual for
Lip0(K) that can be identified by the completed linear span of K into Lip0(K)∗.
The Lipschitz free spaces have been studied over the last two decades, however
we can not benefit from the research as the topology of K does not play a role.

We finish this section with an interesting result of Benyamini [1].

Theorem 2.4. Let K be a metrizable compact space. There is weak∗ continuous
retraction from C(K)∗ onto BC(K)∗ that is also Lipschitz with constant one.

3 General results

As said before, the compact Hausdorff space K is given together with a lower
semicontinuous metric d. Let us stress that C(K) refers to the continuous real
functions with respect to the compact topology, meanwhile Lip(K) stands for the
Lipschitz real functions with respect to the metric d. In general, those sets are not
contained one another, however the intersection is rich enough to recover either
the topology or the metric. The following is our main definition.

Definition 3.1. A closed subspace X ⊂ C(K) is said Lipschitz if X ⊂ Lip(K).

Despite the definition is quiete clear, we will illustrate it with an example.

Example 3.2. Let K = B`2 be endowed with the weak topology of `2 and let d be
the norm (Hilbert) metric. Consider the functions fn : K → [0, 1] defined by

fn((xk)k∈N) = x2n.

Then the sequence (fn) spans a Lipschitz subspace of C(K) isometric to c0.

Proof. We will perform the computations although we can get the statement from
the general results we will establish in this section. Note that for any bounded
sequence (ak) we have

sup{|ak| : k ∈ N} ≤ sup{
∞∑
k=1

akx
2
k : (xk) ∈ K},

but
∞∑
k=1

akx
2
k ≤ sup{|ak| : k ∈ N}

∞∑
k=1

x2k ≤ sup{|ak| : k ∈ N}

for (xk) ∈ K. Therefore ‖
∑∞
k=1 akfk‖∞ = ‖(ak)‖∞. If (ak) ∈ c0 we get also the

uniform convergence of the series, so it defines an element of C(K). As to the
Lipschitzness, let (xk), (yk) ∈ K. Then∣∣∣∣∣

∞∑
k=1

akx
2
k −

∞∑
k=1

aky
2
k

∣∣∣∣∣ ≤
∞∑
k=1

|ak| |xk + yk| |xk − yk|
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≤

( ∞∑
k=1

|ak|2|xk + yk|2
)1/2( ∞∑

k=1

|xk − yk|2
)1/2

≤ 2‖(ak)‖∞ d((xk), (yk))

as wished.

The following simple application of Baire’s theorem was written in similar
terms in [9], although it was only applied in the case d metrizes K.

Proposition 3.3. Let X ⊂ C(K) be a non trivial linear subspace. Then either

(a) X ∩ Lip(K) is of first category in X;

(b) or X ⊂ Lip(K), that is, X is a Lipschitz subspace of C(K), and there exists
λ > 0 such that L(f) ≤ λ‖f‖ for every f ∈ X.

Proof. Observe that X ∩ Lip(K) =
⋃∞
n=1{f ∈ X : L(f) ≤ n} is a decomposition

into countably many closed balanced convex sets. If X ∩ Lip(K) is not of first
category in X, then there is δ > 0 such that δBX ⊂ {f ∈ X : L(f) ≤ n} for some
n ∈ N. By homogeneity, we have L(f) ≤ λ‖f‖ with λ = δ−1n for every f ∈ X.
In particular X ⊂ Lip(K).

Proposition 3.4. Let J : X → C(K) be an isomorphic embedding. Then J(X) ⊂
Lip(K) if and only if J∗|K is Lipschitz from d to the norm of X∗, where J∗ denotes
the adjoint mapping from C(K)∗ into X∗. In such a case, there is δ > 0 such
that

δBX∗ ⊂ conv(J∗(K) ∪ (−J∗(K))).

Proof. If J∗|K is Lipschitz, then any function J(x) is Lipschitz as well, since
J(x)(t) = J∗(t)(x). Reciprocally, assume that J(X) ⊂ Lip(K). By Proposi-
tion 3.3 there is λ > 0 such that L(f) ≤ λ for every f ∈ J(X). Now, if x ∈ BX
and t1, t2 ∈ K then

|J∗(t1)(x)− J∗(t2)(x)| = |J(x)(t1)− J(x)(t2)| ≤ λ d(t1, t2).

Taking supremum on x ∈ BX we get ‖J∗(t1)− J∗(t2)‖ ≤ λ d(t1, t2).
The last statement is just an equivalent expression of the fact that J∗(K) is a
norming set.

Now we will turn our attention to isometric embeddings. The set of extreme
points of a convex subset C is denoted by Ext(C).

Lemma 3.5. Let X,Y be Banach spaces and let J : X → Y be a linear operator.
Then J is an isometric embedding if and only if

Ext(BX∗) ⊂ J∗(Ext(BY ∗)).

Proof. Note that, in general, J : X → Y is an isometric embedding if and only if
J∗(BY ∗) = BX∗ (the less easy part relies on the Hahn–Banach theorem). Now, it
is an easy exercise to prove that, for any x∗ ∈ Ext(BX∗), any extreme point of the
convex w∗-compact set (J∗)−1(x∗) ∩BY ∗ must be an extreme point in BY ∗ .
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Theorem 3.6. There is an isometric embedding of J : X → C(K) as a Lipschitz
subspace if and only if there exists a mapping Ψ : K → BX∗ which is continuous
for the weak∗ topology, Lipschitz for the metrics d-‖ · ‖ and such that

Ext(BX∗) ⊂ Ψ(K) ∪ (−Ψ(K)).

In such a case, Ψ = J∗|K and J(x)(t) = Ψ(t)(x).

Proof. Let us call J : X → C(K) the isometric embedding. By Proposition 3.4
we already know that Ψ = J∗|K is Lipschitz, it is obviously continuous from
K to the w∗-topology and satisfies the required condition by Lemma 3.5 since
Ext(BC(K)∗) = K ∪ (−K). For the other implication, consider the proposed
formula J(x)(t) = Ψ(t)(x). Evidently, J is a linear operator with ‖J‖ ≤ 1 that
satisfies J∗|K = Ψ. Lemma 3.5 implies that J is an isometric embedding of X
into C(K) as a Lipschitz subspace.

The idea behind the following result was used by Donoghue [4] for the con-
struction of Peano-type filling curves.

Corollary 3.7. Let X be a Gâteaux smooth Banach space and let J : X → C(K)
be an isometric embedding. Then

SX∗ ⊂ J∗(K) ∪ (−J∗(K)).

Moreover, if X is infinite-dimensional, then

BX∗ = J∗(K) ∪ (−J∗(K)).

Proof. The smoothness hypothesis implies that Ext(BX∗) is norm-dense into SX∗ ,
see [5]. Since J∗(K)∪(−J∗(K)) is norm-closed, we have SX∗ ⊂ J∗(K)∪(−J∗(K)).
For the second part, just observe that SX∗ is weak∗-dense in BX∗ when X is
infinite-dimensional.

4 When d metrizes K

The following result is essentially a folklore, although with different variations (see
[5, Exercise 2.59], for instance). An interesting version with vector-valued func-
tions, as well as some other beautiful applications of Baire theorem to subspaces
of of C(K) made up of regular functions see [6]

Theorem 4.1. If d metrizes K, then all the Lipschitz subspaces of C(K) are
finite dimensional.

Proof. If X is a Lipschitz subspace, then BX is a bounded and complete set of
functions of C(K). By Proposition 3.3 we also know that BX is equicontinuous.
Therefore, by Ascoli’s theorem, BX is norm compact and so X is finite dimen-
sional.

On the other hand, if d does not metrizes K, there C(K) contains infinite
dimensional Lipschitz subspaces.
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Theorem 4.2. If the topology generated by d is strictly finer than the topology of
K, then C(K) contains a Lipschitz subspace isometric to c0.

Restricted proof. We will assume here that K is metrizable, or more generally,
sequentially compact. The full proof will be provided in the next section. Since
the topology generated by d cannot be compact, there is ε > 0 and a sequence
(tn) ⊂ K such that d(tn, tm) > 6ε for every n 6= m. We may assume that
the sequence is converging to some t0 ∈ K, and removing one more element if
necessary, we may assume that d(tn, t0) ≥ 3ε. Suppose we pick sn ∈ B[tn, ε] for
infinitely many n ∈ N and let s ∈ K a cluster point of (sn). Lower semicontinuity
of d implies d(t0, s) ≤ ε and thus any set of the form

B[t0, ε] ∪
∞⋃
k=n

B[tk, ε]

is closed for every n ∈ N. Take disjoint open sets U1 and V1 such that B[t1, ε] ⊂ U1

and

B[t0, ε] ∪
∞⋃
k=2

B[tk, ε] ⊂ V1

Take now disjoint open sets U2, V2 with U2, V2 ⊂ V1 and such that B[t2, ε] ⊂ U2

and

B[t0, ε] ∪
∞⋃
k=3

B[tk, ε] ⊂ V2.

Following in this way we will get a sequence of open sets (Un) such that B[tn, ε] ⊂
Un and the sequence (Un) is pairwise disjoint. Applying Theorem 2.2 there is a
continuous function fn : K → [0, 1] such that f(tn) = 1, fn|K\Un

= 0 and fn is
Lipschitz with constant at most ε−1.
For any (an) ∈ c0, the series

∑∞
n=1 anfn is uniformly convergent on K and so

define a continuous function f . Note that f is Lipschitz with constant no larger
than 2ε−1‖(an)‖∞. Therefore, the mapping

(an)→
∞∑
n=1

anfn

defines an isometry of c0 into a Lipschitz subspace of C(K).

The combination of the two previous results of this section gives the following.

Corollary 4.3. The lower semicontinuous metric d metrizes K if and only if all
the Lipschitz subspaces of C(K) are finite dimensional.

A linear subspace A of a Banach space X is said to be spaceable if it contains
an infinite-dimensional closed subspace of X. Therefore, the last corollary can be
reformulated as Lip(K) ∩ C(K) is spaceable (in C(K)) if and only if d does not
metrizes K.

The dual point of view of isometric embeddings is useful even in finite dimen-
sion.
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Proposition 4.4. A finite dimensional polyhedral space X imbeds isometrically
into `n∞ if and only if 2n is not lesser than the number of faces of BX .

Proof. Take K = {1, . . . , n} and note that `n∞ = C(K). The number of extreme
points of BX∗ equals the number of faces of BX . We only need to define a mapping
from K taking at least one point of each antipodal pair from Ext(BX∗) to define
an isometric embedding of X into C(K).

For the remaining results of this section, the hypothesis ‘metric compact’
stresses the fact that K is metrized by d.

Proposition 4.5 ([9]). If K is an infinite metric compact space, then C(K)
contains isometric copies made of Lipschitz functions of any finite dimensional
polyhedral space.

Hint of proof. If X is polyhedral and finite dimensional, its dual X∗ is also poly-
hedral and so Ext(BX∗) = {x∗1, . . . , x∗N} is a finite set. Now use finitely many
Urysohn’s like disjointly supported functions which are also Lipschitz to build a
mapping from K to BX∗ that covers Ext(BX∗).

The fact mentioned at the introduction is now explained in the following re-
sult, that implies a relation between the dimension of the Lipschitz copies of the
Euclidean spaces and the dimension of K.

Theorem 4.6 ([9]). Let K be a metric compact space and let n ∈ N. The following
are equivalent:

(i) there is an onto Lipschitz mapping φ : K → In;

(ii) C(K) contains isometric Lipschitz copies of all (n+ 1)-dimensional Banach
spaces;

(iii) C(K) contains an isometric Lipschitz copy of (Rn+1, ‖ · ‖2).

Hint of proof. If there is an onto Lipschitz mapping φ : K → In, then with
the help of the stereographic projection is possible to build a Lipschitz mapping
ψ : K → Sn, such that Sn = ψ(K) ∪ (−ψ(K)). On the other hand, if there a
Lipschitz mapping ψ : K → Sn such that ψ(K) has nonempty interior relative to
Sn, then is possible to find an onto Lipschitz mapping φ : K → In.

We will consider the Hilbert cube C([0, 1]N) with the metric

d((an), (bn)) =

∞∑
k=1

2−k|ak − bk|.

Corollary 4.7. The space of continuous functions on the Hilbert cube C([0, 1]N)
contains Lipschitz copies of all finite dimensional Banach spaces.

Remark 4.8. If there is a family of onto Lipschitz mappings φn : K → In
with the Lipschitz constants uniformly bounded, then there is an onto Lipschitz
mapping Φ : K → [0, 1]N. Indeed, for the a standard metric on In, the mappings
ηn : In → [0, 1]N defined by ηn((ak)nk=1) = (ak)∞k=1 taking ak = 0 for k > n are
equi-Lipschitz. The family of mappings (ηn◦φn) is equicontinuous, therefore there
is a uniformly convergent subsequence whose limit Φ is Lipschitz and onto.
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5 Fragmentability and universality

We say that X is fragmented by metric d if for every nonempty subset A ⊂ X
and every ε > 0 there is U ⊂ X open such that A ∩ U 6= ∅ and diam(A ∩ U) <
ε, where ‘diam’ is the diameter measured with respect to d. For a metrizable
compact space K, fragmentability with respect to a lsc metric d is the same that
separability in the d-topology. A compact that is fragmentable by a lsc metric is
called Radon-Nikodym compact since dual Banach spaces whose weak∗ compacts
are fragmentable by the norm have the Radon-Nikodym property (taking the name
of the celebrated result on differentiation of measures), see [3, 5] for instance.
A Banach space is said to be Asplund if every of its separable subspaces has
separable dual. A celebrated combined result of Namioka, Phelps and Stegall
establishes that a Banach space X is Asplund if and only X∗ has the Radon-
Nikodym property.

Theorem 5.1. If K is fragmentable by d, then any Lipschitz subspace of C(K)
is Asplund.

Proof. Let X be a Lipschitz subspace of C(K) and let J : X → C(K) be the
isomorphic embedding. By Proposition 3.4, we know that J∗ is continuos from K
to (X∗, w∗) and Lipschitz. Since fragmentability of compact spaces is preserved
by continuous maps that also are Lipschitz for the metrics, we deduce that J∗(K)
is a w∗-compact fragmented by the norm Also by Proposition 3.4, we have

δBX∗ ⊂ conv(J∗(K) ∪ (−J∗(K))),

that implies the norm fragmentability of BX∗ since that property is preserved by
finite unions, w∗-closed convex hulls and subsets. Therefore, X∗ has the Radon-
Nikodym property and so X is Asplund.

Remark 5.2. Additional properties can be transferred together wth the frag-
mentability of K, such as being a descriptive compact. That implies, for instance,
that all the Lipschitz subspaces of C(K) have a dual that admits an equivalent
locally uniformly rotund dual norm, combine Theorems 2.4, Theorem 2.6 and
Theorem 3.1 from [15] with the definitions therein. However, that really makes a
difference in case X is not separable.

Lemma 5.3. Assume K is not fragmentable by d. Then there exits ε > 0 and
two families (Us) and (Vs) indexed by {0, 1}<N satisfying:

1. Us_0 ∪ Us_1 ⊂ Us and Vs_0 ∪ Vs_1 ⊂ Vs for every s;

2. Vs ⊂ Us for every s;

3. d(Vs,K \ Us) > ε for every s;

4. Us_0 ∩ Us_1 6= ∅ for every s.

Proof. If K is not fragmentable by d there is a closed subset A ⊂ K and ε > 0
such that every nonempty relatively open set of A has diameter greater than
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3ε. The construction of the families will be done by induction on the length of
the sequence s, adding one more condition: points (xs) ⊂ A with xs ∈ Vs and
d(xs_0, xs_1) > 3ε. Take two points x0, x1 ∈ A with d(x0, x1) > 3ε. Using the
lower semicontinuity of the metric, take now two open sets V0, V1 with x0 ∈ V0
and x1 ∈ V1 such that the distance between V0 and V1 is at least 3ε. The closed
sets B[V0, ε] and B[V1, ε] are disjoint. Finally take disjoint open sets U0 ⊃ B[V0, ε]
and U1 ⊃ B[V1, ε].
Assume everything is built for |s| ≤ n. For a given s with |s| = n we will
construct the objects for s _ 0 and s _ 1. Since xs ∈ A ∩ Vs, we have A ∩ Vs 6=
∅. This relatively open set of A has diameter greater than 3ε. Take points
xs_0, xs_1 ∈ A ∩ Vs with d(xs_0, xs_1) > 3ε. Take open sets Vs_0, Vs_1 ⊂ Vs
with xs_0 ∈ Vs_0 and xs_1 ∈ Vs_1 such that the distance between Vs_0 and
V0s_1 is at least 3ε. The closed sets B[Vs_0, ε] and B[Vs_1, ε] are disjoint, so
they can be separated by open sets Us_0 and Us_1. Without loss of generality
we may assume Us_0, Us_1 ⊂ Us. That completes the induction argument.

Remark 5.4. If K is besides metrizable, say by a metric ρ, then we may add to
the construction the condition that ρ-diameter of Us goes to 0 with |s| → ∞ (take
it smaller that |s|−1 for instance).

The following is the second key result of Lipschitz subspaces outside the metriz-
able case.

Theorem 5.5 ([16]). Then the following are equivalent:

(i) K is not fragmentable by d;

(ii) C(K) contains an isometric Lipschitz copy of `1;

(iii) C(K) contains an isomorphic Lipschitz copy of `1.

Proof. (i)⇒ (ii) If K is not d-fragmentable, we may produce a Cantor-like closed
subset using Lemma 5.3 this way

H =
⋂
n∈N

⋃
|s|=n

Vs.

For every t ∈ H there is a unique σ(t) ∈ {0, 1}N such that t ∈
⋂
n∈N Vσ(t)|n.

The mapping Σ : H → {−1, 1}N defined by taking Σ(t) the sequence σ(t) after
changing the 0’s by −1’s. It is easy to check that Σ is onto and continuous.
Moreover, if d(t1, t2) ≤ 2ε, then Σ(t1) = Σ(t2). Let pn the projection on the
n’th coordinate of {−1, 1}N and consider the function pn ◦ Σ and note that it is
continuous and ε−1-Lipschitz. By Theorem 2.2, there is a continuous extension
fn of pn ◦ Σ to K with the same Lipschitz bound ε−1. The sequence (fn) is
equivalent to the canonical basis of `1. Indeed, given numbers real numbers (an)
for i = 1, . . . ,m there is x ∈ H such that fn(x) = sign(an) and thus

‖
m∑
n=1

anfn‖∞ =

m∑
n=1

|an|
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which means that E = span‖.‖∞{fn : n ∈ N} is isometric to `1. An easy compu-
tation shows that if f ∈ E, then f is ε−1‖f‖-Lipschitz.
(ii)⇒ (iii) It is obvious.
(iii)⇒ (i) If C(K) contains an isometric Lipschitz copy of `1, then Theorem 5.1
implies that K cannot be fragmentable by d because `1 is not Asplund.

Remark 5.6. It is possible to add an equivalent condition to Theorem 5.5: there
is an d-equicontinuous bounded sequence (fn) ⊂ C(K) equivalent to the canonical
basis of `1, see [16].

One longstanding problem in Banach theory was to know if a separable space
X having a non separable dual must contain a copy of `1. A nonseparable re-
formulation is whether Asplundness equals not containing `1. The problem was
solved negatively by James [7] and Lindenstrauss and Stegall [12], independently.
However, we have the following boutade.

Corollary 5.7 ([16]). A Banach space X is Asplund if and only if C(BX∗) does
not contain a Lipschitz copy of `1.

Endowing a Hausdorff compact with the discrete metric we retrieve this classic
result.

Corollary 5.8. K is not scattered if and only if C(K) contains an isomorphic
copy of `1.

Full proof of Theorem 4.2. If K is fragmentable by d then K is sequentially com-
pact [14], therefore the restricted proof above gives the result. Otherwise, if K
is not fragmentable by d we may use the sets built in Lemma 5.3 in this way.
Let sn be the sequence starting in 1 and followed by n − 1 zeroes. The sets Usn
are disjoint. Using Theorem 2.2, there are continuous ε−1-Lipschitz functions
fn : K → [0, 1] such that fn|Vsn

= 1 and fn|K\Usn
= 0. Proceeding like in the

restricted proof, those functions generate a Lipschitz subspace of C(K) isometric
to c0.

Now we turn our attention to the “Lipschitz universality” of C(K) spaces. Let
∆ be the Cantor space {0, 1}N together with the discrete metric.

Proposition 5.9. The space C(∆) is isometric Lipschitz universal for the sepa-
rable Banach spaces. If K is a metrizable Hausdorff compact together a lsc metric
such that C(K) is isomorphic Lipschitz universal for the separable Banach spaces,
then K contains a subset equivalent to ∆, that is, homeomorphic and Lipschitz
isomorphic.

Proof. By Mazur’s theorem, C(∆) is isometric universal in the standard sense
and every f ∈ C(∆) is Lipschitz with respect to the discrete norm. On the other
hand, if C(K) is isomorphic Lipschitz universal for the separable Banach spaces,
then K is not fragmentable by the associated metric d. The proof of Theorem 5.5
together Remark 5.4 provide a set H that is homeomorphic to the Cantor space
and its points are uniformly separated, with separation bounded below by 2ε. In
order the restriction of d to H be Lipschitz isomorphic to the discrete metric is
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enough that d be bounded. That is not ensured by the hypotheses, so we may
proceed this way. Take any t0 ∈ H and consider the closed balls B[t0, n] for n ∈ N,
that are closed with respect to the topology of H too. Since H ⊂

⋃∞
n=1B[t0, n],

there is one ball with nonempty interior (with respet to H). Now, any nonempty
open set of the Cantor space contains an homeomorphic copy of the Cantor space
itself, which provides a copy of the Cantor space where d is bounded.

We do not know if any metrizable K not fragmentable with respect to d is
Lipschitz universal for the separable Banach spaces. Actually, we do not know
the answer for K = [0, 1]N endowed with the supremum norm (that is, essentially,
B`∞ with the weak∗ topology and the norm metric). A main issue here is that the
method to build linear extension operators within spaces of continuous functions
seldom preserve Lipchitzness, see [2] or [20] for instance.

6 An ordering for compacta with lsc metrics

We have seen that the problem of identifying Lipschitz subspaces reduces to the
study of applications between compact spaces that are Lipschitz with respect
to the associated lsc metrics. In this section we will restrict our attention to
metrizable compact spaces with associated bounded lsc metrics. Define an order
among this class by K1 � K2 if there exists an onto continuous mapping φ :
K2 → K1 that is also Lipschitz for the metrics. The definition implies trivially
the following observation.

Proposition 6.1. If K1 � K2, any isometric (resp. isomorphic) Lipschitz sub-
space of C(K1) is an isometric (resp. isomorphic) Lipschitz subspace of C(K2).

In the order � the singleton space plays the role of minimum. On the other
hand, ∆ is a maximum, however it is not unique. For instance, ∆] [0, 1] (disjoint
topological union) is a maximum too. As to intermediate elements in the order
�, the most interesting example is provided by the Mazur mapping between the
unit balls of Lebesgue sequence spaces, namely Φq1,q2 : B`q1 → B`q2 defined by

Φq1,q2( (xn)n∈N ) := (sign(xn)|xn|q1/q2)n∈N

which is Lipschitz for 1 ≤ q2 ≤ q1 <∞, see the proof of [5, Theorem 12.50]. The
mapping is obviously continuous for the pointwise topologies, that make the balls
compact (actually, they are dual unit balls with the weak∗ topology). Therefore
B`q2 � B`q1 whenever q2 ≤ q1.

Proposition 6.2. Suppose that C(K) contains an isometric Lipschitz copy of
some `p with p ∈ (1,+∞), then C(K) contains an isometric Lipschitz copy of `p′

for every p′ ∈ [p,+∞).

Proof. Let q, q′ ∈ (1,+∞) be the conjugate exponents of p, p′ respectively. Let
Ψ : K → B`q witnessing the isometric embedding of `p as Lipschitz subspace of
C(K). Since `p is smooth, by Corollary 3.7 we have B`q = Ψ(K) ∪ (−Ψ(K)).
Note that the Mazur mapping satisfies Φq,q′(−x) = −Φq,q′(x). Therefore,

B`′q = Φq,q′(B`q ) = Φq,q′(Ψ(K)) ∪ Φq,q′((−Ψ(K)))
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= (Φq,q′ ◦Ψ)(K) ∪ (−(Φq,q′ ◦Ψ)(K)),

which implies, by Theorem 3.6. that the isometric embedding of `p′ as a Lipschitz
subspace of C(K).

Now we will show the use of the Szlenk index (see [11] for more information
on the use of ordinal indices in Banach space theory) as an obstacle for Lipschitz
embeddings For any closed subset A ⊂ K we define a set derivation

〈A〉′ε = {x ∈ A : ∀U neighbourhood of x, diam(A ∩ U) ≥ ε},

where the diameter is computed with respect to d. By iteration, the sets 〈A〉γε are
defined for any ordinal γ, taking intersection in the case of limit ordinals. The
Szlenk indices of K with respect to d are ordinal numbers defined by

Sz(X, ε) = inf{γ : 〈X〉γε = ∅}

and Sz(X) = supε>0 Sz(X, ε). If K is fragmentable by d, the Szlenk indices
always exist. Otherwise, for some ε > 0 there is an ordinal γ such that 〈X〉γε =
〈X〉γ+1

ε 6= ∅. In that case we put Sz(X, ε) = ∞ and Sz(X) = ∞ with the
agreement that any ordinal number is less than ∞.

Proposition 6.3 ([17]). If K1 � K2, then there is c > 0 such that, for all ε > 0,
we have

Sz(K1, ε) ≤ Sz(K2, c ε).

Proof. Let φ : K2 → K1 be the continuous surjection with Lipschitz constant
λ > 0. Take c = 2λ. It enough to show that

〈φ(A)〉′c ε ⊂ φ(〈A〉′ε)

for every closed subset A ⊂ K2. Indeed, if x ∈ φ(A) \ φ(〈A〉′ε), then φ−1(x) is
compact subset of A disjoint with 〈A〉′ε. The set φ−1(x) can be covered with
finitely many open sets U1, . . . , Un such that diam(A∩U) < ε. Let U =

⋃n
k=1 Uk.

Note that U ∩ 〈A〉′ε = ∅ and for every y ∈ A ∩ U then d1(φ(y), x) < λε, implying
diam(φ(A ∩ U) ≤ c ε. Taking the open set V = K1 \ φ(A \ U) we have x ∈
φ(A) ∩ V ⊂ φ(A ∩ U) which implies that x 6∈ 〈φ(A)〉′c ε.

Corollary 6.4 ([17]). If X is Gâteaux smooth and embeds as a Lipschitz subspace
of C(K), then there is c > 0 such that, for all ε > 0, we have

Sz(BX∗ , ε) ≤ Sz(K, c ε).

It is possible to prove that Sz(B`q , ε) ∼ ε−q for q ∈ [1,+∞), see [17] for the
details. Therefore B`q2 6� B`q1 if q1 < q2.

Corollary 6.5 ([18]). Let p ∈ (1,+∞) and let q be its conjugate exponent. Then
for every p′ ∈ [1, p), the space `p′ does not embeds isometrically as a Lipschitz
subspace of C(B`q ).
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Our results with Lipschitz isomorphic embeddings are not so satisfactory dis-
tinguishing among the balls B`q . The necessity of taking the closed convex hull
implies some loss of information (the Szlenk index is increased by a factor of the
form ε−1). However, some interesting results can be established for infinite Szlenk
indices.

Proposition 6.6. Let K be metrizable compact together a lsc metric d. If the
space C(K) is isomorphic Lipschitz universal for the separable reflexive Banach
spaces, then K is not fragmentable by d.

Proof. If K was fragmentable, then Sz(K) would be a countable ordinal and
Sz(BX∗) ≤ Sz(K) for all X an isomorphic Lipschitz subspace of C(K). Szlenk
proved that there are reflexive Banach spaces X with Sz(BX∗) an arbitrarily high
countable ordinal, leading to a contradiction.
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