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ALMOST PRESERVED EXTREME POINTS
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ABSTRACT. In this paper we introduce the notion of an almost pre-
served extreme point (APEP) of a set as a weakening of the concept of
preserved extreme points, and we systematically study such points. As
a main result, we prove that a Banach space X has the Radon-Nikodym
property (RNP) if and only if every closed, convex, and bounded subset
of the space has an APEP. Similarly, we prove that X has the RNP if
and only if the unit ball of every equivalent renorming has an APEP. We
further investigate APEPs of the unit ball of classical Banach spaces,
absolute sums, Lipschitz-free spaces, and projective tensor products. In
the latter setting, our work also describes the preserved extreme points
in the unit ball under the assumption that every bounded operator is
compact, thereby partially solving an open problem.
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1. INTRODUCTION

A longstanding open question in the geometry of Banach spaces is whether
the Radon-Nikodym property (RNP) and the Krein-Milman property (KMP)
are equivalent. Recall that a Banach space X has the KMP if every closed,
bounded, and convex subset of X has an extreme point. On the other hand,
one of the equivalent reformulations of the RNP is that every closed, convex
and bounded subset of X has a denting point (see e.g. [I5), Section VII.6]).
Since denting points are always extreme, the implication RNP = KMP is
clear. Whether the converse implication holds has motivated a vast litera-
ture since the 1980s (see e.g. [9] 10, 12], 24] 27, 34] and references therein).

Observe that there exists a fundamental difference between the concept
of denting point (which is a metric notion) and the concept of extreme point
(which is a linear notion). This distinction explains the difficulty behind the
open question whether the KMP implies the RNP. Halfway between extreme
points and denting points, we have an intermediate notion which reveals a
rather better interplay with the RNP.

Given a Banach space X and a bounded, closed and convex subset C' of
X, we say that xp € C is a preserved extreme point of C (sometimes called

weak*-extreme point) if xy is an extreme point of 61”*, where the weak*
closure is taken in X**.

Clearly, if zg € C is a preserved extreme point of C' then it is an extreme
point. Moreover, denting points are preserved extreme points. This can be
easily seen from the fact that a point xy € C is a preserved extreme point
if, and only if, given any weak neighbourhood W of C such that zog € W
there exists a slice S of C' with g € S C W (see e.g. [19, Chapter 0]).

Coming back to the RNP, since denting points are preserved extreme
points, it follows that if a Banach space X has the RNP then every bounded,
closed, and convex subset C of X has a preserved extreme point. This time
the converse is known to be true. For instance, [35] Theorem 1.1] establishes
that if X is a Banach space failing the RNP then, given ¢ > 0, there exists
a closed, convex and bounded subset C of X such that

dist (ext <6w*> ,X) > % —&,

where ext (éw*> stands for the set of all the extreme points of .

In order to point out the difference between the notions of denting and
preserved extreme points, remark that given a closed, bounded and convex
subset C' of X and x¢ € C, then:

e 1 is a denting point in C when the slices of C' containing zy form a
neighbourhood system of z( for the norm topology on C.

e 1 is a preserved extreme point in C' when the slices of C' containing
zo form a neighbourhood system of x( for the weak topology on C.

To obtain a more geometric description of the RNP, we will consider the
following weakening of the concept of preserved extreme point.
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Definition 1.1. Let X be a Banach space and let C' be a bounded, closed
and convex subset of X. We say that a point zg € C' is an almost preserved
extreme point (APEP) if, for every weakly open subset W of C' containing

xo there exists a non-empty slice S of C' such that S C W.
The set of APEPs of C' will be denoted ape (C).

Note that, unlike preserved extreme points, APEPs only require that
every neighbourhood contains a slice, but the slice does not need to contain
ZQ-

At this point it is clear that if X has the RNP then every closed, convex
and bounded subset of X has an APEP. A natural question is whether the
converse is also true. We will give an affirmative answer in Section

This paper presents an intensive study of the notion of APEP. We now
outline the contents of the paper. In Section [2| we introduce all the necessary
notation and preliminary results that we need for the main sections. In
Section [3] we obtain the first results about APEP. In Theorem we prove
that, for a closed, convex and bounded set C of a Banach space X, xg € C
is an APEP if and only if x is in the weak* closure (in X**) of extreme

points of C"". This characterisation will be exploited throughout the text.
In Section [ we study the APEP in some classical Banach spaces. We
characterise the set of APEP of the unit ball of L,(u) spaces for 1 < p < oo
(Example [3.3)), in Ly (1) (Theorem and in C(K) spaces (Theorem [4.1]).
We also study APEP points in the unit ball of /,-sums of Banach spaces,
for 1 < p < o0, in Subsection (4.3

In Section [5] we prove that the notion of APEP has the desired interplay
with the RNP and we provide new characterisations of that property. First
of all, we prove in Theorem that a Banach space X has the RNP if and
only if every closed, convex, and bounded subset of X has an APEP. Using
this result and renorming techniques from [35], we show that if a Banach
space X fails the RNP then there exists an equivalent renorming of X whose
unit ball fails to have any APEP (Theorem . As a consequence we get a
second characterisation of the RNP using APEP: a Banach space X has the
RNP if and only if the unit ball of every equivalent renorming of X contains
an APEP (Corollary [5.§).

Next we move in Section [f] to the study of APEPs of the unit ball of
Lipschitz-free spaces. We prove that any APEP must be either an elemen-
tary molecule or 0. We characterise APEP molecules as the norm limit
of denting points, and provide examples of APEPs that are unpreserved
extreme points.

In Section [7] we make an intensive study of the APEP in projective tensor
products, and more precisely in sets of the form ¢6(C'® D) where C' C X and
D C Y are symmetric, bounded, closed, and convex subsets. Theorem
proves that if z is an APEP of ¢6(C ® D) then z € C ® D. Conversely, we
prove that zop ® yo is an APEP of ¢6(C ® D) if either x is denting in C
and yo is APEP in D (Theorem or if zg and yg are APEP in C' and D
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respectively and zg ® yg has a compact neighbourhood system for the weak
topology (Theorem [7.7)). We close the paper by analysing the APEP and
the preserved extreme points under the additional assumption that every
operator T: X — Y* is compact. Under this assumption, we prove that if
C and D have nonempty interior and z # 0 is a point in ¢6(C ® D), then
z is an APEP if and only if z = zy ® yo for g and yy being APEP in C
and D respectively. Similarly, under the same assumptions, we prove that
z is a preserved extreme point if and only if z = g ® yy for x¢ and yy being
preserved extreme points in C' and D respectively. This provides a positive
solution to [20, Question 3.9], where it is asked whether xo®yq is a preserved
extreme point of B X8, Y if both x¢ and yo are preserved extreme points in
Bx and By, under the assumption that every bounded operator from X to
Y* is compact.

Finally, we collect in Section [§| some remarks and open questions from
our work. We also present after Lemma [8.8 a second proof of Theorem
with a different approach to the one exhibited in Section

2. NOTATION AND PRELIMINARY RESULTS

We will only consider real Banach spaces. Given a Banach space X,
we denote by Bx and Sx its closed unit ball and unit sphere respectively.
We also denote by X* the topological dual of X. Given E C X, we write
span(E) for the linear span of E. We denote L(X,Y), K(X,Y),and F(X,Y)
the spaces of bounded, compact, and finite-rank operators from X to Y,
respectively.

Given a subset C of a Banach space X we denote by co(C) (resp. ¢o(C))
the convex hull (respectively the closed convex hull) of C. Given z* € X*
and a > 0, we denote

S(C,z*,a) ={zx € C:z"(x) >supz™(C) — a}

the (open) slice of C' produced by z*. If X = Y™ is a dual Banach space
and z* € Y C Y™ = X*, the above set will be called a weak* slice.

2.1. Extremal structure and Radon-Nikodym property. Given a sub-
set C of X, a point g € C is said to be an extreme point in C' if it is not the
center of any non-degenerate line segment in C’; in other words, if g = y;rz
for y,z € C implies y = z = xy. We denote by ext (C) the set of all the
extreme points in C.

Let us point out here several classical results in Banach space theory
which shows the importance of extreme points in compact convex sets and

that will be used throughout the text without explicit reference.

(1) (Krein-Milman theorem [I7), Theorem 3.35]) If C' is a weakly compact
and convex subset of X then C' = co(ext (C')). Similarly, if C' is a
w*-compact convex subset of X* then C' =" (ext (C)).
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(2) (Choquet lemma [I7, Lemma 3.40]) If C' is a weakly compact and
convex subset of X, then for every = € ext (C) the slices of C' con-
taining x form a neighbourhood base of = in the weak topology of
C. The same result holds for the weak® topology of X* replacing
slices with weak™ slices.

(3) (Milman theorem [I7, Theorem 3.41]) If C' is a weakly compact and
convex subset of X and B C C'is such that ¢co(B) = C then ext (C') C
B". Similarly, if C € X* is w* compact and convex and B C C is

such that @"" (B) = C then ext (C) C B,

In the sequel we will present some strenghtenings of the concept of extreme
point. Our main reference will be [I9, Chapter 0].

Given a bounded set C' C X, we say that xg € C is a preserved extreme
point in C'if xg is an extreme point of the weak* closure of C'in X** (that is,

xo € ext (ﬁu*) ). We denote by pre-ext (C') the set of all preserved extreme

points of C.

For closed, bounded and convex C' C X, it follows from Choquet’s lemma
that z¢ € pre-ext (C) if and only if slices of C' containing z( form a neigh-
bourhood base of x for the weak topology of C.

If, in the above characterisation, we replace the weak topology with the
norm topology, we arrive to the notion of denting point. That is, a point
xo € C is said to be a denting point if, for every € > 0, there exists a slice S
of C' with zp € S and diam (S) < e, where diam (S) stands for the diameter
of S. We denote by dent (C') the set of all denting points of C.

The set of denting points plays a very important role in the Banach spaces
with the Radon-Nikodym property. Let us recall that the Radon-Nikodym
property, from now on RNP, was originally defined for Banach spaces by
the validity of a vector version of the classic Radon-Nikodym theorem on
derivation of measures. Namely, X has the RNP if for any o-finite measure
space (£, %, 1) and any p-continuous vector measure v: ¥ — X of bounded
variation, there exists a Bochner integrable function f: @ — X such that

(2.1) o) = [ s

for every A € X, see [15] or [11] for details. Moreover, RNP can be localized
on closed convex subsets of X. We say that C' C X has the RNP if for
any vector measure v : X — X that is absolutely continuous with respect
to p, as before, and having average range in C, meaning that v(A)/u(A) €
C for any A € ¥ with u(A) > 0, there is a Bochner integrable function
f: Q — X satisfying . Note that for C' C X bounded and g finite, the
average range condition implies p-continuity and bounded variation for v.
Another important observation is that the RNP can be witnessed just by
the Lebesgue measure on R or [0, 1].
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There are many characterizations of the RNP: differentiation of vector
valued functions, integral representation of operators from L'(u) to a Ba-
nach space, convergence of vector valued martingales or descriptive topology.
However, we are more interested in the geometrical characterizations of the
RNP. A closed convex bounded subset C' C X has the RNP if and only if
every nonempty (convex) subset has arbitrarily small slices, in such a case
we say that C is (hereditarily) dentable. It turns out that if C' has the
RNP, then it or any of its nonempty subsets have denting points and, even,
strongly exposed points (a denting point where the arbitrarily small slices
can be taken parallel), see [I1] for more information.

The equivalence among the different characterizations of the RNP is far
from trivial. Despite the geometrical flavor of the main notion and tech-
niques of this paper, we will occasionally appeal to measure theoretical
characterizations of the RNP to get our results proven.

2.2. Lipschitz-free spaces. Let (M, d) be a complete metric space where
a distinguished “base point” 0 € M has been selected. The Lipschitz space
Lipy(M) is defined as the Banach space of all Lipschitz functions f : M — R
such that f(0) = 0, endowed with the norm given by the best Lipschitz

constant
T =sup{M :x#yeM}.
d(x,y)

For each = € M, the evaluation functional §(x) : f — f(x) belongs to the
dual Lipy(M)*. The Lipschitz-free space over M is defined as the closed
space F(M) := span{d(z) : € M}. It is not too hard to see that F(M)
is, in fact, an isometric predual of Lipy(M). We refer to [41] for basic facts
about Lipschitz and Lipschitz-free spaces.

The most important elements of F(M) are the so-called (elementary)
molecules, of the form

6(x) —6(y)

d(x,y)

for x # y € M. The set of molecules in F(M) will be denoted Mol (M).
Molecules have norm 1, and it follows easily from the Hahn-Banach separa-
tion theorem that Br(y; = co(Mol (M)) (see e.g. [AI, Proposition 3.29]).
The weak closure of Mol (M) is either Mol (M) or Mol (M) U {0}, depend-
ing on whether M bi-Lipschitz embeds into some finite-dimensional Banach
space or not (see [2I, Proposition 2.9] and [22, Lemma 4.2]). Moreover,
norm- and weak convergence agree on Mol (M): a net of molecules (my,,,)
converges to mg, precisely when z, — = and y; — y (see e.g. [2I, Lemma
2.2] and [39, Lemma 1.2]).

Lipschitz-free spaces provide a convenient toolbox for the construction of
Banach spaces with a predetermined extremal structure, because the various
types of extremal objects in Br(ys) admit simple metric characterisations
when M is complete:

Mgy 1=

e All extreme points of Br(yp) are molecules [6, Theorem 3.1].
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e A molecule my, is extreme if and only if d(x,p) + d(p,y) > d(z,y)
whenever p # x,y [5, Theorem 1.1].

e Preserved extreme points and denting points of Br(;) agree [21]
Theorem 2.4].

e A molecule my, is denting if and only if for every ¢ > 0 there is
0 > 0 such that d(x,p) + d(p,y) > d(z,y) + § whenever d(x,p) > ¢
and d(y,p) > ¢ [4, Theorem 4.1].

We will also need the following notion introduced in [26]: we say that a
function f € Sy, (ar) is local if, for every € > 0, there exist u 7 v € M such
that f(myy) > 1 — ¢ and d(u,v) < e. This definition is a pointwise version
of the notion of local metric space introduced in [23], and it was introduced
in order to study Daugavet points in F(M).

Let us point out our interests in local Lipschitz functions in the following
remark fo easy reference.

Remark 2.1. Tf f is local, then any non-empty slice S(Bz(ar), f,¢€) has di-
ameter 2. Even though this result is well known (and implicitly observed
in (2)=(1) in |26, Theorem 3.2]), let us brielfy outline the proof for com-
pleteness: in the above situation, any such slice will contain molecules m,,
for which d(u,v) is arbitrarily small, so our claim follows from [26, Theorem
2.6].

2.3. Projective tensor products. The projective tensor product of X
and Y, denoted by X®,Y, is the completion of the algebraic tensor product
X ®Y endowed with the norm

k k
[2]l7 := inf {Z lznllllgnll - 2 =D wn ® yn} ;
n=1 n=1

where the infimum is taken over all such representations of z. The reason
for taking the completion is that X ® Y endowed with the projective norm
is complete if and only if either X or Y is finite dimensional (see [33] p. 43,
Exercises 2.4 and 2.5]).

It is well known that ||z ® yl= = [|z|[ly|| for every z € X, y € Y,
and that the closed unit ball of X®,Y is the closed convex hull of the set
Bx ® By ={x®y :x € Bx,y € By}. Throughout the paper, we will use
both facts without any explicit reference.

Observe that every G € L(X,Y*) acts on X®,Y via

k k
G (Z Tp & yn) = Z G(mn)(yn),

for Eﬁzl Tn ®yn € X ® Y. This action establishes a linear isometry from
L(X,Y*) onto (X®;Y)* (see e.g. [33, Theorem 2.9]). Throughout this
paper we will use the isometric identification (X&®,Y)* = L(X,Y™*) without
any explicit mention.
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Recall that a Banach space X has the approximation property (AP) if
there exists a net (Sq,)q in F(X, X) such that S, (z) — x for all x € X. It
is not difficult to show that if either X or Y has the AP then K(X,Y™) is
separating for X®,Y (c.f. e.g. [20, Lemma 2.2]).

Recall that given two Banach spaces X and Y, the injective tensor product
of X and Y, denoted by X®.Y, is the completion of X ® Y under the norm
given by

n
[ulle := sup {Z 2% (za)y" (yi)| - * € Sx=,y" € SY*} ,
i=1

where u = > | x; ® y; (see [33, Chapter 3] for background). Every u €
X®.Y can be viewed as an operator T;,: X* — Y which is weak*-to-weak
continuous. Under this point of view, the norm on the injective tensor
product is nothing but the operator norm.

It is known that, given two Banach spaces X and Y, we have (X QAQEY)* =
X*®,Y* if either X* or Y* has the RNP and either X* or Y* has the AP
[33, Theorem 5.33].

3. FIRST RESULTS AND EXAMPLES

In this section we will provide the first general results, examples and
characterisations of APEPs in Banach spaces. We begin with a simple fact
that will be used in subsequent sections.

Lemma 3.1. Let X be a Banach space and C C X be bounded, closed and
convez. Then ape (C) is weakly closed.

Proof. Suppose that x € C belongs to the weak closure of ape (C); we have
to prove that x € ape (C). Let W be a weak neighbourhood of z, and let
us see that it contains a non-empty slice of C. By assumption, W contains
some y € ape (C). Thus W is a weak neighborhood of y and, since y is an
APEP, is must contain a non-empty slice of C' as desired. =

This already provides us with examples of situations where APEPs are
plentiful. One simple case is the unit ball of an infinite dimensional Ba-
nach space X for which pre-ext (Bx) = Sx. Since Sx is weakly dense in
Bx for every infinite dimensional Banach space X, we have the following
consequence of Lemma [3.1]

Proposition 3.2. Let X be an infinite dimensional Banach space such that
pre-ext (Bx) = Sx. Then ape (Bx) = Bx.

Example 3.3. The above result applies to get that if X is an infinite di-
mensional L,(u) space, for 1 < p < oo, then every point of Bx is APEP.

Moreover this shows that, unlike extreme points, APEPs of Bx do not
have to belong to Sx. In particular, in Bx there are APEPs which are not
extreme.
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This applies in particular for LUR norms. Recall that the norm of a
Banach space X is locally uniformly rotund (LUR) if for all z,z, € X
satisfying lim,, (2||z]|?+2[|zn ||?— |2+, ) = 0 one has lim,, ||z, —z|| = 0 (see
[17, Definition 8.16]). It is not difficult to prove that if the norm of a Banach
space X is LUR then every point of Sx is strongly exposed (in particular it
is a preserved extreme point). Consequently we get the following result.

Corollary 3.4. If X is an infinite dimensional Banach space whose norm
is LUR, then every point of Bx is APEP.

In particular, every infinite dimensional separable Banach space and every
infinite dimensional reflexive space admits an equivalent renorming such that
every point of the new unit ball is APEP.

Compare the last statement to Corollary
Next, we give another simple lemma that can be understood as a gener-
alisation of Milman’s theorem.

Lemma 3.5. Let X be a Banach space and C C X be bounded, closed and
conver. If B C C is such that ©6(B) = C, then ape (C) C B".

Proof. Note that every non-empty slice .S of C' contains a point of B. Indeed,
let S ={zeC: f(x)>a} forsome f e X*, acR. If SNB = & then
f(z) < afor all z € B and thus for all x € ¢o(B) = C, so S must be empty.

Now let x be an APEP of C. Then every weak neighbourhood W of x
contiibls a non-empty slice of C' and therefore intersects B, so we conclude
reEB . u

For some of our results, we will need the following, more precise conclusion
in the context of Lemma 3.5

Lemma 3.6. Let X be a Banach space, B C X a bounded set, and C' =
co(B). Let x € ape (C). Then either

1) thereise > 0 and a net (yo) C B such that yo — = and ||yo — x|| > €
— W
(i.e. v € B\ B(z,e) ), or
2) for every weakly open set W containing x and € > 0 there exists a

slice S of C' such that S C W and diam (S) < e.

Proof. Assume that 2) does not hold. Then we can find a weakly open set
Wy containing = and £y > 0 so that every slice S of C' contained in W
satisfies that diam (S) > eo.

Now, let W be a weakly open set containing x. Since z is APEP, we can
find a slice S = S(C, f,a) with S € W N W,. Take 0 < § < 1. By [19,
Lemma 5.2.14] we have

eo < diam (S(C, f,da)) < 2diam (S(C, f,«) N B) + 44.
If we choose ¢ small enough to guarantee that # > <, then it follows that

there are y,z € S(C, f,a) N B with [ly — z|| > 5. Then either ||y —z| >
or |z —z| > ¢
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In any case, we have proved that there is yyr € WNB with ||y — x| > 2.
It is clear that (yw ) is a net in B that converges weakly to z. =

The following example shows that condition 2) in Lemma can really
fail to hold.

Example 3.7. In [2], a Banach space X isomorphic to C([0,1]) is con-
structed such that every non-empty relatively weakly open subset of By
has diameter 2 and such that every point of Sx is a preserved extreme point
of Bx. In particular, every point of Bx is APEP (Proposition .

We now provide a characterisation of APEPs of a given closed, bounded
and convex set in terms of the extremal structure of its weak™ closure.

Theorem 3.8. Let X be a Banach space, C C X be closed conver and

bounded and © € C. Let D := OV be its weak* closure in X**. The
following are equivalent:
(1) = € ape (C).
(2) For every weak* open subset W of D containing x there exists a
weak® slice S of D such that S C W.

(3) x € ext (D)

Proof. (1)=(2). Let W be a weak® open subset of D such that z € W.

Choose a weak™ open subset V' of D such that x € V C v C W. Consider
U :=V NC, which is a weakly open set of C' with z € U. Since x is APEP
we can find a non-empty slice S = S(C, f,«) such that S C U. We claim
that

S(D, f,a) SV

Indeed, given any z** € S(D, f,a) C D we can find a net z 7 2 such
that z; € C holds for every s. Since f(zs) = f(2**) > 1 — o we can find
an index sg such that f(zs) > 1 — « holds for every s = sg. Since z5 € C
we infer that z, € S(C, f,a) C U C V holds for every s = sg. Since

Zs 7 2% we infer that 2 € Vw*, as desired. Since V' C W we get that
S(D, f,a) C W, as required.

(2)=-(3). Select a relatively weak* open subset W of D containing  and
let us find an extreme point e** of D such that e** € W. By (2) we can
find a weak™ slice S of D such that S C W. Now Krein-Milman theorem
ensures that D = co®” (ext (D)) (observe that D is weak* compact since C
is bounded). Since S is a weak™* slice of D we get that ) # S Next (D) C
W next (D). We have proved that every weak* neighbourhood of 2 contains
an extreme point of D, so the implication is proved.

(3)=(1). Let W be a weakly open subset of C' containing x, and let
us prove that there exists a slice S of C' with S C W. In order to do so
define W as the weak* open subset of D defined by W, that is, such that
W NC = W. By (3) there exists an extreme point e** of D such that
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e*™ € W. Since ¢** is an extreme point of D, Choquet lemma implies that
there exists a slice S = S(D, f, @) such that e** € S C W. It is now clear
that S(C, f,a) CW NC =W, and the proof is finished. =

With Theorem [3.8] we can now provide an example of an APEP which is
not an extreme point. The following example shows that this phenomenon
may happen even in finite-dimensional Banach spaces.

Example 3.9. Let C C R? be a compact set whose set of extreme points
is not closed (c.f. e.g. [I7, Exercise 3.86]), and set x¢ € ext (C) \ ext (C) =
pre-ext (C') \ pre-ext (C') (since in the finite dimensional framework clearly
every extreme point is preserved). Then xg is an APEP of C which is not
an extreme point of C.

An example of an extreme point which is not APEP will be obtained in
Example Moreover, an example of an extreme point which is APEP
but fails to be a preserved extreme point will be exhibited in Example

Remark 3.10. It is a well-known result that if X is a 2-dimensional Banach
space and C C X is closed, convex, and bounded then the set ext (C) is
closed (c.f. e.g. [I7, Exercise 3.86]). Consequently, in such situation every
extreme point of C' is APEP.

Let us provide another example, which shows that if a closed, convex, and
bounded set satisfies that every point is APEP then this does not necessarily
imply that every point is an extreme point, even if the set of extreme points
is norm-dense.

Example 3.11. In [30] a compact convex set K C {5 is constructed with the
property that the set of all extreme points is dense in K. In such compact,
all points are APEP but there are (densely many) points which are not
extreme points.

4. APEP IN CLASSICAL BANACH SPACES

In this section, we pursue to characterise the APEPs of the unit ball of
classical Banach spaces (namely C(K') spaces and L,(u) for 1 < p < 00).
We will also study APEPs in absolute sums of Banach spaces.

It is immediate that if X = Kg forn € N and 1 < p < oo then the set
of (preserved) extreme points of By is closed. Consequently, the APEPs of
Bx coincide with the extreme points. On the other hand, if 1 < p < oo and
X = Lp(p) is infinite-dimensional, Example shows that all points of By
are APEP. The rest of the section will focus on the remaining cases.

4.1. C(K) spaces. Let K be a compact Hausdorff topological space. In
this subsection, we aim to provide a description of those points of Bg (k)
which are APEP. The main result is the following.
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Theorem 4.1. Let K be a compact Hausdorff topological space. Let f €
Be(ry- The following are equivalent:

(1) f is an APEP of Bok)-

(2) |f(t)] =1 holds for every t € K.

(3) f is an extreme point of Be (k-

(4) f is a preserved extreme point of B k-

Proof. (2)=(3) is straightforward, whereas (3)=(4) is well known (c.f. e.g.
[29, p. 295]). Moreover, (4)=(1) is general. It remains to show (1)=-(2).
To this end, it will suffice to prove that for any ¢y € K and any non-empty
slice S of Be (k) there exists some function ¢ € S with [p(tg)| = 1. Indeed,
it follows that the weakly open subset

W :={g € Bo) : |6,(9)| <1}

cannot contain any non-empty slice of B¢ () and therefore cannot contain
any APEP either.

In order to do so, fix {p € K and a slice S of Bg (). We may assume that
S = S(Be(ky, 1ty @) where € C(K)* = M(K) is a regular Borel measure
with ||u]] = 1. Observe that we can decompose 1 = Ady, + v, where A € R
and v € M(K) is such that v({to}) = 0. Now select h € Bg(x) such that
p(h) > 1—g. Since v is a regular measure and v({to}) = 0, there exists an
open subset U C K with tg € U such that |[v|(U) < §. Consider a Urysohn
function g € S¢(xy such that g(t) =0ift ¢ U, 0 < g < 1and g(t) = 1 at
V for some open set V such that to € V C V C U. Now take j € Sc(k)
another Urysohn function such that j(¢) = 0if ¢t ¢ V and j(t9) = 1.

We consider sign(\) = |[A|/A if A # 0 and sign(0) = 1. Now, define

v :=(1—g)h+sign(A)j.

It is clear that ¢(tg) = sign(A) € {—1,1}, so we only have to prove that
¢ € S. Let us start by proving that ||¢||cc < 1. Select any ¢t € K. Now we
have two possibilities:

(1) T4 ¢ V then j(t) = 0, 50 (t)] = [1— g(BI|A(H)] < [h(t)] < 1.
(2) If t € V then g(t) = 1 and thus |¢(t)] = [j(¢)] < 1.

In any case we get |¢(t)| < 1. It remains to estimate p(p). Observe that

p(p) = u((1 = g)h) + p(sign(A)j).
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On the one hand, since 6, (h(1—g)) = 0 we get that u((1—g)h) = v((1—g)h).
Now

V((l—g)h):/K(l—g)h dl/:/K\U(l—g)hdl/—i—/U(l—g)h dv

> /K\Uh dv — |1 = g)hlecl| (V)

2/hdu/hdv|y|(U)
K U

> v(h) — 2w|(U) = v(h) — %.
On the other hand,
p(sign(A)j) = sign(M)Aj(to) + v(sign(A)7)
= |\l —i—sign(/\)/ jdv
K
— D+ sign()\)/ i dv
1%
Z Al = [|(V) = [A] = [v[(U)
e
> A - =
M-S
Putting everything together we infer
o o 3
>vh)— =+ |N—-—<=|A h)——.
ple) > vlh) = G+ N = 5 = A+ u(h) -
Taking into account that |A| > Ay, (k) we clearly get that
3a 3a a 3o
M(SO)>(A5to+V)(h)—§:M(h)—§>1—§—§>1—04-

This implies that ¢ € S and the proof is finished. =

Let us show an immediate consequence of Theorem [A.1] for describing
APEP in the unit ball of L., spaces.

Corollary 4.2. Let (2,3, 1) be a measure space and let I be an arbitrary
set. Let x = (v;)ier € By () and f € Br_ (- Then,

a) f € ape (BLoo(/—L)) if and only if | f(w)| =1 for a.e. w € Q.
b) = € ape (Bgoo([)) if and only if |x;| =1 for all i € I.

Proof. a) We have Lo (1) = C(K,,) isometrically, where K, is the maxi-
mal ideal space of Loo(p) (see e.g. [43, Theorem 9.6]). The result follows
from Theorem and the well-known characterization of extreme points of
BLoc(u)-

b) is a particular case of a) taking p as the counting measure on I, but
can also be justified directly: we have ¢ (I) = C(8I) isometrically, where
BI is the Stone-Cech compactification of I, and the result follows again
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from Theorem and the well-known characterization of extreme points of
Bfoo ([) . n

4.2. Ly(p) spaces. In this section we aim to characterise when f € By (.
is APEP, for a given measure space (2,3, ). We limit our analysis to
localisable measure spaces, which are precisely those for which L;(u)* is
isometrically isomorphic to Loo(u) [I8, Theorem 243G]. This is no loss of
generality, as it is known that every L;(u) space is isometrically isomorphic
to an ¢1-sum of spaces of the form L;(u;) where u; is a finite, hence localis-
able, measure (c.f. e.g. [I4, P. 501]). We will deal with APEPs in ¢;-sums
of Banach spaces in Section 4.3

Before we proceed, let us introduce a bit of notation. Recall that a mea-
surable set A C Q is called an atom for p if u(A) > 0 and if u(B) = 0 for
every measurable subset B C A such that u(B) < p(A). As a consequence
of |25, Theorem 2.1] we can decompose L1(u) as

(4.1) Ly(p) = Li(v) @1 62(D),

where v is the continuous part of u, and I is the set of all atoms for p (up
to a measure 0 set).

With the above description in mind, we will first analyse the APEPs of
the unit ball of L1 (i) in the case that p either fails to have any atom or in the
case that p is purely atomic, and then we will complete the information with
the stability results of the APEPs in #1-sums of spaces of the next section
(see Proposition . In order to do so, let us start with the atomless case.

Proposition 4.3. Let (2, %, 1) be a localisable measure space such that p
is atomless. Then ape (BLl(u)) s empty.

Proof. In this proof we will denote L1 = Lq(p) and Loo = Loo(pt) = Li(p)*.
Let f € By, and let us prove that f is not APEP. In order to do so, let us
begin with the case f # 0. Since f = f* — f~, we may assume without loss
of generality that f* # 0. Since [, fTdu # 0 and p is atomless we can find
a subset A C Q and « > 0 such that

1
a</f+du:/fdu<.
A A 2

Define g := x4 € St and set
1
W:z{gpéBLl :a<g(g0):/Acpd,u<2}.
Observe that f € W. Indeed,

g(f):/QfXAdM:/AfdM:/Aerd,uE(a,;).

Let us now prove that the relatively weakly open set W cannot contain any
slice of By, .
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Indeed, take a slice S = S(Bpr,, h,a) for a > 0 and h € Sr,__. By the very
definition of essential supremum, there exists £ € {—1,1} and B C Q with
wu(B) > 0 and such that

B={teQ:&h(t)>1-a}.
Now we have two different possibilities:

a) If u(AN B) # 0 then define the function ¢ := fljgg‘g%). On the one

hand we have

o) = [ b du = M/AE En(t) du(t) > 1 - a

since &h(t) = |h(t)] on AN B. This implies ¢ € S. On the other
hand,

_ _ £ _
g(w)—/ggsodu—u(AmB)/AmBgdu 3

since g = 1 on AN B. In particular g(¢) is either 1 or —1, so ¢ ¢ W.
b) If (AN B) = 0 then define ¢ := f%. As before, h(p) > 1 —«
(i.e. p € 9), but clearly g(p) = ijf% dp = 0 since u(AN B) = 0.
This proves that ¢ ¢ W, as desired.
To finish the proof, it remains to be proved that 0 is also not an APEP

of Br,. In order to do so, define
1
d — 0.
/Qcp K| < 2}

It is immediate that W is a relatively weakly open set containing 0. However,
it does not contain any slice of By,. Indeed, given any slice S of By, by the
proof of the above case we can find { € {—1,1} and C C Q with u(C) > 0
such that ¢ := & % € S. However,

/Szwdu=ﬁfm/SZXcdu=€¢<—;,;)~

Now we move to the purely atomic case, obtaining the following result.

W!Z{QOEBth

Proposition 4.4. Let I be a non-empty set and consider X = ¢1(I). Then
the APEPs of By, (r) are the standard basis vectors *e;, i € I.

Proof. Since By, (ry = @o({*e; : i € I}) we infer from Lemmathat if z is
an APEP of By, () then x € {+e;:i €[ }w. Evaluating against functionals
of the form e} € ¢ (I) and the constant function 1; yields e} (x) € {—1,0,1}
and 17(x) € {—1,1}, and we deduce that = € {£e; : i € I'}. In the opposite

direction, it is clear that every element of the form +e; is a denting point
and therefore an APEP. =

Now we can give a description of the APEPs in an L;(u) space.
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Theorem 4.5. Let (2,3, 1) be a localisable measure space and let f €
Br, (- The following are equivalent:

(1 ) fis an APEP of Bp, ()

(2) f s a dentmg point of BL1

(3) f cay, where Ais an atom of 1.

Proof. 1t is well known that (3) = (2) = (1). We prove (1) = (3). Accord-
ing to the decomposition in we see [ = (g,h) € L1(v) ®1 01(1).

Proposition below together with the preceding paragraph yield that
f is APEP if, and only if, either ¢ = 0 and h € ape (Bél(l)) or h = 0 and
g € ape (BLl(,,)). However the latter is impossible due to Proposition
Consequently, f is APEP if, and only if, f = (0,h), where h is APEP in
By, (1) But now Proposition implies that the above holds true if, and
only if, h = te; for some ¢ € I. Now, taking into account the identification
of ¢1(I) with the purely atomic measures in (4.1]), the result follows. =

4.3. Absolute sums of Banach spaces. Now, we focus on studying APEPs
of the unit ball in /,-sums of Banach spaces. We start with the case p = 1.
For finite sums, we have an easy characterisation.

Proposition 4.6. Let Y, Z be Banach spaces. Then
ape (Byg,z) = (ape (By) x {0}) U ({0} x ape (Bz)).
Proof. Let X =Y &1 Z, then X*™* =Y** @, Z** and therefore
ext (Bx#+) = (ext (By=) x {0}) U ({0} x ext (Bzs)).
Clearly, Y** x {0} C X** is weak*-weak*-homeomorphic to Y** (and simi-
larly for {0} x Z**), so
ext (Bx—)" = (ext (By=)" x {0}) U ({0} x ext (Bz=)"").

The result now follows immediately from Theorem .

The argument of Proposition extends seamlessly (or by induction) to
finite /;-sums. For infinite sums, however, the bidual does not admit such
a simple expression so a different argument is needed. In that case, we are
able to characterise all non-zero APEPs.

Proposition 4.7. Let X be the {1-sum of a family {X; :i € I} of Banach
spaces.
a) If v = (x;) # 0 is an APEP of By, then there exists an index j € I
such that x; € ape (BXJ.) and x; =0 for all i # j.
b) If z; € ape (BXj), then the element x = (u;) defined as u; = x; and
u; =0 fori+# j is an APEP of Bx.

Proof. a) Let © = (z;) be an APEP of Bx, and suppose that there are two
indices j1 # j2 € I such that x;,,x;, are non-zero. For k = 1,2 let ¢, € SXjk
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be such that ¢g(xj,) = ||z, ||, and consider the set
W ={z=(z) € Bx : v1(zj,) > 0 and p2(zj,) > 0}.

Then W is a relatively weakly open neighbourhood of . Since x is APEP,
W must contain a non-empty slice of the form S = S(By, f,«) for some
f € Sx+ and a > 0. Identify X* with the /o-sum of the spaces { X : 7 € I'}
and write f = (f;). Suppose that | f;|| > 1 — a for some j € I, choose
y € Bx; such that f;j(y) > 1 — a and let z = (2;) be such that z; = y and
zi = 0 for i # j. Then f(z) = fj(y) > 1 —asoze€ S C W, but this is
not possible as either z;, = 0 or zj, = 0. This shows that || f;|| <1 — « for
all j € I, contradicting ||f|| = 1. Hence, there must exist j € I such that
x; =0 for all i # j.

Let us see that z; is an APEP of By, if z; # 0. Let W C By, be
a relatively weakly open neighbourhood of z;, and let ¢ € X7 such that
o(xj) = ||| > 0. Define

W' ={z=(z) € Bx:2; €W, p(z;) >0},

which is clearly a relatively weakly open subset of Bx and x € W’. Since x is
APEP, there is a non-empty slice S = S(Byx, f, a), for some f = (f;) € Sx~
and « > 0, such that S C W’. We claim that [|f;|| < 1— « for all i # j. If
not, there is some k # j such that || fz|| > 1 —c, and so we can find y € By,
such that fx(y) > 1—«. Hence, the point z = (z;) € Bx such that z; = 0 for
all i # k and z, = y satisfies that f(z) = fx(y) >1— . Thus, z€ S C W'
but ¢(z;) = 0, obtaining a contradiction. Therefore, || f;|| < 1 — a, for all
i # j, and since X* = (@ X)_, it follows that || f;|| = 1. Now, define the
slice S; = {y € By, : fj(y) > 1 — a} which is clearly non-empty. If y € Sj,
then the point z = (z;) € Bx such that z; = 0 for ¢ # j and z; = y satisfies
that z € S C W'. Thus, z; = y € W, concluding that S; C W and z; is
then an APEP.

b) Let * = (z;) be a point in Bx such that there is j € I with x; = 0
for i # j and x; € ape (By;). Let us show that 2 € ape (Bx). Let W be a
relatively weakly open neighbourhood of « in Bx. We may assume that W
is a basic weakly open set of the form

W:{yGBX : ’fl(y_xﬂ <€,,’fn(y—$)’ <€}
for some functionals f! = (f1),...,f" = (f) in the unit ball of X* =
(P X;),, and some € > 0. Now, consider
€ €

W, = {ZGBXj A=)l < 50 7 =)l < 5},
which is a relatively weakly open neighbourhood of z; in Bx,. Since x; is
APEP and z; € Wj, we can find a slice S; = {z € By, : g(2) > 1 - a}
for some g € S X: and o > 0, such that S; C W;. We can always assume
that a < § since S is non-empty for all a > 0. Finally, consider the slice
S ={y= () € Bx : g(yj) > 1—a}. Itis clear that if z € S; # (), then
the point y = (y;) € Bx such that y; = 0 for i # j and y; = z, satisfies that
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y € S, 80 S # (. Furthermore, pick y = (y;) € S, and denote by § = ()
the element of X such that §; = y; for ¢ # j and y; = 0. It is clear that
ly;ll = 9(yj) > 1—a>=1=3,so[|g]l = [yl — lly;l| < 5. Therefore, we have

~ e €
Py =) <ffy—z)l + 1@ <5+5 =6 1<ps<n,

since y; € S; € Wj. This proves that y € W, from which we conclude that
S CW. Thus z is an APEP of Bx. =

The only case that remains unclear is whether it is possible to have 0 €
ape (Bx) when 0 ¢ ape (Bx;,) for all i € I.

Next, we consider £,-sums of Banach spaces for 1 < p < oo. It is easier
to use arguments based on Theorem in this case as, given a family
{Xi :i € I} of Banach spaces, one has (P, X;)," = (P, X;™)p and
(4.2)

. Z;
ext (B(@Xi)p) = {(xz) € S@x,, : Vi,xi=0or —”wz” € ext (BXZ-)} .
7
Using these descriptions, we can begin with the following necessary condition
for APEPs in the unit sphere.

Lemma 4.8. Let X and Y be two Banach spaces and let (xo,y0) € Sxa,y
be an APEP of Bxg,y. Then either xg =0 or ;=% is an APEP of Bx.

l[zoll

Proof. Assume that xg # 0 and let us prove that 2% is an APEP. Since

0
llzoll

(w0,%0) is an APEP of Byg,y we can find by virtue of Theorem a net
(es, fs) of extreme points of B(xg,y) = Bx+g,y~ such that (e, fs) =t

(z0,40). This implies that both (e5) 5 xo and (f,) % yo. Since both
(es) and (fs) are bounded nets we can assume, up to taking subnets, that
lles]l = A and || fs]] = . The w*-lower semicontinuity of the norm of X**
and Y™** implies ||zo]| < A and ||yo|| < u. Note that

L= flzoll” + llyoll” < AP+ = lim [leg||” + || fs[|” = lim || (es, f5)[[" < 1

so indeed |[|zp]| = A and ||yo|| = w-
Now, up to taking a further subnet, since [les|| = X = ||| > 0 we can
assume that e; # 0 holds for every s. Since (e, fs) is an extreme point of

. e . w*
Bxs«g,y= and es # 0 we infer e € ext (Bx=+) for every s. Since e; — xg

and |les|| — ||zo|| we get that

€s w* X0

e [lzoll”
obtaining that ”ﬁ—g” is an APEP of Bx by Theorem as it is the weak*
limit of a net of extreme points of Bx«. =

Now we are able to characterise APEPs of norm 1 for 1 < p < oo.
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Proposition 4.9. Let X be the {p-sum of a family {X;:i € I} of Banach
spaces, where 1 < p < oo, and let (z;) € Sx. The following assertions are
equivalent:

(1) (zi) is an APEP of Bx.

(2) For every i € I, either x; =0 or 1~ is an APEP of Bx;,.

ll:ll
Proof. (1)=(2): Observe that given ¢ € I we have
X=X;8,Y,

where Y is £,-sum of the family {X; : i € I\ {i}} and the above identifica-
tion is an isometric isomorphism. Now the result is a direct application of
Lemma [4.8

(2)=-(1): Let U be a weak® neighbourhood of (x;) in X**. We will show
that U intersects ext (Bx»+) and this will be enough by Theorem Since
the weak™* topology of X ** is the product topology of the weak™ topologies in
X;*, we may assume that U = [[,.; U; where U; is a weak™ neighbourhood
of z; (or X;*) for each i € I. If z; # 0 then, by assumption and Theorem 3.8
there exists e; € ext (BX;*) such that ||z;||e; € U;. Let y = (y;) € X** be
defined by

. H(L‘ZH [S7R if xZ; 75 0
Yi = . .
0 yifz; =0

Note that y € U and

1/p 1/p
lyll = (Z Hyin) = <Z||$i||p> = [|(z:)|| =1

el el
since (z;) € Sx, so y € ext (Bx»+) by (4.2). This ends the proof. =

Of course, Proposition does not cover all APEPs of the unit ball of
lp-sums as it is possible to have APEPs of norm strictly less than 1. For
instance, the space ¢, can be expressed as the ¢,-sum of countably many
copies of R, and ape (ng) = By, for 1 < p < oo by Proposition

The analysis of APEPs in an infinite /,.-sum of Banach spaces becomes
troublesome because we do not have a simple description of its dual, let
alone its bidual. So, instead, we conclude with the case of cy-sums of Banach
spaces. In this case, we can characterise APEPs of the unit ball completely.

Proposition 4.10. Let X be the co-sum of a family {X; : i € I} of Banach
spaces. Then x = (x;) is an APEP of Bx if and only if x; is an APEP of
Bx, for eachi € I.

Proof. The space X** can be identified with the {s.-sum of the spaces X;*
and, therefore, the extreme points of Bx«« are precisely the elements of the
form (z7*) where z;* € ext (Bxs«) for all i € I. Since the weak* topology
of X** is the product topology of the weak® topologies in X;*, the result is
now clear from Theorem .
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Example 4.11. As consequence of Proposition the unit ball of ¢o(1)
does not have any APEP.

5. A CHARACTERISATION OF THE RNP IN TERMS OF APEP

In this section we aim to prove a strong connection between the notion of
APEP and the RNP. On the one hand, we aim to prove that a Banach space
X has the RNP if, and only if, every bounded, closed and convex subset of
X has an APEP. On the other hand, we will prove that a Banach space X
has the RNP if, and only if, the unit ball of every equivalent renorming of
X has an APEP.

Let us start with the first of our objectives. In order to do so, we need
a bit of notation. We say that a bounded subset A C X* is relatively
convexly resolvable if for every w*-compact K C X* with AN K = (), there
is a decreasing transfinite sequence of convex and w*-compact sets (Dq)a<k
such that

AC U (D « \ Da—H) ’
o is odd
and
En |J (Da\Dayr)=0.
« is odd

We say that a subset of a Banach space A C X is relatively convexly
resolvable if it is so as considered in X**. Those notions are an elaboration
on the definition of resolvable sets, see [28, Appendix A.5] for instance, of
topological nature. The label “relative” refers to the fact that the family of
sets depends on the disjoint w*-compact.

Recall that the average range of a vector measure v: ¥ — X with respect
to a positive measure p on the same measurable space (€2,Y) is the set

v(A)

tAeX u(A #0}CX.
{M(A) ()

Proposition 5.1. Let C C X be a bounded closed conver set. Assume it is

relatively convexly resolvable. Then C has the RNP.

The following proof we will based on the theory of liftings, see [38]. Given
a measure space (2,3, u) denote by £°(u) the set of real-valued bounded
measurable functions equipped with the essential supremum seminorm and
denote by L*(u) the Banach space obtained by identifying the functions
that agree almost everywhere. A lifting on a measure space (2,3, u) is a
linear and multiplicative operator p: L>(u) — L£%°(u) that acts as a right
inverse to the canonical quotient map from £>(u) to L*°(u). In other
words, a lifting determines a representative of any coset from £°°(u) in an
algebraically coherent way. The existence of a lifting requires some technical
assumptions on the measure space that are fulfilled by Lebesgue measure,
which is enough for our characterization of the RNP.
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Proof. The following argument is essentially developed in [31]. Firstly, recall
an old result of Tortrat, see [36], saying that X is universally measurable in
(X**, w*), that is, that X is y-measurable for every finite Radon measure p
on X**. This implies that C' is universally measurable in (X**, w*) as well.
Let (2,3, 1) a probability space and let v: ¥ — X be a p-continuous vector
measure with average range in C. We claim that there exists a w*-Borel
measurable density f: Q — X**, that is, (v(D),z*) = [(f,2*) du for every
D e XY and z* € X*.

Indeed, for any x* € X*, the signed measure (v, x*) is p-continuous, so it
has a Radon-Nikodym derivative fy« € L'(u). Let p be a lifting of L>(u).
It is easy to check that the map z* — p(fz+)(w) is linear for every w € Q
and bounded by ||z*||, so there is 27 € By« such that 27 (z*) = p(fo+)(w).
Clearly, the map defined by f(w) = x is w*-scalarly measurable, so it is w*-
Baire measurable by [16, Theorem 2.3]. Recall that the measure image, also
called pushforward measure, is defined as pro f~1(A) = pu(f~1(A). We claim
that f also is w*-Borel measurable and o f~! is w*-Radon. Indeed, if px
is the abstract lifting considered in [8, §2] for the compact space K = Bx~,
then

hopr(f)(w) = p(ho f)(w)

for every w € Q and every h € C'(K). From the definition of f we get that
pr(f) = f just taking as continuous functions h the elements z* € X*. The
desired properties follow from [8, Theorem 2.1].

Now note that we may assume, without loss of generality, that f takes

values in " . We will prove that, actually, f has almost all of its values in

C. Indeed, take any w*-compact subset K C (o \ C. By the hypothesis,
there is a decreasing transfinite sequence of convex and w*-compact sets
(Do )a<k such that

cc |J (Da\Dat).
a is odd

In particular, o C Dy and
K C U (Da \ Da—i—l) :
a is even

Assume (o f71)(K) > 0. Then there would be a smallest « such that
(o fTY(K N Do) = (uo f71)(K),and

(o f7H(E N Dagr) < (wo fH)(K).
That implies (uo f~1)(K N (Dy \ Da+1)) > 0. Take S C K N (Dg \ Dat1)
a w*-compact with (o f71)(S) > 0 and such that S supports (o f~1)|s
(Radon measures have always support). By the Hahn-Banach theorem there
is a w*-closed halfspace H such that H N Dyy1 = 0 and H NS # (). Since
S is a measure support, (zo f~1)(H NS) > 0. That would imply together
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(o f_l)(éw* N H) >0 and HNC = (), meaning that the average range of
v lies outside of C', which is a contradiction.

Now we know that f takes almost all of its values in C. Note that po f~!
is w*-Radon and therefore w-Radon in X. A classic result attributed by
Talagrand to Phillips and Grothendieck [37, [16] says that p o f~! is the
restriction of a Radon measure on (X, || - ||). That implies that the range of
f is essentially separable. Since f is scalarly measurable, we deduce that f
is Bochner measurable, and that concludes the proof that C' has the RNP. n

Proposition 5.2. Let C' C X be a bounded closed convex set. Assume that
for any w*-compact K C X** such that CNK = () and any nonempty convex
subset B C C' there exists a w*-open halfspace H in X** such that BNH # ()
and i

BY NHNK =0.

Then C' s relatively convexly resolvable.

Proof. Let K be a w*-compact set in X** such that C N K = ). We will
build a sequence (D,,) satisfying the definition and such that D, = Faw

for & an odd ordinal. Take Dy = 6“1*. By assumption, there is a w*-open

halfspace H such that C* N H N K = . Then take Dy = Dy \ H and
Dy=C\H".

Assume that « is odd and D, = Faw* is nonempty. Find a w*-open halfs-

pace H as in the hypothesis so D, N HN K = (). Now take Dot1 = Do \ H

and B2 = By \ H, thus Dyyo = Baio . For limit ordinals o, just take

the intersection D, = |J g<aDp and Bap1 = Do NC (recall that limit ordi-

nals are even). Continue this process while the sets are nonempty. In that
case, C will be exhausted and therefore

CcC U (Da \ Dcx—i—l) )
a is odd
and that last set does not intersect K. =

Now we obtain the first main result in this section.

Theorem 5.3. Let X be a Banach space. The following assertions are
equivalent:

(1) X has RNP.
(2) Every closed, convezx and bounded subset C' of X has an APEP.

Proof. (1)=(2): Every closed, convex and bounded subset C' of X has a
denting point since X has RNP, and denting points are APEP.

(2)=-(1): Let C be a bounded, closed and convex subset of X and let
us prove that C satisfies the hypothesis of Proposition When this is
proved, an application of Propositions and [5.1] will yield the result.
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In order to prove that C satisfies the hypothesis of Proposition let
K C X** be a w*-compact subset such that C N K = (), and take any non-
empty convex subset B C C. We can assume with no loss of generality that
B is closed. Take zg € ape (B), and note that zo ¢ K. Since K is w*-closed
then we can find a w*-open set W in X** such that o € W and W" NK = 0.
Since z is APEP and W N B is a weakly open subset of B containing zy we
can find a non-empty slice S = {z € X : 2*(z) > supz(B) —a} C WNB.
Consider the w*-open halfspace

H:={z" € X™ : 2™(2") > supz™(B) — a}.
Clearly H N B = S is non-empty. We claim that

W

B NHNK = 0.

This will follow from the fact t*hat B nH C W Let us prove that. In
order to do so, take z** € B N H. By the w*-density of B we can find
a net (xg) in B that w*-converges to x**. Since H is w*-open there exists
sg such that zs € H holds for every s = sg. Now, for 8 = so we get that
zs € BNH =5CWnNB CW. Therefore 2** € w" , as desired. This
concludes the proof. =

Remark 5.4. We provide an alternative proof of Theorem [5.3] with different
techniques, at the end of Section

Once we have accomplished one of the main aims of the section, we want
to take advantage of Theorem to prove that, in any Banach space X
that fails the RNP, there exists an equivalent renorming whose unit ball has
no APEP. That is what we do in the following theorem.

Theorem 5.5. Let X be a Banach space failing the RNP. Then there exists
an equivalent norm | - | on X such that ape (B(X7|.|)) =0.

For the proof we need a number of auxiliar lemmata whose aim is to
construct, from a bounded, closed and convex subset C' of a Banach space
X with no APEP, another subset D of X which is bounded, closed, convex
and symmetric with non-empty interior (and henceforth D will be the unit
ball of some equivalent renorming of the space). Let us begin with the
following lemma which asserts that if C' does not have any APEP then the

closure of the extreme points of C" is far from X.

Lemma 5.6. Let X be a Banach space and let C C X a closed, convex and
bounded subset such that ape (C) = 0. Then

=\
dist (ext <C’ ) ,X> > 0.
Proof. Assume towards a contradiction that, for every n € N, there exist

——
elements ¢, € ext (C’w ) and z, € X such that [jc, — 2,|| < 1. Let ¢
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*

be a weak* cluster point of (¢,), so ¢ € ext ") . SinceCY NX =C

and ape (C) = () we infer by Theorem [3.8| that ¢ ¢ X. Since X is closed we
get by Hahn-Banach theorem a functional f € X* such that f(c) =a >0
and f(z) = 0 holds for every z € X. Find n € N such that a > 2|/f|;
since ¢ is a weak® cluster point of (¢, ), we can choose it so that f(c,) > §.
Consequently, since f(x,) = 0 we get

% < flen) = Flew ) < Wil —all < M2 O

a contradiction. So the result follows. =

Now let us obtain a result which allows us to construct symmetric convex
bounded subsets without APEP points.

Lemma 5.7. Let X be a Banach space and let C' C X be a bounded closed
and convex subset of X such that ape (C) = ). Then

ape (co(C U —C)) = 0.

Proof. Set K :=c(C'U—C) and D := C* C X**. We claim that

(5.1) KW =coDU—-D)={X+(1-Ny:A€[0,1],z€ D,ye —D}.

The inclusion D is clear because D and —D are contained in Kw* since K is
weak™ closed and ciearly contains C' and —C, so it must contain thgir weak™
closures. Since K is convex then the inclusion co(DU—D) C K" follows.
For the reverse inclusion observe that co(D U —D) is w* compact since D is
w* compact and by the description given in . Moreover, it is clear that
co(CU—C) C co(DU—D) trivally. Consequently K = co(CU—-C)" C
co(DU—D).
With the above description it is clear that

ext (F”) C ext (D) Uext (—D).

Consequently, taking closures we infer that

*

* *

ext <fw> Cext (D) U—ext(D)”

w*

NX =0, so we get
w

that ext (fw*) N X = ( and, by Theorem again, ape (K) = 0, as

desired. =

Since ape (C) = (), Theorem implies that exiD)

Now we are ready to provide the pending proof.

Proof of Theorem [5.5 Since X fails the RNP, by Theorem there exists
a subset C C X such that ape (C) = (). By Lemma we can assume
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that C' is closed, convex, bounded and symmetric. Call D := o and, by
Lemma [5.6] we get that

o = dist (ext (D), X) > 0.
Let 0 < € < « and consider B := C' + By, which is a closed, bounded,
convex and symmetric subset of X with non-empty interior (thus B is the
unit ball of some equivalent norm on X). Let us prove that ape (B) = (). In
order to do so, observe that
B

w

’ =D+ EBX**.
Observe also that ext <§w*> C ext (D) + cext (Bx+). Taking this into

account, we infer that dist (Ew*,X ) = a — . Indeed, given any ¢ + ex** €
ext (Ew*) we get that ¢ € ext (D) and z** € ext (Bx=+~), and given any
€ X we get

lc+ex™ —z|| 2 |lc—z|| —e>a—¢

—_—w*

since ||c — z|| > dist (ext (D), X) = «. This implies that ape (B) = 0 by
Theorem [3.8l Consequently, the equivalent norm whose unit ball is B does
the trick. =

As a consequence of Theorem we are now able to obtain the following
characterisation of the RNP.

Corollary 5.8. Let X be a Banach space. The following assertions are
equivalent:

(1) X has the RNP.
(2) The unit ball of any equivalent renorming of X has an APEP.

6. LIPSCHITZ-FREE SPACES

In this section, we will study APEPs of the unit ball of Lipschitz-free
spaces and relate them to extremal structure. We refer the reader to Sec-
tion for notation and basic facts. Throughout the section, (M,d) will
denote a complete metric space with base point 0 € M.

We begin by vastly reducing our list of suspects:

Proposition 6.1. Every APEP of Bry is either a molecule or 0.

Proof. Since Bx(yyy = €o(Mol (M), Lemma [3.5 implies that any APEP of
Br () must belong to Mol (M)". However, Mol (M)" C Mol (M) U {0} by
[21], Proposition 2.9]. =

By [22, Lemma 4.2], Mol (M) is weakly closed if and only if M bi-Lipschitz
embeds into R"™ for some n. If that is the case, the argument above shows
that any APEP of Br()) must be a molecule. If M does not bi-Lipschitz



26 ALIAGA, GARCIA-LIROLA, GUERRERO-VIU, RAJA AND RUEDA ZOCA

embed into Euclidean space, then 0 can be or fail to be an APEP of Br ),
as witnessed by the following examples.

Example 6.2. Let X be any infinite-dimensional uniformly convex Banach
space and M := Sx. Then M is uniformly concave and therefore every
molecule in F (M) is a preserved extreme point of Br(yp) [41, Theorem 3.39].
Clearly, M does not bi-Lipschitz embed into Euclidean space, as it is not
even locally compact. Thus 0 is an APEP of Bz by Theorem and
[22, Lemma 4.2].

Example 6.3. Let M := {0} U {e, : n € N} C ¢;. Clearly, M does not bi-
Lipschitz embed into Euclidean space as it is not totally bounded. However,
F(M) is linearly isometric to ¢; (see e.g. [41, Example 3.10]) and therefore
0 is not an APEP of Br(,) by Proposition @

We do not know of a precise metric condition characterising when 0 is an
APEP of Br()p). But we are able to characterise those molecules that are
APEPs as follows.

Theorem 6.4. Let my, € F(M) be a molecule. Then the following are
equivalent:

(1) myy € ape (Bf(M)),
(2) mgy € dent (B; )
(3) there ewist my,y, € dent (Bry) such that xn, — x and y, — y.

Proof. The equivalence (2)<>(3) follows from the fact that all denting points
of Br(y are molecules and that norm convergence of molecules translates
to convergence of the underlying pair of points. On the other hand, (2) is

equivalent to mg, € dent (B 7 M))w by [2I, Lemma 2.2], and this clearly
implies (1) by Lemma So it only remains to be proved that (1) implies
My € dent (Br)

Let mgy be an APEP of Br(y;) and let W be a weak neighbourhood of
Mygy. We will show that W contains a denting point of Bz(s) and this
will finish the proof. Apply Lemma to mg,, with B = Mol (M). Since
norm and weak convergence of molecules agree, the situation in option 1) of
Lemma [3.6] is impossible, so we deduce that W contains slices of arbitrarily
small diameter. It follows from Remark 2.I] that W contains a slice S =
S(Br(my, f,a) where f is not local. By [40, Proposition 2.7] S, and thus
W, contains a denting point of Br(ys). This ends the proof. =

We will now use Theorem to provide further examples of the interplay
between APEPs and extremality. In Section [3] we showed that APEPs
are not necessarily extreme points. This can also happen to molecules in
Lipschitz-free spaces.

Example 6.5. Let M = {0,1} x [0,1] U {(3,0)} € R%. Then each m, =
M(0,1),(1,2) is an extreme point of Br(y); in fact, it is preserved because M
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is compact [4, Theorem 4.2]. Moreover, m,, converges to m = m ) (1,0);
so m is APEP by Theorem But m is not extreme because the segment
between (0,0) and (1,0) is not empty.

Observe that, up to this point, we have not obtained any example of a
(non-preserved) extreme point which fails to be an APEP. The next example
shows that this is indeed possible.

Example 6.6. Let M be a uniformly discrete metric space such that there
exists an extreme point m,, € ext (B F( M)) that is not preserved (such ex-
amples exist, e.g. [4, Example 4.3]). We claim that mg, is not an APEP.
Indeed, by Theorem Mgy can only be an APEP if there exist preserved
extreme points my,, such that x,, — x and y, — y but, since M is topo-
logically discrete, this implies that z,, = z, y, = y for n large enough, and
thus my, is preserved.

It is also possible to construct a metric space M such that Br(,;) has
a non-preserved extreme point that is the norm limit of preserved extreme
points, hence APEP by Theorem [6.4}

Example 6.7. In R? with the ¢; metric, consider the set N consisting of
the points p = (0,0), ¢ = (1,0), and p; = (0, %), ar = (1, %) for k € N. Let
M = NU{x, : n € N}, endowed with the aforementioned metric for N and

d(wn,p) = d(zn,q) = % + %
d(wy, pr) = d(Tn, qr) = % + % + %
d(zp, xm) =1+ % + %
for n # m € N. Note that the quantity

1

is at least %— i forallk € Nandz € M \{pk, qr }, therefore every molecule
Mpq, 15 @ preserved extreme point of Br(yp. Since pr — p, qx — ¢, the
molecule my, is an APEP by Theorem Similarly, the quantity

d(p, ) +d(q,x) — d(p, q)
2

is strictly positive for x € M \ {p, ¢}, however its value for z = z, is 2,

which can be made arbitrarily small while d(p, x),d(q,z) > % Thus my, is
an unpreserved extreme point of Bzr(yy).

Observe that Theorem reveals that, for a molecule my, in F(M), if
Mgy is an APEP then every weakly open subset W of Br() containing
Mgy contains slices of arbitrarily small diameter. At this point, it could
be wondered whether, in the particular case of Lispchitz-free spaces, this
fenomenon occurs because, in fact, mgy is contained in non-empty weakly
open subsets of arbitrarily small diameter. In the following example we show
that this does not hold and that it is possible for a molecule m,, to be an
APEP and have the property that every non-empty weakly open subset W
of Br(yr) containing my, satisfies diam (W) = 2.
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Before exhibiting the example, let us recall that a point z in the unit
sphere of a Banach space X is said to be a A-point (respectively super A-
point) if every slice (resp. relatively weakly open subset) of the unit ball of
X containing x contains points at distance 2 — ¢ from x for every € > 0.

Example 6.8. Consider the metric space My constructed by Veeorg in [39,
Section 3] as follows. In R?, consider the points p = (0,0) and ¢ = (1,0)
and, for n € N, the set

Sp={@"k,27") 1 k=0,1,...,2"}.
Then My is the set {p,q} U Uzozl S, endowed with the metric

d((z1,91), (22, 2)) = |21 = 2 JAf g =y
N Y1 — yo| +minf{zy + 22,2 — (21 +22)} iy # v

Now let p, = (0, ﬁ), an = (1, zn—lﬂ) and set M = My U{pn,q, : n € N}

with the metric defined by the same formula. See Figure

1/2 °

 ¥4! o1
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FIGURE 1. The metric space M from Example

Similarly to Example the molecule m,, is an unpreserved extreme
point of Br(yp that is an APEP. Indeed, any u € M \ {p, ¢} has the form
u = (x,y) for some y > 0 and therefore

d(p,u) +d(g,u) —d(p,q) = (x+y)+ (I -z +y) —1=2y
is always positive, but can be made arbitrarily small while keeping e.g. x = %
to make sure that d(p,u) and d(g, u) remain large, so m,, is an unpreserved

extreme point. Moreover, each molecule my, g, is a denting point of Br(yy)
as, given any u = (x,y) € M \ {pn, qn}, a similar computation yields

1
2" 41
which has a positive lower bound in M. Thus my, is an APEP of Bz by

Theorem as pn — P, qn — q.

In this example, my,, is even a A-point. This follows from [I, Theorem
6.7] as p and ¢ are discretely connectable in M, i.e. their distance can be
approximated by discrete paths in M with arbitrarily small jumps (passing
through the sets S,).

d(pr,u) + d(gn, w) — d(Pn, gn) =

2|y —
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Remark 6.9. Recently, E. Basset, Y. Perreau, A. Prochdzka and T. Veeorg
announced the result that, in any Lipschitz-free space, every molecule that
is a A-point is a super A-point. This (still unpublished) result would imply
that the APEP m,, from Example is a super-A point. In particular,
APEPs can fail to be points of (weak- to norm-)continuity even in Banach
spaces with the RNP.

An even stronger notion is that of Daugavet point, i.e. a point x € Sy
such that every slice S of Bx contains points at distance 2 — ¢ from =z,
regardless of whether x € S or not. However, for Lipschitz-free spaces,
APEPs of Br(yr) can never be Daugavet points, as Daugavet points are at
distance 2 from any denting point by [26, Proposition 3.1].

7. TENSOR PRODUCTS

In this section, we aim to study APEPs in projective tensor product
spaces. Following the spirit of previous works dealing with the extremal
structure in projective tensor products like [20} [42], we will focus on studying
the APEP of sets of the form ¢o(C ® D) in X®,Y for bounded, closed and
convex subsets C' C X and D C Y. We refer the reader to Subsection 2.3|
for necessary notation and background on tensor product theory.

Let us start with the search of necessary conditions for APEPs in ¢6(C ®
D). Tt is natural that they would have to be elementary tensors. This is
precisely the statement of the next result under appropriate assumptions on
the space K(X,Y™).

Theorem 7.1. Let X and Y be Banach spaces such that K(X,Y™) is sep-
arating for X®,.Y. Let C C X and D CY be bounded, closed and convex
subsets. If z is an APEP of 6(C ® D) C X®,Y, then z = x @y for some
xeCandyeD.

This result should be compared with [20, Theorem 1.1], where a similar
statement is proved for preserved extreme points.

Proof. Let z be an APEP of c6(C'® D). An application of Lemma [3.5] yields
that

zeCoD"=C"9D",
thanks to [20, Theorem 2.3|. Finally, since C, D are weakly closed, it follows
that z =2 ®y for some x € Candy € D. n

Remark 7.2. In view of [20, Theorem 1.1] it is natural to suspect that, in
the above theorem, if z =z ® y # 0 is an APEP then both z and y should
be APEPs in C and D respectively. However, we will show in Example [7.8
that such result does not hold.

In order to establish sufficient conditions for APEPs of a set of the form
co(C'® D), the above result says that we can reduce to analysing the elemen-
tary tensors. Now in our first sufficient condition we center our attention
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on [20, Proposition 3.2], where it is proved that if z( is a strongly exposed
point of C' and yq is a w-strongly exposed point then zy ® yg is a w-strongly
exposed point. However, since in the notion of APEP we do not need to
localise the point zg ® yg, it seems that the assumptions that x( is denting
and yg is APEP should be enough to get that zg ® yg is APEP. This is
precisely the content of the following result.

Theorem 7.3. Let X,Y be Banach spaces. Let C C X and D C Y be
bounded, closed and conver subsets. Let xg be a denting point of C and yo
be an APEP of D. Then, x¢ ® yo is APEP of co(C ® D).

Proof. We can assume that C,D are both different from {0}, since oth-
erwise ¢6(C ® D) = {0}. Hence, without loss of generality, assume that

sup,cc ||z]| = supyep ||w]| = 1. Let U be a relatively weakly open neigh-
bourhood of zy ®yo in €6(C' ® D). We may assume that U = (), S(co(C'®
D), T;, a;) for some T1,...,T, € Sp(xy~) and some ay,...,a, > 0. Since

zo®@yo € U, we have T;(20)(y0) > sUp,cas(cop) Li(2)—ai for every 1 <i < n.
Thus, we may find €9 > 0 so that 7;(20)(yo) > Sup.ces(cep) 1i(2) — @i + o
for every 1 < i < n. Since z¢ € dent (C), there are some ¢’ > 0 and z* € X*
with sup,cc 2*(2) = 1 such that diam (S(C,2*,6")) < . Moreover, notice
that yo belongs to the set

n
W= {y €D :Ti(wo)(y) > sup Ti(z) —ay +60}
I 2€55(C@D)
which is a relatively weakly open subset of D. Since yg is an APEP of D,

there are some 0" and y* € Y™ with sup,c p y*(y) = 1 such that S (D, y*,6") C
W. Finally, taking § = min {¢’,6”, %2} and considering the non-empty slice

S = S(e(C ® D), z* ® y*,n?) where 0 < 1 < min {g, 1}, we conclude that

S C U, exactly as in the proof of [20, Proposition 3.2]. Thus, zo ® yo is an

APEP of co(C ® D) as desired. m

Now we continue looking for sufficient conditions for a point zg ® yg to
be an APEP. Let us consider the following definition from [20].

Definition 7.4. Let X and Y be Banach spaces, and let A C X®,Y. We
say that u € A has a compact neighbourhood system for the weak topol-
ogy in A if, given any weakly open subset U containing u, there are slices
S(A,T;, ;) given by compact operators T; € K(X,Y™) such that

n
u € ﬂS(A,Ti,ai) CcU.
i=1
Remark 7.5. Tt is immediate that the above definition is an equivalent refor-
mulation to the definition given in [20], Definition 3.3]. It is also clear that u
has a compact neighbourhood system for the weak topology in A C X®,Y
if and only if w is a point of cointinuity of the identity map

id: (A, 0(X®,Y,K(X,Y*))) = (A, w).
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It is now time for some examples of this situation.

Example 7.6.

(1) Given two Banach spaces X,Y such that L(X,Y*) = K(X,Y™), it
is clear that every u € A has a compact neighbourhood system for
the weak topology in A for every A C X®,Y.

(2) Let C C X and D C Y be two closed, absolutely convex and bounded
subsets and let zy € dent (C),yo € dent (D). Then g ® yo has a
compact neighbourhood system for the weak topology in ¢o(C ® D).
Indeed, it is proved in [42, Theorem 1] that given £ > 0 there exist
xzf € X* and y§ € Y™ such that o ® yo € S(co(C ® D), zf ® y§, «)
and that diam (S(co(C ® D), z§ ® y5,«)) < €. The result follows
since the operator

ey X — Y*
x — )y

is clearly compact.

(3) In [20, Example 3.8] an equivalent norm | - | on #3 is given such that
e1 is a w-strongly exposed point of B, .|y but e1 ® ey is not a w-
strongly exposed point of B(427‘,|)®W(£2,‘.|). According to [20, Theorem
1.3], the point e; ® e; fails to have a compact neighbourhood system
for the weak topology in B(£27|_|)®W(£2’|.D.

The following result establishes that APEPs remain stable under tensor
products, provided that a suitable compact neighbourhood system exists.

Theorem 7.7. Let X and Y be two Banach spaces, and let C C X, D CY
be bounded, closed and convex subsets. Let xg € ape (C) and yo € ape (D).
Assume that xo @yo has a compact neighbourhood system for the weak topol-
ogy in©o(C ® D) C X®,Y. Then xo ® yo is an APEP of &(C ® D).

This result should be compared with [20, Theorem 1.3], where an analo-
gous statement is proved for w-strongly exposed point. Moreover, we employ
here many ideas from the proof of that result.

Proof. We can assume that C, D are both different from {0}, since oth-

erwise co(C ® D) = {0}. Hence, without loss of generality, assume that

sup,cc ||z|| = sup,ep ||w|| = 1. Let U be a weak neighbourhood of z¢ ® yo
n

in @o(C ® D). By the assumption, we can assume that U = () S(co(C ®
i=1

D), T;, ay;) for certain compact operators 11, ...,7,,: X — Y. Furthermore,

we can assume Supyces(cep) Li(u) =1 for every i. Let n > 0 small enough

so that T;(xo®yo) > 1 —a; +n holds for every 1 < i < n. Moreover, observe

that zo € ({z € C: T;(2)(yo) > 1 — a; + n}, which is a relatively weakly

1=
open subset of C. Since x( is an APEP of C there exists a non-empty slice
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S(C,z§,¢") such that sup, .o z§(2) = 1 and that

n
S(C,z5,8") C ({2 € C: Ti(2)(yo) > 1 — o + 7}
i=1
Now, for every 1 < i < n, the set T;(S(C, zf,d)) is a relatively compact
subset of Y*. Using the compactness condition on all the T/s we can find a
finite set x1,...,2m € S(C,2§,d’) so that the balls B(T;(x;),3),1 < j < m,
cover T;(S(C,z§,d")) for every 1 < i < n. Observe that Tj(z;)(yo) > 1 —
a; +n holds for every 1 < ¢ < n and 1 < j < m. Consequently,

Yo € ﬂ ﬂ{y € D : Ti(x;)(y) > 1— o +1}.
i=1j=1

Since yp is an APEP of D we can find a slice S(D, y§, ¢”) such that sup,,cp y5(w) =
1 and that

S(D,yg,d8") Cﬂﬂ{yED Ti(x;)(y) > 1 — a; +n}.
i=1j=1

We claim now that

. A 0,
S(C,z5,8") ® S(D,yi, ") Qs (co(C’@D),TZ,az 2) .
Indeed, let z € S(C,z},0") and y € S(D,y;,0"). We have, for every i €
{1,...,n}, an index j; € {1,...,m} Such that ||Ti(x) — Ti(x;,)|| < 3. On
the other hand, since S(D, yo,é”) - ﬂ ﬂ {ye D :Ti(z;)(y) > 1 —a; + 1}

i=1j5=1
we have that, for every 1 < i < n, Tj(z;,)(y) > 1 — a; + 1. Consequently

Ti@)(y) > Ti(a;)(y) = | Ti(e) = T@)l| > 1= oi+n— 5 =1—ai+ 5.

Take ¢ := min{d’, 8" , 3} and consider S := S(co(C®D), z5®

Y3, 62) which is non-empty since sup,cc z5(2) = 1 = supy,ep yg(w). More-
over,

n
? 8maxigign | Tl

S Cco(S(C® D, xp®yp,0)) +46Bxg y

by virtue of [20, Lemma 2.1]. Now, given 1 < i < n, since 1 — § > max{1 —
§',1—06"} we conclude that every element z®y of S(C®D, z§ @y, §) satisfies
zi(z) > 1—0" and y5(y) > 1 — 6", so Ti(z)(y) > 1 — o + 3. Since T; is a
linear continuous functional on X®,Y we conclude that Tj(z) > 1 — oy + a
holds for every 1 < ¢ < n and every z € co(S(C®D, z5®y;,6)). Henceforth
given z € S we can find u € co(S(C®D,z5®yp,0)) and v € Byg y so that
z =u+ 46v. Now, given 1 < i < n we get

Ti(2) = Ty(u) + 46T5(v) > 1 — o + g — 48 || Ty > 1 — o,



ALMOST PRESERVED EXTREME POINTS 33

from where we conclude that z € () S(co(C ® D), T;, ;) = U. This proves

=1
that S C U. Z
Summarising, we have proved that every relatively weakly open subset of
o(C ® D) containing g ® yo actually contains a non-empty slice S(¢o(C ®
D), z5®vyg, o). From here we conclude that xo®yp is an APEP, as requested.

Let us now observe that we do not need both elements zy and yg to be
APEPs in Theorem [T.71

Example 7.8. Let X = C([0,1]) and let Y = ¢, for 2 < p < co. Clearly
both X and Y have the AP and, moreover,

L(X,Y") = L(C(K), fy) = K(C(K), fy) = K(X,Y)

by [3, Exercise 6.10] since 1 < p’ < 2. Let x = %f where f(t) =1 for every
t € [0,1], and take y € Sy. It is clear that x is not an APEP of Bx by
Theorem However z®y = f® (%y) is an APEP by Theorem since f
is an APEP of Bx (Theorern and %y is an APEP of By by Example

It is clear that in above example is based on the absence of uniqueness in
the representation of an elementary tensor in a projective tensor product.
In order to deal with this difficulty, and taking into account the hypotheses
in Theorems and we will end the section by studying APEPs under
the assumption that K (X,Y™) = L(X,Y™), in other words, that every T €
L(X,Y™) is compact. If we additionally require that either X or Y has the
AP then we get

(X®,Y)" = L(X,Y*) = K(X,Y*) = X*®.Y™".

Note that, for instance, this is the case when X = £, and Y = /, with
1 <qg<p<ooand 1/q+ 1/¢ = 1, thanks to Pitt’s theorem (see e.g.
Proposition 4.49 in [I7]); a version for Lorentz and Orlicz sequence spaces
holds too [7]. Recall also that for a reflexive space X and a Banach space
Y, one of them with the compact approximation property, the condition
K(X,Y) = L(X,Y) is equivalent to the fact that every operator from X
to Y attains its norm. This is shown in [I3], extending previous results of
Holub and Mujica in the reflexive case.

In the next result we study APEPs of the unit ball of a projective tensor
product X®,Y under the assumption that L(X,Y*) = K(X,Y*). The
main technique will be the one used in [32] Theorem 2.1]. As a byproduct,
we obtain a description of all preserved extreme points in this case.

Theorem 7.9. Let X, Y be Banach spaces such that X* or Y* has the AP
and K(X,Y") = L(X,Y"). Let z € Bxg y with z# 0. Then:
a) z € ape <BX®7,Y> if, and only if, z = v ®y for some x € ape (Bx)
and y € ape (By).
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b) z € pre-ext (BX@@WY) if, and only if, z = x ® y for some xz €
pre-ext (Bx) and y € pre-ext (By).

For the proof, we will make use of the following lemma, whose statement
should be compared with [20, Theorem 2.3].

Lemma 7.10. Let X,Y be Banach spaces. If C C X* and D C Y* are
bounded subsets, then

" D" =CaD",
considering X* @ Y* C (X®.Y)*.

Proof. If C = {0} or D = {0} then the result is trivial, so assume C, D #
{0}. First of all, since C' and D are bounded we may assume that

sup [lz*]| =1 = sup [y
z*eC y*eD

We show first that O ® DY cC®D ", For each z* € X*, define the
operator Tp+: X®.Y — Y given by Tp«(z ® y) = a*(z)y for all z € X
and y € Y, which extends by linearity and continuity to the whole X®.Y.
Hence, the adjoint T : Y* — (X®.Y)* is given by

Th(y*) =2* @y* € (XR.Y)*, V' eY™,
and it is w*-w*-continuous. Therefore,

e = 1 (D7) ¢ D) =zteD" cCeD",

and this holds for every z* € C. So, C’®ﬁw* cCC®D ’ and also éw* QD C
C® D" , by a symmetric argument. Hence,

* N o * w* *w* *

C" D" cC" @D CC®D” =CoD".
It remains to prove that v ® DY O C® D" . Take z elC® D"
and pick a net (2% ® y)a € C ® D converging weak* to z. Since C* and

D" are weak*-compact, we may assume (by taking subnets if necessary)
that (2} ), and (y}), converge weak* to some z* € ¢ and y* e DY
respectively. Let us show that (z} ® y¥), converges weak™ to z* ® y* in
(X®:Y)*. Tt is clear that ((zX @ y%)(z @y))a = (22 (2)y(y))a converges to
*(z)y*(y) = (z*@y*)(x®y) for all x € X and y € Y. By linearity, we also
have (2, ® y)(v) — (z* ® y*)(v) for v € X ® Y. Finally, take u € X®.Y
and £ > 0. On the one hand, pick v € X ® Y such that ||u —v|| < §. Hence,
for every a, we have

(2% ®@ya — 2" @y") (u—v)| < (lzgll lyall + =" ly*1)
On the other hand, pick § such that

(s ©32) (0) = (@ ©y") ()] < 2, Va8,

£
<§-

=1 M
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g g
@ @y~ @y < 5+ 5 =< Var B

® Y )a converges weak* to z* ® y*. By uniqueness of the limit,
z=2*@y*eC’ D" . =

Now we can provide the pending proof.

Proof of Theorem[7.9. a) Thanks to Theorem we know that if z is an
APEP of By and y is an APEP of By, then z ® y is APEP of Byg .
Conversely, assume that z is APEP of Bxg y- By Theorem z€Bx®
By . It remains to be shown that z = z ® y for some = € ape (BX) and y €

ape (By). By virtue of Theorem (3.8} that is equivalent to x € ext (B X**)w
and y € ext (By--) . Furthermore, since z € Byg. y is APEP we have

w*

z € ext <B(X®WY)**) N BX@%Y' Therefore, let us show that

*
* w

(71) ext (BX**)U} ® ext (BY**)w = ext <B(X®"Y)**>
Indeed,

ext (B)(**)w & ext (By**)w = ext (Bx**) & ext (By**)w s

using Lemma (7.10, Finally, ext (Bx«+) ® ext (By«+) = ext <B(X*®EY*)*>
by [32, Theorem 1.1] and X*®.Y* = K(X,Y*) = L(X,Y*) = (X®,Y)*,
thanks to [33, Corollary 4.13]. Hence,
w* w
eXt (B(X*®EY*)*> = eXt (B(Xééﬂ—Y)**)

This proves ([7.1]).
Finally, since z is an APEP of Byg y by (7.1) we have z = 2™ ® y** for

some z** € ext (Bx+) C Bx» and y** € ext (By**)w C By++. Moreover,
thanks to Theorem we also have z € Bx ® By. It follows easily that
** € Bx and y** € By, because z # 0. Thus, ** is an APEP of Bx and
y** is an APEP of By, which concludes the proof of a).

b) The proof follows immediately by the description of the extreme points
of B(X@@WY)** given before. =

*

Now the following remark is pertinent.

Remark 7.11.

(1) In [20, Question 3.9] it is asked whether x ® y is a preserved extreme
point of B X&.Y when x € Bx and y € By are preserved extreme
points of Bx and By respectively. Theorem gives an affirmative
answer under the assumption that L(X,Y™*) = K(X,Y™) and that
either X* or Y* has the AP.
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(2) In connection with the above question, in [20, Example 3.8], an
equivalent norm | - [ on f2 and a point zg € B(x | are given such
that z( is w-strongly exposed point (in particular, it is a preserved
extreme point) by a certain functional f € Sx+ such that zy ® zg is
not a w-strongly exposed point.

It is a natural question whether zg ® x¢ is a preserved extreme
point, and indeed it seems to be the first example to check in order
to look for a negative answer to [20, Question 3.9] above.

Let us point out, however, that zo®x( is an extreme point. Indeed,
it is not difficult to prove that xo® ¢ is an exposed point (by f® f).

Moreover, it can be proved that xy ® xg € dent (B(X )Ex(X \'|)>’ SO
in particular it is an APEP. If zg ® x( is not a preserved extreme

point, then this furnishes another example of an extreme, almost
preserved extreme point that is not preserved extreme.

We finish by extending Theorem from the case of the unit ball of a
projective tensor product to the case of ¢6(C ® D) when C' and D have
non-empty interior.

Theorem 7.12. Let X and Y be two Banach spaces such that L(X,Y™*) =
K(X,Y™) and such that either X orY has the AP. Let C C X and D CY be
two bounded, closed, convex and symmetric subsets with non-empty interior.
Given z € @(C ® D) with z # 0 we have:
a) z € ape (co(C ® D)) if, and only if, z = x ®y for some x € ape (C)
and y € ape (D).
b) z € pre-ext (co(C ® D)) if, and only if, z = © @ y for some x €
pre-ext (C') and y € pre-ext (D).

Proof. Let us begin by observing that 0 is an interior point of C' (the same
holds for D). Indeed, take any interior point u € C and ¢ > 0 such that
U+ (539( C C, where Bg( stands for the open unit ball. By symmetry, we
also have —u + 0B% C C. It follows that 6B C C since C is convex.

Now, by the properties of C, we have that C' is the unit ball of some
equivalent norm on X. We denote by X such an equivalent renorming for
which B; = C. Similarly, we define Y to be an equivalent renorming of ¥
such that By = D. Observe that by the assumptions either X or Y has the
AP, and that L(X,Y*) = K(X,Y*). Finally, note that

BX@BWY/ = @(BX X Bf/) = @(C X D)

Now the conclusion follows by Theorem since X®,Y and X @Wff are

isomorphic Banach spaces, so the weak™ topologies of their corresponding
biduals are the same. =

Remark 7.13. The above result should be compared with [32, Theorem 2.2],
which generalises [32, Theorem 1.1] from the unit ball of the dual of a space
of operators to certain weak® compact neighbourhoods of 0 in such space.
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8. CONCLUDING REMARKS AND OPEN QUESTIONS

In this section we collect some comments and open questions which are
derived from our work.

From our study of APEP in the unit ball of #;-sums of spaces, the following
remains open.

Question 8.1. Let {X; : i € I} an arbitrary infinite family of Banach
spaces and let X be its ¢1-sum. If 0 € By is APEP in Bx, must there exist
i such that 0 € X; is APEP in Bx,?

For the case of /)-sums, in Proposition we have characterised when
the norm-one elements are APEP of the unit ball. However, we were unable
to describe those APEP whose norm is strictly smaller than 1.

Question 8.2. Let X be the {)-sum of a family {X;:i € I} of Banach
spaces, where 1 < p < oo, and let (z;) € Bx with [|(z;)|| < 1. When is (x;)
an APEP of Bx?

Even though we do not have a complete characterisation, let us now
present a sufficient condition concerning the above question.

Proposition 8.3. Let X be the {,-sum of a family {X; :i € I} of Banach
spaces, where 1 < p < 0o, and let (x;) € Bx with ||(z;)|| < 1. Set J := {i €
I:||zi]| # 0}. Assume that there exists ig € I\ J such that 0 is APEP in
By, and that ”;ﬁ is APEP in Bx; for every j € J. Then (x;) is APEP in
Bx.

Proof. The proof will be quite similar to that of Proposition Let U
be a weak® neighbourhood of (x;) in X**. We will show that U intersects
ext (Bx+) and this will be enough by Theorem Since the weak™* topology
of X™ is the product topology of the weak® topologies in X;*, we may
assume that U = Hie ;1 Ui where U; is a weak™ neighbourhood of x; (or
X;*) for each ¢ € I. Given j € J, since x; # 0 then, by assumption
and Theorem there exists e; € ext (Bx«) such that [lzj][e; € Uj.

Moreover, since 0 is an APEP of By, we may select e;, € ext (B Xi*o*) such

that (1 — ||(£L'1)Hp)% ei, € Ui,. Let y = (y;) € X™ be defined by

[|li]| e JifieJ
l . . .
Yi=q (L= [[(z)|IP)? s, if i =1

0 , otherwise.
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Note that y € U and

1/p 1/p

1\P

Iyl = (Z ||yi||P> = [ Sl + (@ = Haim)?)

iel jeJ
1
p
=D llalP+ 1= P | =1
jeJ jeJ

since (z;) € Sx, so y € ext (Bx=+) by (4.2). This ends the proof. =

Another question coming from Subsection .3]is the following.

Question 8.4. Let {X; : i € I} be an arbitrary infinite family of Banach
spaces and let X be its foo-sum. Can necessary or sufficient conditions for
a point (z;) € Bx to be APEP be given?

Regarding Lipschitz-free spaces, in Section [6] we proved that every APEP
of Br(pry must be either a molecule or 0, and we characterised those molecules
that are APEP. We showed that 0 can be an APEP, but only if M does not
bi-Lipschitz embed in R™, and that this necessary condition is not sufficient
(Examples and . The following remains open.

Question 8.5. For which metric spaces M is 0 an APEP of Brp)?

Finally, let us collect some open questions from our results in Section [7]
First of all, concerning Theorem we wonder the following.

Question 8.6. In the statement of Theorem can we infer that if z # 0
then x and y are APEP in C' and D respectively?

At a first glance it seems that from Example the answer to the above
question should be no. Observe, however, that the actual problem there is
the existence of an appropriate representation of the element z as an ele-
mentary tensor of APEP, which certainly does exist in the above mentioned
Example

Our last question has to do with the possibility of removing the assump-
tion of the existence of a compact neighbourhood system for the weak topol-
ogy in Theorem [7.7]

Question 8.7. Let X and Y be Banach spaces, and let C C X, D C Y
be symmetric bounded closed convex subsets. If zg € C' and yg € D are
APEPs, is 79 ®yo an APEP of c6(C ® D)? Can we obtain this at least when
C =Bx and D = By?

We conclude this section by presenting an alternative proof of Theo-
rem This proof, inspired by a construction due to W. Schachermayer,
A. Sersouri, and E. Werner [35], offers a more geometric perspective, in
contrast to the measure-theoretic approach developed in Section
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We need the following elementary result, whose proof is included for com-
pleteness.

Lemma 8.8. Let C be a conver set and let y € X such that y ¢ C. Then
dist (y, C') = dist (y,ﬁw*),
where the weak-star closure above is taken in X**.

Proof. Take any 0 < r < dist (y,C). Then C and B(z,r) can be separated
by a hyperplane determined by some z* € X*. Then the same hyperplane

separates B(x,r) and ¢ in X*, thus dist (y,éw*) >r. =

Following [35], for a measurable subset A C [0, 1] with positive measure,
we denote

]:A:{feLl[Ov]-]:f:f'XAaf207‘|f||1:1}'

Second proof of Theorem[5.3 First, note that we may assume that X is
separable. Indeed, if X fails the RNP then there is a separable Y C X failing
the RNP. Now, for a bounded closed convex set C' C Y and a point ¢ € C,
we have that zp € ape (C) as a subset of Y if and only if 2y € ape (C) as a
subset of X, since the weak topology in Y coincides with the weak topology
inherited from X.

Now, let X be a separable Banach space failing the RNP. We will show

that there is a bounded closed convex set C' C X with dist <X ,ext <6w*> > >

0 (and so, by Theorem ape (C') = 0).

Since X fails the RNP, there is a non-representable operator T': L1[0,1] —
X. Let (yn)52; be a dense sequence in X. The proof of Theorem 1.1 in [35]
shows that there exists v > 0 and subsets D7, ..., D%(n) C [0, 1] such that,
if we denote E := 7, Uf\;(ln) D! and E = EN D}, we have:

a) dist (yn, T'(Fpp)) > foralli € {1,...,N(n)} and n € N.
b) For each n € N, every extreme point y** of T'(Fg)  belongs to
T(Fgp) forsomeie€ {1,...,N(n)}.
We claim that C' = T'(Fg) satisfies the desired property. First, note that
C' is bounded, closed and convex (since Fg is a convex set). Now, let

y** € ext (Uw*)w and take a net (yX*)s C ext (57“”*) with y¥* v y**. Fix
n € N. By property b) above, there is i, € {1,..., N(n)} such that the net
(y¥*)s is frequently in WUJ Thus, y** € Ww By Lemma
we get

dist (yn,T(]-"EZnn) *) = dist (yn,T(fE?n))

dist (yn, T'(Fpr ) >

and so dist (X, y**) > 7. This proves the desired claim. =

dist (yn, y™) >
>
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