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Abstract. In this paper we introduce the notion of an almost pre-
served extreme point (APEP) of a set as a weakening of the concept of
preserved extreme points, and we systematically study such points. As
a main result, we prove that a Banach space X has the Radon-Nikodým
property (RNP) if and only if every closed, convex, and bounded subset
of the space has an APEP. Similarly, we prove that X has the RNP if
and only if the unit ball of every equivalent renorming has an APEP. We
further investigate APEPs of the unit ball of classical Banach spaces,
absolute sums, Lipschitz-free spaces, and projective tensor products. In
the latter setting, our work also describes the preserved extreme points
in the unit ball under the assumption that every bounded operator is
compact, thereby partially solving an open problem.
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1. Introduction

A longstanding open question in the geometry of Banach spaces is whether
the Radon-Nikodým property (RNP) and the Krein-Milman property (KMP)
are equivalent. Recall that a Banach space X has the KMP if every closed,
bounded, and convex subset of X has an extreme point. On the other hand,
one of the equivalent reformulations of the RNP is that every closed, convex
and bounded subset of X has a denting point (see e.g. [15, Section VII.6]).
Since denting points are always extreme, the implication RNP ⇒ KMP is
clear. Whether the converse implication holds has motivated a vast litera-
ture since the 1980s (see e.g. [9, 10, 12, 24, 27, 34] and references therein).

Observe that there exists a fundamental difference between the concept
of denting point (which is a metric notion) and the concept of extreme point
(which is a linear notion). This distinction explains the difficulty behind the
open question whether the KMP implies the RNP. Halfway between extreme
points and denting points, we have an intermediate notion which reveals a
rather better interplay with the RNP.

Given a Banach space X and a bounded, closed and convex subset C of
X, we say that x0 ∈ C is a preserved extreme point of C (sometimes called

weak∗-extreme point) if x0 is an extreme point of C
w∗

, where the weak∗

closure is taken in X∗∗.
Clearly, if x0 ∈ C is a preserved extreme point of C then it is an extreme

point. Moreover, denting points are preserved extreme points. This can be
easily seen from the fact that a point x0 ∈ C is a preserved extreme point
if, and only if, given any weak neighbourhood W of C such that x0 ∈ W
there exists a slice S of C with x0 ∈ S ⊆ W (see e.g. [19, Chapter 0]).

Coming back to the RNP, since denting points are preserved extreme
points, it follows that if a Banach space X has the RNP then every bounded,
closed, and convex subset C of X has a preserved extreme point. This time
the converse is known to be true. For instance, [35, Theorem 1.1] establishes
that if X is a Banach space failing the RNP then, given ε > 0, there exists
a closed, convex and bounded subset C of X such that

dist
(
ext
(
C

w∗)
, X
)
>

1

2
− ε,

where ext
(
C

w∗)
stands for the set of all the extreme points of C

w∗
.

In order to point out the difference between the notions of denting and
preserved extreme points, remark that given a closed, bounded and convex
subset C of X and x0 ∈ C, then:

• x0 is a denting point in C when the slices of C containing x0 form a
neighbourhood system of x0 for the norm topology on C.

• x0 is a preserved extreme point in C when the slices of C containing
x0 form a neighbourhood system of x0 for the weak topology on C.

To obtain a more geometric description of the RNP, we will consider the
following weakening of the concept of preserved extreme point.
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Definition 1.1. Let X be a Banach space and let C be a bounded, closed
and convex subset of X. We say that a point x0 ∈ C is an almost preserved
extreme point (APEP) if, for every weakly open subset W of C containing
x0 there exists a non-empty slice S of C such that S ⊆ W .

The set of APEPs of C will be denoted ape (C).

Note that, unlike preserved extreme points, APEPs only require that
every neighbourhood contains a slice, but the slice does not need to contain
x0.

At this point it is clear that if X has the RNP then every closed, convex
and bounded subset of X has an APEP. A natural question is whether the
converse is also true. We will give an affirmative answer in Section 5.

This paper presents an intensive study of the notion of APEP. We now
outline the contents of the paper. In Section 2 we introduce all the necessary
notation and preliminary results that we need for the main sections. In
Section 3 we obtain the first results about APEP. In Theorem 3.8 we prove
that, for a closed, convex and bounded set C of a Banach space X, x0 ∈ C
is an APEP if and only if x is in the weak∗ closure (in X∗∗) of extreme

points of C
w∗

. This characterisation will be exploited throughout the text.
In Section 4 we study the APEP in some classical Banach spaces. We
characterise the set of APEP of the unit ball of Lp(µ) spaces for 1 < p < ∞
(Example 3.3), in L1(µ) (Theorem 4.5) and in C(K) spaces (Theorem 4.1).
We also study APEP points in the unit ball of ℓp-sums of Banach spaces,
for 1 ⩽ p ⩽ ∞, in Subsection 4.3.

In Section 5, we prove that the notion of APEP has the desired interplay
with the RNP and we provide new characterisations of that property. First
of all, we prove in Theorem 5.3 that a Banach space X has the RNP if and
only if every closed, convex, and bounded subset of X has an APEP. Using
this result and renorming techniques from [35], we show that if a Banach
space X fails the RNP then there exists an equivalent renorming of X whose
unit ball fails to have any APEP (Theorem 5.5). As a consequence we get a
second characterisation of the RNP using APEP: a Banach space X has the
RNP if and only if the unit ball of every equivalent renorming of X contains
an APEP (Corollary 5.8).

Next we move in Section 6 to the study of APEPs of the unit ball of
Lipschitz-free spaces. We prove that any APEP must be either an elemen-
tary molecule or 0. We characterise APEP molecules as the norm limit
of denting points, and provide examples of APEPs that are unpreserved
extreme points.

In Section 7 we make an intensive study of the APEP in projective tensor
products, and more precisely in sets of the form co(C⊗D) where C ⊆ X and
D ⊆ Y are symmetric, bounded, closed, and convex subsets. Theorem 7.1
proves that if z is an APEP of co(C ⊗D) then z ∈ C ⊗D. Conversely, we
prove that x0 ⊗ y0 is an APEP of co(C ⊗ D) if either x0 is denting in C
and y0 is APEP in D (Theorem 7.3) or if x0 and y0 are APEP in C and D
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respectively and x0 ⊗ y0 has a compact neighbourhood system for the weak
topology (Theorem 7.7). We close the paper by analysing the APEP and
the preserved extreme points under the additional assumption that every
operator T : X −→ Y ∗ is compact. Under this assumption, we prove that if
C and D have nonempty interior and z ̸= 0 is a point in co(C ⊗ D), then
z is an APEP if and only if z = x0 ⊗ y0 for x0 and y0 being APEP in C
and D respectively. Similarly, under the same assumptions, we prove that
z is a preserved extreme point if and only if z = x0 ⊗ y0 for x0 and y0 being
preserved extreme points in C and D respectively. This provides a positive
solution to [20, Question 3.9], where it is asked whether x0⊗y0 is a preserved
extreme point of BX⊗̂πY

if both x0 and y0 are preserved extreme points in
BX and BY , under the assumption that every bounded operator from X to
Y ∗ is compact.

Finally, we collect in Section 8 some remarks and open questions from
our work. We also present after Lemma 8.8 a second proof of Theorem 5.3
with a different approach to the one exhibited in Section 5.

2. Notation and preliminary results

We will only consider real Banach spaces. Given a Banach space X,
we denote by BX and SX its closed unit ball and unit sphere respectively.
We also denote by X∗ the topological dual of X. Given E ⊂ X, we write
span(E) for the linear span of E. We denote L(X,Y ),K(X,Y ), and F (X,Y )
the spaces of bounded, compact, and finite-rank operators from X to Y ,
respectively.

Given a subset C of a Banach space X we denote by co(C) (resp. co(C))
the convex hull (respectively the closed convex hull) of C. Given x∗ ∈ X∗

and α > 0, we denote

S(C, x∗, α) = {x ∈ C : x∗(x) > supx∗(C)− α}

the (open) slice of C produced by x∗. If X = Y ∗ is a dual Banach space
and x∗ ∈ Y ⊆ Y ∗∗ = X∗, the above set will be called a weak∗ slice.

2.1. Extremal structure and Radon-Nikodým property. Given a sub-
set C of X, a point x0 ∈ C is said to be an extreme point in C if it is not the
center of any non-degenerate line segment in C; in other words, if x0 =

y+z
2

for y, z ∈ C implies y = z = x0. We denote by ext (C) the set of all the
extreme points in C.

Let us point out here several classical results in Banach space theory
which shows the importance of extreme points in compact convex sets and
that will be used throughout the text without explicit reference.

(1) (Krein-Milman theorem [17, Theorem 3.35]) If C is a weakly compact
and convex subset of X then C = co(ext (C)). Similarly, if C is a
w∗-compact convex subset of X∗ then C = cow

∗
(ext (C)).
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(2) (Choquet lemma [17, Lemma 3.40]) If C is a weakly compact and
convex subset of X, then for every x ∈ ext (C) the slices of C con-
taining x form a neighbourhood base of x in the weak topology of
C. The same result holds for the weak∗ topology of X∗ replacing
slices with weak∗ slices.

(3) (Milman theorem [17, Theorem 3.41]) If C is a weakly compact and
convex subset ofX andB ⊆ C is such that co(B) = C then ext (C) ⊆
B

w
. Similarly, if C ⊆ X∗ is w∗ compact and convex and B ⊆ C is

such that cow
∗
(B) = C then ext (C) ⊆ B

w∗
.

In the sequel we will present some strenghtenings of the concept of extreme
point. Our main reference will be [19, Chapter 0].

Given a bounded set C ⊆ X, we say that x0 ∈ C is a preserved extreme
point in C if x0 is an extreme point of the weak∗ closure of C in X∗∗ (that is,

x0 ∈ ext
(
C

w∗)
). We denote by pre-ext (C) the set of all preserved extreme

points of C.
For closed, bounded and convex C ⊆ X, it follows from Choquet’s lemma

that x0 ∈ pre-ext (C) if and only if slices of C containing x0 form a neigh-
bourhood base of x for the weak topology of C.

If, in the above characterisation, we replace the weak topology with the
norm topology, we arrive to the notion of denting point. That is, a point
x0 ∈ C is said to be a denting point if, for every ε > 0, there exists a slice S
of C with x0 ∈ S and diam (S) < ε, where diam (S) stands for the diameter
of S. We denote by dent (C) the set of all denting points of C.

The set of denting points plays a very important role in the Banach spaces
with the Radon-Nikodým property. Let us recall that the Radon-Nikodým
property, from now on RNP, was originally defined for Banach spaces by
the validity of a vector version of the classic Radon-Nikodým theorem on
derivation of measures. Namely, X has the RNP if for any σ-finite measure
space (Ω,Σ, µ) and any µ-continuous vector measure ν : Σ → X of bounded
variation, there exists a Bochner integrable function f : Ω → X such that

(2.1) ν(A) =

∫
A
f dµ

for every A ∈ Σ, see [15] or [11] for details. Moreover, RNP can be localized
on closed convex subsets of X. We say that C ⊂ X has the RNP if for
any vector measure ν : Σ → X that is absolutely continuous with respect
to µ, as before, and having average range in C, meaning that ν(A)/µ(A) ∈
C for any A ∈ Σ with µ(A) > 0, there is a Bochner integrable function
f : Ω → X satisfying (2.1). Note that for C ⊂ X bounded and µ finite, the
average range condition implies µ-continuity and bounded variation for ν.
Another important observation is that the RNP can be witnessed just by
the Lebesgue measure on R or [0, 1].
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There are many characterizations of the RNP: differentiation of vector
valued functions, integral representation of operators from L1(µ) to a Ba-
nach space, convergence of vector valued martingales or descriptive topology.
However, we are more interested in the geometrical characterizations of the
RNP. A closed convex bounded subset C ⊂ X has the RNP if and only if
every nonempty (convex) subset has arbitrarily small slices, in such a case
we say that C is (hereditarily) dentable. It turns out that if C has the
RNP, then it or any of its nonempty subsets have denting points and, even,
strongly exposed points (a denting point where the arbitrarily small slices
can be taken parallel), see [11] for more information.

The equivalence among the different characterizations of the RNP is far
from trivial. Despite the geometrical flavor of the main notion and tech-
niques of this paper, we will occasionally appeal to measure theoretical
characterizations of the RNP to get our results proven.

2.2. Lipschitz-free spaces. Let (M,d) be a complete metric space where
a distinguished “base point” 0 ∈ M has been selected. The Lipschitz space
Lip0(M) is defined as the Banach space of all Lipschitz functions f : M → R
such that f(0) = 0, endowed with the norm given by the best Lipschitz
constant

∥f∥ = sup

{
f(x)− f(y)

d(x, y)
: x ̸= y ∈ M

}
.

For each x ∈ M , the evaluation functional δ(x) : f 7→ f(x) belongs to the
dual Lip0(M)∗. The Lipschitz-free space over M is defined as the closed
space F(M) := span {δ(x) : x ∈ M}. It is not too hard to see that F(M)
is, in fact, an isometric predual of Lip0(M). We refer to [41] for basic facts
about Lipschitz and Lipschitz-free spaces.

The most important elements of F(M) are the so-called (elementary)
molecules, of the form

mxy :=
δ(x)− δ(y)

d(x, y)

for x ̸= y ∈ M . The set of molecules in F(M) will be denoted Mol (M).
Molecules have norm 1, and it follows easily from the Hahn-Banach separa-
tion theorem that BF(M) = co(Mol (M)) (see e.g. [41, Proposition 3.29]).
The weak closure of Mol (M) is either Mol (M) or Mol (M) ∪ {0}, depend-
ing on whether M bi-Lipschitz embeds into some finite-dimensional Banach
space or not (see [21, Proposition 2.9] and [22, Lemma 4.2]). Moreover,
norm- and weak convergence agree on Mol (M): a net of molecules (mxsys)
converges to mxy precisely when xs → x and ys → y (see e.g. [21, Lemma
2.2] and [39, Lemma 1.2]).

Lipschitz-free spaces provide a convenient toolbox for the construction of
Banach spaces with a predetermined extremal structure, because the various
types of extremal objects in BF(M) admit simple metric characterisations
when M is complete:

• All extreme points of BF(M) are molecules [6, Theorem 3.1].
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• A molecule mxy is extreme if and only if d(x, p) + d(p, y) > d(x, y)
whenever p ̸= x, y [5, Theorem 1.1].

• Preserved extreme points and denting points of BF(M) agree [21,
Theorem 2.4].

• A molecule mxy is denting if and only if for every ε > 0 there is
δ > 0 such that d(x, p) + d(p, y) > d(x, y) + δ whenever d(x, p) > ε
and d(y, p) > ε [4, Theorem 4.1].

We will also need the following notion introduced in [26]: we say that a
function f ∈ SLip0(M) is local if, for every ε > 0, there exist u ̸= v ∈ M such
that f(muv) > 1 − ε and d(u, v) < ε. This definition is a pointwise version
of the notion of local metric space introduced in [23], and it was introduced
in order to study Daugavet points in F(M).

Let us point out our interests in local Lipschitz functions in the following
remark fo easy reference.

Remark 2.1. If f is local, then any non-empty slice S(BF(M), f, ε) has di-
ameter 2. Even though this result is well known (and implicitly observed
in (2)⇒(1) in [26, Theorem 3.2]), let us brielfy outline the proof for com-
pleteness: in the above situation, any such slice will contain molecules muv

for which d(u, v) is arbitrarily small, so our claim follows from [26, Theorem
2.6].

2.3. Projective tensor products. The projective tensor product of X
and Y , denoted by X⊗̂πY , is the completion of the algebraic tensor product
X ⊗ Y endowed with the norm

∥z∥π := inf

{
k∑

n=1

∥xn∥∥yn∥ : z =
k∑

n=1

xn ⊗ yn

}
,

where the infimum is taken over all such representations of z. The reason
for taking the completion is that X ⊗ Y endowed with the projective norm
is complete if and only if either X or Y is finite dimensional (see [33, p. 43,
Exercises 2.4 and 2.5]).

It is well known that ∥x ⊗ y∥π = ∥x∥∥y∥ for every x ∈ X, y ∈ Y ,
and that the closed unit ball of X⊗̂πY is the closed convex hull of the set
BX ⊗ BY = {x ⊗ y : x ∈ BX , y ∈ BY }. Throughout the paper, we will use
both facts without any explicit reference.

Observe that every G ∈ L(X,Y ∗) acts on X⊗̂πY via

G

(
k∑

n=1

xn ⊗ yn

)
=

k∑
n=1

G(xn)(yn),

for
∑k

n=1 xn ⊗ yn ∈ X ⊗ Y . This action establishes a linear isometry from

L(X,Y ∗) onto (X⊗̂πY )∗ (see e.g. [33, Theorem 2.9]). Throughout this
paper we will use the isometric identification (X⊗̂πY )∗ = L(X,Y ∗) without
any explicit mention.
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Recall that a Banach space X has the approximation property (AP) if
there exists a net (Sα)α in F (X,X) such that Sα(x) → x for all x ∈ X. It
is not difficult to show that if either X or Y has the AP then K(X,Y ∗) is
separating for X⊗̂πY (c.f. e.g. [20, Lemma 2.2]).

Recall that given two Banach spacesX and Y , the injective tensor product
of X and Y , denoted by X⊗̂εY , is the completion of X⊗Y under the norm
given by

∥u∥ε := sup

{
n∑

i=1

|x∗(xi)y∗(yi)| : x∗ ∈ SX∗ , y∗ ∈ SY ∗

}
,

where u =
∑n

i=1 xi ⊗ yi (see [33, Chapter 3] for background). Every u ∈
X⊗̂εY can be viewed as an operator Tu : X

∗ → Y which is weak∗-to-weak
continuous. Under this point of view, the norm on the injective tensor
product is nothing but the operator norm.

It is known that, given two Banach spaces X and Y , we have (X⊗̂εY )∗ =
X∗⊗̂πY

∗ if either X∗ or Y ∗ has the RNP and either X∗ or Y ∗ has the AP
[33, Theorem 5.33].

3. First results and examples

In this section we will provide the first general results, examples and
characterisations of APEPs in Banach spaces. We begin with a simple fact
that will be used in subsequent sections.

Lemma 3.1. Let X be a Banach space and C ⊆ X be bounded, closed and
convex. Then ape (C) is weakly closed.

Proof. Suppose that x ∈ C belongs to the weak closure of ape (C); we have
to prove that x ∈ ape (C). Let W be a weak neighbourhood of x, and let
us see that it contains a non-empty slice of C. By assumption, W contains
some y ∈ ape (C). Thus W is a weak neighborhood of y and, since y is an
APEP, is must contain a non-empty slice of C as desired.

This already provides us with examples of situations where APEPs are
plentiful. One simple case is the unit ball of an infinite dimensional Ba-
nach space X for which pre-ext (BX) = SX . Since SX is weakly dense in
BX for every infinite dimensional Banach space X, we have the following
consequence of Lemma 3.1.

Proposition 3.2. Let X be an infinite dimensional Banach space such that
pre-ext (BX) = SX . Then ape (BX) = BX .

Example 3.3. The above result applies to get that if X is an infinite di-
mensional Lp(µ) space, for 1 < p < ∞, then every point of BX is APEP.

Moreover this shows that, unlike extreme points, APEPs of BX do not
have to belong to SX . In particular, in BX there are APEPs which are not
extreme.
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This applies in particular for LUR norms. Recall that the norm of a
Banach space X is locally uniformly rotund (LUR) if for all x, xn ∈ X
satisfying limn(2∥x∥2+2∥xn∥2−∥x+xn∥2) = 0 one has limn ∥xn−x∥ = 0 (see
[17, Definition 8.16]). It is not difficult to prove that if the norm of a Banach
space X is LUR then every point of SX is strongly exposed (in particular it
is a preserved extreme point). Consequently we get the following result.

Corollary 3.4. If X is an infinite dimensional Banach space whose norm
is LUR, then every point of BX is APEP.

In particular, every infinite dimensional separable Banach space and every
infinite dimensional reflexive space admits an equivalent renorming such that
every point of the new unit ball is APEP.

Compare the last statement to Corollary 5.8.
Next, we give another simple lemma that can be understood as a gener-

alisation of Milman’s theorem.

Lemma 3.5. Let X be a Banach space and C ⊆ X be bounded, closed and
convex. If B ⊆ C is such that co(B) = C, then ape (C) ⊆ B

w
.

Proof. Note that every non-empty slice S of C contains a point of B. Indeed,
let S = {x ∈ C : f(x) > α} for some f ∈ X∗, α ∈ R. If S ∩ B = ∅ then
f(x) ⩽ α for all x ∈ B and thus for all x ∈ co(B) = C, so S must be empty.

Now let x be an APEP of C. Then every weak neighbourhood W of x
contains a non-empty slice of C and therefore intersects B, so we conclude
x ∈ B

w
.

For some of our results, we will need the following, more precise conclusion
in the context of Lemma 3.5.

Lemma 3.6. Let X be a Banach space, B ⊆ X a bounded set, and C =
co(B). Let x ∈ ape (C). Then either

1) there is ε > 0 and a net (yα) ⊂ B such that yα
w→ x and ∥yα − x∥ ⩾ ε

(i.e. x ∈ B \B(x, ε)
w
), or

2) for every weakly open set W containing x and ε > 0 there exists a
slice S of C such that S ⊆ W and diam (S) < ε.

Proof. Assume that 2) does not hold. Then we can find a weakly open set
W0 containing x and ε0 > 0 so that every slice S of C contained in W0

satisfies that diam (S) ⩾ ε0.
Now, let W be a weakly open set containing x. Since x is APEP, we can

find a slice S = S(C, f, α) with S ⊂ W ∩ W0. Take 0 < δ < 1. By [19,
Lemma 5.2.14] we have

ε0 ⩽ diam (S(C, f, δα)) ⩽ 2 diam (S(C, f, α) ∩B) + 4δ.

If we choose δ small enough to guarantee that ε0−4δ
2 > ε0

4 , then it follows that
there are y, z ∈ S(C, f, α)∩B with ∥y − z∥ ⩾ ε0

4 . Then either ∥y − x∥ ⩾ ε0
8

or ∥z − x∥ ⩾ ε0
8 .
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In any case, we have proved that there is yW ∈ W∩B with ∥yW − x∥ ⩾ ε0
8 .

It is clear that (yW ) is a net in B that converges weakly to x.

The following example shows that condition 2) in Lemma 3.6 can really
fail to hold.

Example 3.7. In [2], a Banach space X isomorphic to C([0, 1]) is con-
structed such that every non-empty relatively weakly open subset of BX

has diameter 2 and such that every point of SX is a preserved extreme point
of BX . In particular, every point of BX is APEP (Proposition 3.2).

We now provide a characterisation of APEPs of a given closed, bounded
and convex set in terms of the extremal structure of its weak∗ closure.

Theorem 3.8. Let X be a Banach space, C ⊆ X be closed convex and

bounded and x ∈ C. Let D := C
w∗

be its weak∗ closure in X∗∗. The
following are equivalent:

(1) x ∈ ape (C).
(2) For every weak∗ open subset W of D containing x there exists a

weak∗ slice S of D such that S ⊆ W .

(3) x ∈ ext (D)
w∗

.

Proof. (1)⇒(2). Let W be a weak∗ open subset of D such that x ∈ W .

Choose a weak∗ open subset V of D such that x ∈ V ⊆ V
w∗

⊆ W . Consider
U := V ∩ C, which is a weakly open set of C with x ∈ U . Since x is APEP
we can find a non-empty slice S = S(C, f, α) such that S ⊆ U . We claim
that

S(D, f, α) ⊆ V
w∗

.

Indeed, given any z∗∗ ∈ S(D, f, α) ⊆ D we can find a net zs
w∗
−→ z∗∗ such

that zs ∈ C holds for every s. Since f(zs) → f(z∗∗) > 1 − α we can find
an index s0 such that f(zs) > 1 − α holds for every s ≽ s0. Since zs ∈ C
we infer that zs ∈ S(C, f, α) ⊆ U ⊆ V holds for every s ≽ s0. Since

zs
w∗
−→ z∗∗ we infer that z∗∗ ∈ V

w∗
, as desired. Since V

w∗
⊆ W we get that

S(D, f, α) ⊆ W , as required.
(2)⇒(3). Select a relatively weak∗ open subset W of D containing x and

let us find an extreme point e∗∗ of D such that e∗∗ ∈ W . By (2) we can
find a weak∗ slice S of D such that S ⊆ W . Now Krein-Milman theorem
ensures that D = cow

∗
(ext (D)) (observe that D is weak∗ compact since C

is bounded). Since S is a weak∗ slice of D we get that ∅ ̸= S ∩ ext (D) ⊆
W ∩ext (D). We have proved that every weak∗ neighbourhood of x contains
an extreme point of D, so the implication is proved.

(3)⇒(1). Let W be a weakly open subset of C containing x, and let
us prove that there exists a slice S of C with S ⊆ W . In order to do so
define W̃ as the weak∗ open subset of D defined by W , that is, such that
W̃ ∩ C = W . By (3) there exists an extreme point e∗∗ of D such that
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e∗∗ ∈ W̃ . Since e∗∗ is an extreme point of D, Choquet lemma implies that
there exists a slice S = S(D, f, α) such that e∗∗ ∈ S ⊆ W̃ . It is now clear

that S(C, f, α) ⊆ W̃ ∩ C = W , and the proof is finished.

With Theorem 3.8 we can now provide an example of an APEP which is
not an extreme point. The following example shows that this phenomenon
may happen even in finite-dimensional Banach spaces.

Example 3.9. Let C ⊆ R3 be a compact set whose set of extreme points
is not closed (c.f. e.g. [17, Exercise 3.86]), and set x0 ∈ ext (C) \ ext (C) =

pre-ext (C) \ pre-ext (C) (since in the finite dimensional framework clearly
every extreme point is preserved). Then x0 is an APEP of C which is not
an extreme point of C.

An example of an extreme point which is not APEP will be obtained in
Example 6.6. Moreover, an example of an extreme point which is APEP
but fails to be a preserved extreme point will be exhibited in Example 6.7.

Remark 3.10. It is a well-known result that if X is a 2-dimensional Banach
space and C ⊆ X is closed, convex, and bounded then the set ext (C) is
closed (c.f. e.g. [17, Exercise 3.86]). Consequently, in such situation every
extreme point of C is APEP.

Let us provide another example, which shows that if a closed, convex, and
bounded set satisfies that every point is APEP then this does not necessarily
imply that every point is an extreme point, even if the set of extreme points
is norm-dense.

Example 3.11. In [30] a compact convex setK ⊆ ℓ2 is constructed with the
property that the set of all extreme points is dense in K. In such compact,
all points are APEP but there are (densely many) points which are not
extreme points.

4. APEP in classical Banach spaces

In this section, we pursue to characterise the APEPs of the unit ball of
classical Banach spaces (namely C(K) spaces and Lp(µ) for 1 ⩽ p ⩽ ∞).
We will also study APEPs in absolute sums of Banach spaces.

It is immediate that if X = ℓnp for n ∈ N and 1 ⩽ p ⩽ ∞ then the set
of (preserved) extreme points of BX is closed. Consequently, the APEPs of
BX coincide with the extreme points. On the other hand, if 1 < p < ∞ and
X = Lp(µ) is infinite-dimensional, Example 3.3 shows that all points of BX

are APEP. The rest of the section will focus on the remaining cases.

4.1. C(K) spaces. Let K be a compact Hausdorff topological space. In
this subsection, we aim to provide a description of those points of BC(K)

which are APEP. The main result is the following.
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Theorem 4.1. Let K be a compact Hausdorff topological space. Let f ∈
BC(K). The following are equivalent:

(1) f is an APEP of BC(K).
(2) |f(t)| = 1 holds for every t ∈ K.
(3) f is an extreme point of BC(K).
(4) f is a preserved extreme point of BC(K).

Proof. (2)⇒(3) is straightforward, whereas (3)⇒(4) is well known (c.f. e.g.
[29, p. 295]). Moreover, (4)⇒(1) is general. It remains to show (1)⇒(2).
To this end, it will suffice to prove that for any t0 ∈ K and any non-empty
slice S of BC(K) there exists some function φ ∈ S with |φ(t0)| = 1. Indeed,
it follows that the weakly open subset

W := {g ∈ BC(K) : |δt0(g)| < 1}

cannot contain any non-empty slice of BC(K) and therefore cannot contain
any APEP either.

In order to do so, fix t0 ∈ K and a slice S of BC(K). We may assume that
S = S(BC(K), µ, α) where µ ∈ C(K)∗ = M(K) is a regular Borel measure
with ∥µ∥ = 1. Observe that we can decompose µ = λδt0 + ν, where λ ∈ R
and ν ∈ M(K) is such that ν({t0}) = 0. Now select h ∈ BC(K) such that
µ(h) > 1− α

8 . Since ν is a regular measure and ν({t0}) = 0, there exists an
open subset U ⊆ K with t0 ∈ U such that |ν|(U) ⩽ α

8 . Consider a Urysohn
function g ∈ SC(K) such that g(t) = 0 if t /∈ U , 0 ⩽ g ⩽ 1 and g(t) = 1 at

V for some open set V such that t0 ∈ V ⊆ V ⊆ U . Now take j ∈ SC(K)

another Urysohn function such that j(t) = 0 if t /∈ V and j(t0) = 1.
We consider sign(λ) = |λ|/λ if λ ̸= 0 and sign(0) = 1. Now, define

φ := (1− g)h+ sign(λ)j.

It is clear that φ(t0) = sign(λ) ∈ {−1, 1}, so we only have to prove that
φ ∈ S. Let us start by proving that ∥φ∥∞ ⩽ 1. Select any t ∈ K. Now we
have two possibilities:

(1) If t /∈ V then j(t) = 0, so |φ(t)| = |1− g(t)||h(t)| ⩽ |h(t)| ⩽ 1.
(2) If t ∈ V then g(t) = 1 and thus |φ(t)| = |j(t)| ⩽ 1.

In any case we get |φ(t)| ⩽ 1. It remains to estimate µ(φ). Observe that

µ(φ) = µ((1− g)h) + µ(sign(λ)j).
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On the one hand, since δt0(h(1−g)) = 0 we get that µ((1−g)h) = ν((1−g)h).
Now

ν((1− g)h) =

∫
K
(1− g)h dν =

∫
K\U

(1− g)hdν +

∫
U
(1− g)h dν

⩾
∫
K\U

h dν − ∥(1− g)h∥∞|ν|(U)

⩾
∫
K
h dν −

∫
U
h dν − |ν|(U)

⩾ ν(h)− 2|ν|(U) ⩾ ν(h)− α

4
.

On the other hand,

µ(sign(λ)j) = sign(λ)λj(t0) + ν(sign(λ)j)

= |λ|+ sign(λ)

∫
K
j dν

= |λ|+ sign(λ)

∫
V
j dν

⩾ |λ| − |ν|(V ) ⩾ |λ| − |ν|(U)

⩾ |λ| − α

8
.

Putting everything together we infer

µ(φ) ⩾ ν(h)− α

4
+ |λ| − α

8
= |λ|+ ν(h)− 3α

8
.

Taking into account that |λ| ⩾ λδt0(h) we clearly get that

µ(φ) ⩾ (λδt0 + ν)(h)− 3α

8
= µ(h)− 3α

8
> 1− α

8
− 3α

8
> 1− α.

This implies that φ ∈ S and the proof is finished.

Let us show an immediate consequence of Theorem 4.1, for describing
APEP in the unit ball of L∞ spaces.

Corollary 4.2. Let (Ω,Σ, µ) be a measure space and let I be an arbitrary
set. Let x = (xi)i∈I ∈ Bℓ∞(I) and f ∈ BL∞(µ). Then,

a) f ∈ ape
(
BL∞(µ)

)
if and only if |f(ω)| = 1 for a.e. ω ∈ Ω.

b) x ∈ ape
(
Bℓ∞(I)

)
if and only if |xi| = 1 for all i ∈ I.

Proof. a) We have L∞(µ) = C(Kµ) isometrically, where Kµ is the maxi-
mal ideal space of L∞(µ) (see e.g. [43, Theorem 9.6]). The result follows
from Theorem 4.1 and the well-known characterization of extreme points of
BL∞(µ).

b) is a particular case of a) taking µ as the counting measure on I, but
can also be justified directly: we have ℓ∞(I) = C(βI) isometrically, where
βI is the Stone-Čech compactification of I, and the result follows again
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from Theorem 4.1 and the well-known characterization of extreme points of
Bℓ∞(I).

4.2. L1(µ) spaces. In this section we aim to characterise when f ∈ BL1(µ)

is APEP, for a given measure space (Ω,Σ, µ). We limit our analysis to
localisable measure spaces, which are precisely those for which L1(µ)

∗ is
isometrically isomorphic to L∞(µ) [18, Theorem 243G]. This is no loss of
generality, as it is known that every L1(µ) space is isometrically isomorphic
to an ℓ1-sum of spaces of the form L1(µi) where µi is a finite, hence localis-
able, measure (c.f. e.g. [14, P. 501]). We will deal with APEPs in ℓ1-sums
of Banach spaces in Section 4.3.

Before we proceed, let us introduce a bit of notation. Recall that a mea-
surable set A ⊂ Ω is called an atom for µ if µ(A) > 0 and if µ(B) = 0 for
every measurable subset B ⊂ A such that µ(B) < µ(A). As a consequence
of [25, Theorem 2.1] we can decompose L1(µ) as

(4.1) L1(µ) = L1(ν)⊕1 ℓ1(I),

where ν is the continuous part of µ, and I is the set of all atoms for µ (up
to a measure 0 set).

With the above description in mind, we will first analyse the APEPs of
the unit ball of L1(µ) in the case that µ either fails to have any atom or in the
case that µ is purely atomic, and then we will complete the information with
the stability results of the APEPs in ℓ1-sums of spaces of the next section
(see Proposition 4.7). In order to do so, let us start with the atomless case.

Proposition 4.3. Let (Ω,Σ, µ) be a localisable measure space such that µ
is atomless. Then ape

(
BL1(µ)

)
is empty.

Proof. In this proof we will denote L1 = L1(µ) and L∞ = L∞(µ) = L1(µ)
∗.

Let f ∈ BL1 and let us prove that f is not APEP. In order to do so, let us
begin with the case f ̸= 0. Since f = f+ − f−, we may assume without loss
of generality that f+ ̸= 0. Since

∫
Ω f+dµ ̸= 0 and µ is atomless we can find

a subset A ⊆ Ω and α > 0 such that

α <

∫
A
f+ dµ =

∫
A
f dµ <

1

2
.

Define g := χA ∈ SL∞ and set

W :=

{
φ ∈ BL1 : α < g(φ) =

∫
A
φ dµ <

1

2

}
.

Observe that f ∈ W . Indeed,

g(f) =

∫
Ω
fχA dµ =

∫
A
f dµ =

∫
A
f+ dµ ∈

(
α,

1

2

)
.

Let us now prove that the relatively weakly open set W cannot contain any
slice of BL1 .
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Indeed, take a slice S = S(BL1 , h, α) for α > 0 and h ∈ SL∞ . By the very
definition of essential supremum, there exists ξ ∈ {−1, 1} and B ⊆ Ω with
µ(B) > 0 and such that

B = {t ∈ Ω : ξh(t) > 1− α}.
Now we have two different possibilities:

a) If µ(A ∩B) ̸= 0 then define the function φ := ξ χA∩B

µ(A∩B) . On the one

hand we have

h(φ) =

∫
Ω
hφ dµ =

1

µ(A ∩B)

∫
A∩B

ξh(t) dµ(t) > 1− α

since ξh(t) = |h(t)| on A ∩ B. This implies φ ∈ S. On the other
hand,

g(φ) =

∫
Ω
gφ dµ =

ξ

µ(A ∩B)

∫
A∩B

g dµ = ξ

since g = 1 on A∩B. In particular g(φ) is either 1 or −1, so φ /∈ W .
b) If µ(A ∩ B) = 0 then define φ := ξ χB

µ(B) . As before, h(φ) > 1 − α

(i.e. φ ∈ S), but clearly g(φ) =
∫
A ξ χB

µ(B) dµ = 0 since µ(A∩B) = 0.

This proves that φ /∈ W , as desired.

To finish the proof, it remains to be proved that 0 is also not an APEP
of BL1 . In order to do so, define

W :=

{
φ ∈ BL1 :

∣∣∣∣∫
Ω
φ dµ

∣∣∣∣ < 1

2

}
.

It is immediate thatW is a relatively weakly open set containing 0. However,
it does not contain any slice of BL1 . Indeed, given any slice S of BL1 , by the
proof of the above case we can find ξ ∈ {−1, 1} and C ⊆ Ω with µ(C) > 0
such that φ := ξ χC

µ(C) ∈ S. However,∫
Ω
φ dµ =

ξ

µ(C)

∫
Ω
χC dµ = ξ /∈

(
−1

2
,
1

2

)
.

Now we move to the purely atomic case, obtaining the following result.

Proposition 4.4. Let I be a non-empty set and consider X = ℓ1(I). Then
the APEPs of Bℓ1(I) are the standard basis vectors ±ei, i ∈ I.

Proof. Since Bℓ1(I) = co({±ei : i ∈ I}) we infer from Lemma 3.5 that if x is

an APEP of Bℓ1(I) then x ∈ {±ei : i ∈ I}w. Evaluating against functionals
of the form e∗i ∈ ℓ∞(I) and the constant function 1I yields e

∗
i (x) ∈ {−1, 0, 1}

and 1I(x) ∈ {−1, 1}, and we deduce that x ∈ {±ei : i ∈ I}. In the opposite
direction, it is clear that every element of the form ±ei is a denting point
and therefore an APEP.

Now we can give a description of the APEPs in an L1(µ) space.
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Theorem 4.5. Let (Ω,Σ, µ) be a localisable measure space and let f ∈
BL1(µ). The following are equivalent:

(1) f is an APEP of BL1(µ).
(2) f is a denting point of BL1(µ).
(3) f = ± χA

µ(A) , where A is an atom of µ.

Proof. It is well known that (3) ⇒ (2) ⇒ (1). We prove (1) ⇒ (3). Accord-
ing to the decomposition in (4.1) we see f = (g, h) ∈ L1(ν)⊕1 ℓ1(I).

Proposition 4.6 below together with the preceding paragraph yield that
f is APEP if, and only if, either g = 0 and h ∈ ape

(
Bℓ1(I)

)
or h = 0 and

g ∈ ape
(
BL1(ν)

)
. However the latter is impossible due to Proposition 4.3.

Consequently, f is APEP if, and only if, f = (0, h), where h is APEP in
Bℓ1(I). But now Proposition 4.4 implies that the above holds true if, and
only if, h = ±ei for some i ∈ I. Now, taking into account the identification
of ℓ1(I) with the purely atomic measures in (4.1), the result follows.

4.3. Absolute sums of Banach spaces. Now, we focus on studying APEPs
of the unit ball in ℓp-sums of Banach spaces. We start with the case p = 1.
For finite sums, we have an easy characterisation.

Proposition 4.6. Let Y, Z be Banach spaces. Then

ape (BY⊕1Z) = (ape (BY )× {0}) ∪ ({0} × ape (BZ)).

Proof. Let X = Y ⊕1 Z, then X∗∗ = Y ∗∗ ⊕1 Z
∗∗ and therefore

ext (BX∗∗) = (ext (BY ∗∗)× {0}) ∪ ({0} × ext (BZ∗∗)).

Clearly, Y ∗∗ × {0} ⊆ X∗∗ is weak∗-weak∗-homeomorphic to Y ∗∗ (and simi-
larly for {0} × Z∗∗), so

ext (BX∗∗)
w∗

= (ext (BY ∗∗)
w∗

× {0}) ∪ ({0} × ext (BZ∗∗)
w∗

).

The result now follows immediately from Theorem 3.8.

The argument of Proposition 4.6 extends seamlessly (or by induction) to
finite ℓ1-sums. For infinite sums, however, the bidual does not admit such
a simple expression so a different argument is needed. In that case, we are
able to characterise all non-zero APEPs.

Proposition 4.7. Let X be the ℓ1-sum of a family {Xi : i ∈ I} of Banach
spaces.

a) If x = (xi) ̸= 0 is an APEP of BX , then there exists an index j ∈ I
such that xj ∈ ape

(
BXj

)
and xi = 0 for all i ̸= j.

b) If xj ∈ ape
(
BXj

)
, then the element x = (ui) defined as uj = xj and

ui = 0 for i ̸= j is an APEP of BX .

Proof. a) Let x = (xi) be an APEP of BX , and suppose that there are two
indices j1 ̸= j2 ∈ I such that xj1 , xj2 are non-zero. For k = 1, 2 let φk ∈ SXjk
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be such that φk(xjk) = ∥xjk∥, and consider the set

W = {z = (zi) ∈ BX : φ1(zj1) > 0 and φ2(zj2) > 0} .
Then W is a relatively weakly open neighbourhood of x. Since x is APEP,
W must contain a non-empty slice of the form S = S(BX , f, α) for some
f ∈ SX∗ and α > 0. Identify X∗ with the ℓ∞-sum of the spaces {X∗

i : i ∈ I}
and write f = (fi). Suppose that ∥fj∥ > 1 − α for some j ∈ I, choose
y ∈ BXj such that fj(y) > 1 − α and let z = (zi) be such that zj = y and
zi = 0 for i ̸= j. Then f(z) = fj(y) > 1 − α so z ∈ S ⊆ W , but this is
not possible as either zj1 = 0 or zj2 = 0. This shows that ∥fj∥ ⩽ 1 − α for
all j ∈ I, contradicting ∥f∥ = 1. Hence, there must exist j ∈ I such that
xi = 0 for all i ̸= j.

Let us see that xj is an APEP of BXj if xj ̸= 0. Let W ⊆ BXj be
a relatively weakly open neighbourhood of xj , and let φ ∈ X∗

j such that

φ(xj) = ∥xj∥ > 0. Define

W ′ = {z = (zi) ∈ BX : zj ∈ W, φ(zj) > 0} ,
which is clearly a relatively weakly open subset of BX and x ∈ W ′. Since x is
APEP, there is a non-empty slice S = S(BX , f, α), for some f = (fi) ∈ SX∗

and α > 0, such that S ⊆ W ′. We claim that ∥fi∥ ⩽ 1− α for all i ̸= j. If
not, there is some k ̸= j such that ∥fk∥ > 1−α, and so we can find y ∈ BXk

such that fk(y) > 1−α. Hence, the point z = (zi) ∈ BX such that zi = 0 for
all i ̸= k and zk = y satisfies that f(z) = fk(y) > 1− α. Thus, z ∈ S ⊆ W ′

but φ(zj) = 0, obtaining a contradiction. Therefore, ∥fi∥ ⩽ 1 − α, for all
i ̸= j, and since X∗ = (

⊕
X∗

i )∞, it follows that ∥fj∥ = 1. Now, define the
slice Sj = {y ∈ BXj : fj(y) > 1− α} which is clearly non-empty. If y ∈ Sj ,
then the point z = (zi) ∈ BX such that zi = 0 for i ̸= j and zj = y satisfies
that z ∈ S ⊆ W ′. Thus, zj = y ∈ W , concluding that Sj ⊆ W and xj is
then an APEP.

b) Let x = (xi) be a point in BX such that there is j ∈ I with xi = 0
for i ̸= j and xj ∈ ape

(
BXj

)
. Let us show that x ∈ ape (BX). Let W be a

relatively weakly open neighbourhood of x in BX . We may assume that W
is a basic weakly open set of the form

W = {y ∈ BX : |f1(y − x)| < ε, . . . , |fn(y − x)| < ε}
for some functionals f1 = (f1

i ), . . . , f
n = (fn

i ) in the unit ball of X∗ =
(
⊕

X∗
i )∞ and some ε > 0. Now, consider

Wj =
{
z ∈ BXj : |f1

j (z − xj)| <
ε

2
, . . . , |fn

j (z − xj)| <
ε

2

}
,

which is a relatively weakly open neighbourhood of xj in BXj . Since xj is
APEP and xj ∈ Wj , we can find a slice Sj = {z ∈ BXj : g(z) > 1 − α}
for some g ∈ SX∗

j
and α > 0, such that Sj ⊆ Wj . We can always assume

that α ⩽ ε
2 since Sj is non-empty for all α > 0. Finally, consider the slice

S = {y = (yi) ∈ BX : g(yj) > 1 − α}. It is clear that if z ∈ Sj ̸= ∅, then
the point y = (yi) ∈ BX such that yi = 0 for i ̸= j and yj = z, satisfies that
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y ∈ S, so S ̸= ∅. Furthermore, pick y = (yi) ∈ S, and denote by ŷ = (ŷi)
the element of X such that ŷi = yi for i ̸= j and ŷj = 0. It is clear that
∥yj∥ ⩾ g(yj) > 1− α ⩾ 1− ε

2 , so ∥ŷ∥ = ∥y∥ − ∥yj∥ < ε
2 . Therefore, we have

|fp(y − x)| ⩽ |fp
j (yj − xj)|+ |fp(ŷ)| < ε

2
+

ε

2
= ε, 1 ⩽ p ⩽ n,

since yj ∈ Sj ⊆ Wj . This proves that y ∈ W , from which we conclude that
S ⊆ W . Thus x is an APEP of BX .

The only case that remains unclear is whether it is possible to have 0 ∈
ape (BX) when 0 /∈ ape (BXi) for all i ∈ I.

Next, we consider ℓp-sums of Banach spaces for 1 < p < ∞. It is easier
to use arguments based on Theorem 3.8 in this case as, given a family
{Xi : i ∈ I} of Banach spaces, one has (

⊕
iXi)

∗∗
p = (

⊕
iX

∗∗
i )p and

(4.2)

ext
(
B(

⊕
Xi)p

)
=

{
(xi) ∈ S(

⊕
Xi)p : ∀i, xi = 0 or

xi
∥xi∥

∈ ext (BXi)

}
.

Using these descriptions, we can begin with the following necessary condition
for APEPs in the unit sphere.

Lemma 4.8. Let X and Y be two Banach spaces and let (x0, y0) ∈ SX⊕pY

be an APEP of BX⊕pY . Then either x0 = 0 or x0
∥x0∥ is an APEP of BX .

Proof. Assume that x0 ̸= 0 and let us prove that x0
∥x0∥ is an APEP. Since

(x0, y0) is an APEP of BX⊕pY we can find by virtue of Theorem 3.8 a net

(es, fs) of extreme points of B(X⊕pY )∗∗ = BX∗∗⊕pY ∗∗ such that (es, fs)
w∗
→

(x0, y0). This implies that both (es)
w∗
→ x0 and (fs)

w∗
→ y0. Since both

(es) and (fs) are bounded nets we can assume, up to taking subnets, that
∥es∥ → λ and ∥fs∥ → µ. The w∗-lower semicontinuity of the norm of X∗∗

and Y ∗∗ implies ∥x0∥ ⩽ λ and ∥y0∥ ⩽ µ. Note that

1 = ∥x0∥p + ∥y0∥p ⩽ λp + µp = lim
s

∥es∥p + ∥fs∥p = lim
s

∥(es, fs)∥p ⩽ 1

so indeed ∥x0∥ = λ and ∥y0∥ = µ.
Now, up to taking a further subnet, since ∥es∥ → λ = ∥x0∥ > 0 we can

assume that es ̸= 0 holds for every s. Since (es, fs) is an extreme point of

BX∗∗⊕pY ∗∗ and es ̸= 0 we infer es
∥es∥ ∈ ext (BX∗∗) for every s. Since es

w∗
→ x0

and ∥es∥ → ∥x0∥ we get that

es
∥es∥

w∗
−→ x0

∥x0∥
,

obtaining that x0
∥x0∥ is an APEP of BX by Theorem 3.8, as it is the weak∗

limit of a net of extreme points of BX∗∗ .

Now we are able to characterise APEPs of norm 1 for 1 < p < ∞.
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Proposition 4.9. Let X be the ℓp-sum of a family {Xi : i ∈ I} of Banach
spaces, where 1 < p < ∞, and let (xi) ∈ SX . The following assertions are
equivalent:

(1) (xi) is an APEP of BX .
(2) For every i ∈ I, either xi = 0 or xi

∥xi∥ is an APEP of BXi.

Proof. (1)⇒(2): Observe that given i ∈ I we have

X = Xi ⊕p Y,

where Y is ℓp-sum of the family {Xj : i ∈ I \ {i}} and the above identifica-
tion is an isometric isomorphism. Now the result is a direct application of
Lemma 4.8.

(2)⇒(1): Let U be a weak∗ neighbourhood of (xi) in X∗∗. We will show
that U intersects ext (BX∗∗) and this will be enough by Theorem 3.8. Since
the weak∗ topology of X∗∗ is the product topology of the weak∗ topologies in
X∗∗

i , we may assume that U =
∏

i∈I Ui where Ui is a weak∗ neighbourhood
of xi (orX

∗∗
i ) for each i ∈ I. If xi ̸= 0 then, by assumption and Theorem 3.8,

there exists ei ∈ ext
(
BX∗∗

i

)
such that ∥xi∥ ei ∈ Ui. Let y = (yi) ∈ X∗∗ be

defined by

yi =

{
∥xi∥ ei , if xi ̸= 0

0 , if xi = 0
.

Note that y ∈ U and

∥y∥ =

(∑
i∈I

∥yi∥p
)1/p

=

(∑
i∈I

∥xi∥p
)1/p

= ∥(xi)∥ = 1

since (xi) ∈ SX , so y ∈ ext (BX∗∗) by (4.2). This ends the proof.

Of course, Proposition 4.9 does not cover all APEPs of the unit ball of
ℓp-sums as it is possible to have APEPs of norm strictly less than 1. For
instance, the space ℓp can be expressed as the ℓp-sum of countably many
copies of R, and ape

(
Bℓp

)
= Bℓp for 1 < p < ∞ by Proposition 3.2.

The analysis of APEPs in an infinite ℓ∞-sum of Banach spaces becomes
troublesome because we do not have a simple description of its dual, let
alone its bidual. So, instead, we conclude with the case of c0-sums of Banach
spaces. In this case, we can characterise APEPs of the unit ball completely.

Proposition 4.10. Let X be the c0-sum of a family {Xi : i ∈ I} of Banach
spaces. Then x = (xi) is an APEP of BX if and only if xi is an APEP of
BXi for each i ∈ I.

Proof. The space X∗∗ can be identified with the ℓ∞-sum of the spaces X∗∗
i

and, therefore, the extreme points of BX∗∗ are precisely the elements of the
form (x∗∗i ) where x∗∗i ∈ ext

(
BX∗∗

i

)
for all i ∈ I. Since the weak∗ topology

of X∗∗ is the product topology of the weak∗ topologies in X∗∗
i , the result is

now clear from Theorem 3.8.
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Example 4.11. As consequence of Proposition 4.10, the unit ball of c0(I)
does not have any APEP.

5. A characterisation of the RNP in terms of APEP

In this section we aim to prove a strong connection between the notion of
APEP and the RNP. On the one hand, we aim to prove that a Banach space
X has the RNP if, and only if, every bounded, closed and convex subset of
X has an APEP. On the other hand, we will prove that a Banach space X
has the RNP if, and only if, the unit ball of every equivalent renorming of
X has an APEP.

Let us start with the first of our objectives. In order to do so, we need
a bit of notation. We say that a bounded subset A ⊂ X∗ is relatively
convexly resolvable if for every w∗-compact K ⊂ X∗ with A ∩K = ∅, there
is a decreasing transfinite sequence of convex and w∗-compact sets (Dα)α⩽κ

such that
A ⊂

⋃
α is odd

(Dα \Dα+1) ,

and
K ∩

⋃
α is odd

(Dα \Dα+1) = ∅.

We say that a subset of a Banach space A ⊂ X is relatively convexly
resolvable if it is so as considered in X∗∗. Those notions are an elaboration
on the definition of resolvable sets, see [28, Appendix A.5] for instance, of
topological nature. The label “relative” refers to the fact that the family of
sets depends on the disjoint w∗-compact.

Recall that the average range of a vector measure ν : Σ → X with respect
to a positive measure µ on the same measurable space (Ω,Σ) is the set{

ν(A)

µ(A)
: A ∈ Σ, µ(A) ̸= 0

}
⊂ X.

Proposition 5.1. Let C ⊂ X be a bounded closed convex set. Assume it is
relatively convexly resolvable. Then C has the RNP.

The following proof we will based on the theory of liftings, see [38]. Given
a measure space (Ω,Σ, µ) denote by L∞(µ) the set of real-valued bounded
measurable functions equipped with the essential supremum seminorm and
denote by L∞(µ) the Banach space obtained by identifying the functions
that agree almost everywhere. A lifting on a measure space (Ω,Σ, µ) is a
linear and multiplicative operator ρ : L∞(µ) → L∞(µ) that acts as a right
inverse to the canonical quotient map from L∞(µ) to L∞(µ). In other
words, a lifting determines a representative of any coset from L∞(µ) in an
algebraically coherent way. The existence of a lifting requires some technical
assumptions on the measure space that are fulfilled by Lebesgue measure,
which is enough for our characterization of the RNP.
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Proof. The following argument is essentially developed in [31]. Firstly, recall
an old result of Tortrat, see [36], saying that X is universally measurable in
(X∗∗, w∗), that is, that X is µ-measurable for every finite Radon measure µ
on X∗∗. This implies that C is universally measurable in (X∗∗, w∗) as well.
Let (Ω,Σ, µ) a probability space and let ν : Σ → X be a µ-continuous vector
measure with average range in C. We claim that there exists a w∗-Borel
measurable density f : Ω → X∗∗, that is, ⟨ν(D), x∗⟩ =

∫
D⟨f, x

∗⟩ dµ for every
D ∈ Σ and x∗ ∈ X∗.

Indeed, for any x∗ ∈ X∗, the signed measure ⟨ν, x∗⟩ is µ-continuous, so it
has a Radon-Nikodým derivative fx∗ ∈ L1(µ). Let ρ be a lifting of L∞(µ).
It is easy to check that the map x∗ → ρ(fx∗)(ω) is linear for every ω ∈ Ω
and bounded by ∥x∗∥, so there is x∗∗ω ∈ BX∗∗ such that x∗∗ω (x∗) = ρ(fx∗)(ω).
Clearly, the map defined by f(ω) = x∗∗ω is w∗-scalarly measurable, so it is w∗-
Baire measurable by [16, Theorem 2.3]. Recall that the measure image, also
called pushforward measure, is defined as µ◦f−1(A) = µ(f−1(A). We claim
that f also is w∗-Borel measurable and µ ◦ f−1 is w∗-Radon. Indeed, if ρK
is the abstract lifting considered in [8, §2] for the compact space K = BX∗∗ ,
then

h ◦ ρK(f)(ω) = ρ(h ◦ f)(ω)
for every ω ∈ Ω and every h ∈ C(K). From the definition of f we get that
ρK(f) = f just taking as continuous functions h the elements x∗ ∈ X∗. The
desired properties follow from [8, Theorem 2.1].

Now note that we may assume, without loss of generality, that f takes

values in C
w∗

. We will prove that, actually, f has almost all of its values in

C. Indeed, take any w∗-compact subset K ⊂ C
w∗

\ C. By the hypothesis,
there is a decreasing transfinite sequence of convex and w∗-compact sets
(Dα)α⩽κ such that

C ⊂
⋃

α is odd

(Dα \Dα+1) .

In particular, C
w∗

⊂ D1 and

K ⊂
⋃

α is even

(Dα \Dα+1) .

Assume (µ ◦ f−1)(K) > 0. Then there would be a smallest α such that

(µ ◦ f−1)(K ∩Dα) = (µ ◦ f−1)(K), and

(µ ◦ f−1)(K ∩Dα+1) < (µ ◦ f−1)(K).

That implies (µ ◦ f−1)(K ∩ (Dα \Dα+1)) > 0. Take S ⊂ K ∩ (Dα \Dα+1)
a w∗-compact with (µ ◦ f−1)(S) > 0 and such that S supports (µ ◦ f−1)|S
(Radon measures have always support). By the Hahn-Banach theorem there
is a w∗-closed halfspace H such that H ∩Dα+1 = ∅ and H ∩ S ̸= ∅. Since
S is a measure support, (µ ◦ f−1)(H ∩ S) > 0. That would imply together
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(µ ◦ f−1)(C
w∗

∩H) > 0 and H ∩ C = ∅, meaning that the average range of
ν lies outside of C, which is a contradiction.

Now we know that f takes almost all of its values in C. Note that µ◦f−1

is w∗-Radon and therefore w-Radon in X. A classic result attributed by
Talagrand to Phillips and Grothendieck [37, 16] says that µ ◦ f−1 is the
restriction of a Radon measure on (X, ∥ · ∥). That implies that the range of
f is essentially separable. Since f is scalarly measurable, we deduce that f
is Bochner measurable, and that concludes the proof that C has the RNP.

Proposition 5.2. Let C ⊂ X be a bounded closed convex set. Assume that
for any w∗-compact K ⊂ X∗∗ such that C∩K = ∅ and any nonempty convex
subset B ⊂ C there exists a w∗-open halfspace H in X∗∗ such that B∩H ̸= ∅
and

B
w∗

∩H ∩K = ∅.
Then C is relatively convexly resolvable.

Proof. Let K be a w∗-compact set in X∗∗ such that C ∩ K = ∅. We will

build a sequence (Dα) satisfying the definition and such that Dα = Bα
w∗

for α an odd ordinal. Take D1 = C
w∗

. By assumption, there is a w∗-open

halfspace H such that C
w∗

∩H ∩K = ∅. Then take D2 = D1 \H and

D3 = C \Hw∗
.

Assume that α is odd and Dα = Bα
w∗

is nonempty. Find a w∗-open halfs-
pace H as in the hypothesis so Dα ∩H ∩K = ∅. Now take Dα+1 = Dα \H
and Bα+2 = Bα \H, thus Dα+2 = Bα+2

w∗
. For limit ordinals α, just take

the intersection Dα =
⋃

β<αDβ and Bα+1 = Dα ∩C (recall that limit ordi-

nals are even). Continue this process while the sets are nonempty. In that
case, C will be exhausted and therefore

C ⊂
⋃

α is odd

(Dα \Dα+1) ,

and that last set does not intersect K.

Now we obtain the first main result in this section.

Theorem 5.3. Let X be a Banach space. The following assertions are
equivalent:

(1) X has RNP.
(2) Every closed, convex and bounded subset C of X has an APEP.

Proof. (1)⇒(2): Every closed, convex and bounded subset C of X has a
denting point since X has RNP, and denting points are APEP.

(2)⇒(1): Let C be a bounded, closed and convex subset of X and let
us prove that C satisfies the hypothesis of Proposition 5.2. When this is
proved, an application of Propositions 5.2 and 5.1 will yield the result.
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In order to prove that C satisfies the hypothesis of Proposition 5.2, let
K ⊆ X∗∗ be a w∗-compact subset such that C ∩K = ∅, and take any non-
empty convex subset B ⊆ C. We can assume with no loss of generality that
B is closed. Take x0 ∈ ape (B), and note that x0 /∈ K. Since K is w∗-closed

then we can find a w∗-open setW inX∗∗ such that x0 ∈ W andW
w∗

∩K = ∅.
Since x0 is APEP and W ∩B is a weakly open subset of B containing x0 we
can find a non-empty slice S = {x ∈ X : x∗(x) > supx(B) − α} ⊆ W ∩ B.
Consider the w∗-open halfspace

H := {x∗∗ ∈ X∗∗ : x∗∗(x∗) > supx∗(B)− α}.
Clearly H ∩B = S is non-empty. We claim that

B
w∗

∩H ∩K = ∅.
This will follow from the fact that B

w∗
∩H ⊆ W

w∗
. Let us prove that. In

order to do so, take x∗∗ ∈ B
w∗

∩ H. By the w∗-density of B we can find
a net (xs) in B that w∗-converges to x∗∗. Since H is w∗-open there exists
s0 such that xs ∈ H holds for every s ≽ s0. Now, for s ≽ s0 we get that

xs ∈ B ∩ H = S ⊆ W ∩ B ⊆ W . Therefore x∗∗ ∈ W
w∗

, as desired. This
concludes the proof.

Remark 5.4. We provide an alternative proof of Theorem 5.3, with different
techniques, at the end of Section 8.

Once we have accomplished one of the main aims of the section, we want
to take advantage of Theorem 5.3 to prove that, in any Banach space X
that fails the RNP, there exists an equivalent renorming whose unit ball has
no APEP. That is what we do in the following theorem.

Theorem 5.5. Let X be a Banach space failing the RNP. Then there exists
an equivalent norm | · | on X such that ape

(
B(X,|·|)

)
= ∅.

For the proof we need a number of auxiliar lemmata whose aim is to
construct, from a bounded, closed and convex subset C of a Banach space
X with no APEP, another subset D of X which is bounded, closed, convex
and symmetric with non-empty interior (and henceforth D will be the unit
ball of some equivalent renorming of the space). Let us begin with the
following lemma which asserts that if C does not have any APEP then the

closure of the extreme points of C
w∗

is far from X.

Lemma 5.6. Let X be a Banach space and let C ⊆ X a closed, convex and
bounded subset such that ape (C) = ∅. Then

dist

(
ext
(
C

w∗)w∗

, X

)
> 0.

Proof. Assume towards a contradiction that, for every n ∈ N, there exist

elements cn ∈ ext
(
C

w∗)w∗

and xn ∈ X such that ∥cn − xn∥ < 1
n . Let c
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be a weak∗ cluster point of (cn), so c ∈ ext
(
C

w∗)w∗

. Since C
w∗

∩X = C

and ape (C) = ∅ we infer by Theorem 3.8 that c /∈ X. Since X is closed we
get by Hahn-Banach theorem a functional f ∈ X∗ such that f(c) = α > 0
and f(x) = 0 holds for every x ∈ X. Find n ∈ N such that α > 2

n∥f∥;
since c is a weak∗ cluster point of (cn), we can choose it so that f(cn) >

α
2 .

Consequently, since f(xn) = 0 we get

α

2
< f(cn) = f(cn − xn) ⩽ ∥f∥∥cn − xn∥ ⩽

∥f∥
n

<
α

2
,

a contradiction. So the result follows.

Now let us obtain a result which allows us to construct symmetric convex
bounded subsets without APEP points.

Lemma 5.7. Let X be a Banach space and let C ⊆ X be a bounded closed
and convex subset of X such that ape (C) = ∅. Then

ape (co(C ∪ −C)) = ∅.

Proof. Set K := co(C ∪ −C) and D := C
w∗

⊆ X∗∗. We claim that

(5.1) K
w∗

= co(D ∪ −D) = {λx+ (1− λ)y : λ ∈ [0, 1], x ∈ D, y ∈ −D} .

The inclusion ⊇ is clear because D and −D are contained in K
w∗

since K is
weak∗ closed and clearly contains C and −C, so it must contain their weak∗

closures. Since K
w∗

is convex then the inclusion co(D∪−D) ⊆ K
w∗

follows.
For the reverse inclusion observe that co(D ∪−D) is w∗ compact since D is
w∗ compact and by the description given in (5.1). Moreover, it is clear that

co(C ∪ −C) ⊆ co(D ∪ −D) trivally. Consequently K
w∗

= co(C ∪ −C)
w∗

⊆
co(D ∪ −D).

With the above description it is clear that

ext
(
K

w∗)
⊆ ext (D) ∪ ext (−D) .

Consequently, taking closures we infer that

ext
(
K

w∗)w∗

⊆ ext (D)
w∗

∪ −ext (D)
w∗

.

Since ape (C) = ∅, Theorem 3.8 implies that ext (D)
w∗

∩X = ∅, so we get

that ext
(
K

w∗)w∗

∩ X = ∅ and, by Theorem 3.8 again, ape (K) = ∅, as
desired.

Now we are ready to provide the pending proof.

Proof of Theorem 5.5. Since X fails the RNP, by Theorem 5.3 there exists
a subset C ⊆ X such that ape (C) = ∅. By Lemma 5.7 we can assume
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that C is closed, convex, bounded and symmetric. Call D := C
w∗

and, by
Lemma 5.6, we get that

α := dist (ext (D)
w∗

, X) > 0.

Let 0 < ε < α and consider B := C + εBX , which is a closed, bounded,
convex and symmetric subset of X with non-empty interior (thus B is the
unit ball of some equivalent norm on X). Let us prove that ape (B) = ∅. In
order to do so, observe that

B
w∗

= D + εBX∗∗ .

Observe also that ext
(
B

w∗)
⊆ ext (D) + ε ext (BX∗∗). Taking this into

account, we infer that dist (B
w∗

, X) ⩾ α − ε. Indeed, given any c + εx∗∗ ∈
ext
(
B

w∗)
we get that c ∈ ext (D) and x∗∗ ∈ ext (BX∗∗), and given any

x ∈ X we get
∥c+ εx∗∗ − x∥ ⩾ ∥c− x∥ − ε ⩾ α− ε

since ∥c − x∥ ⩾ dist (ext (D)
w∗

, X) = α. This implies that ape (B) = ∅ by
Theorem 3.8. Consequently, the equivalent norm whose unit ball is B does
the trick.

As a consequence of Theorem 5.5 we are now able to obtain the following
characterisation of the RNP.

Corollary 5.8. Let X be a Banach space. The following assertions are
equivalent:

(1) X has the RNP.
(2) The unit ball of any equivalent renorming of X has an APEP.

6. Lipschitz-free spaces

In this section, we will study APEPs of the unit ball of Lipschitz-free
spaces and relate them to extremal structure. We refer the reader to Sec-
tion 2.2 for notation and basic facts. Throughout the section, (M,d) will
denote a complete metric space with base point 0 ∈ M .

We begin by vastly reducing our list of suspects:

Proposition 6.1. Every APEP of BF(M) is either a molecule or 0.

Proof. Since BF(M) = co(Mol (M)), Lemma 3.5 implies that any APEP of

BF(M) must belong to Mol (M)
w
. However, Mol (M)

w ⊆ Mol (M) ∪ {0} by
[21, Proposition 2.9].

By [22, Lemma 4.2], Mol (M) is weakly closed if and only ifM bi-Lipschitz
embeds into Rn for some n. If that is the case, the argument above shows
that any APEP of BF(M) must be a molecule. If M does not bi-Lipschitz
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embed into Euclidean space, then 0 can be or fail to be an APEP of BF(M),
as witnessed by the following examples.

Example 6.2. Let X be any infinite-dimensional uniformly convex Banach
space and M := SX . Then M is uniformly concave and therefore every
molecule in F(M) is a preserved extreme point of BF(M) [41, Theorem 3.39].
Clearly, M does not bi-Lipschitz embed into Euclidean space, as it is not
even locally compact. Thus 0 is an APEP of BF(M) by Theorem 3.8 and
[22, Lemma 4.2].

Example 6.3. Let M := {0} ∪ {en : n ∈ N} ⊂ ℓ1. Clearly, M does not bi-
Lipschitz embed into Euclidean space as it is not totally bounded. However,
F(M) is linearly isometric to ℓ1 (see e.g. [41, Example 3.10]) and therefore
0 is not an APEP of BF(M) by Proposition 4.4.

We do not know of a precise metric condition characterising when 0 is an
APEP of BF(M). But we are able to characterise those molecules that are
APEPs as follows.

Theorem 6.4. Let mxy ∈ F(M) be a molecule. Then the following are
equivalent:

(1) mxy ∈ ape
(
BF(M)

)
,

(2) mxy ∈ dent
(
BF(M)

)
,

(3) there exist mxnyn ∈ dent
(
BF(M)

)
such that xn → x and yn → y.

Proof. The equivalence (2)⇔(3) follows from the fact that all denting points
of BF(M) are molecules and that norm convergence of molecules translates
to convergence of the underlying pair of points. On the other hand, (2) is

equivalent to mxy ∈ dent
(
BF(M)

)w
by [21, Lemma 2.2], and this clearly

implies (1) by Lemma 3.1. So it only remains to be proved that (1) implies

mxy ∈ dent
(
BF(M)

)w
.

Let mxy be an APEP of BF(M) and let W be a weak neighbourhood of
mxy. We will show that W contains a denting point of BF(M) and this
will finish the proof. Apply Lemma 3.6 to mxy, with B = Mol (M). Since
norm and weak convergence of molecules agree, the situation in option 1) of
Lemma 3.6 is impossible, so we deduce that W contains slices of arbitrarily
small diameter. It follows from Remark 2.1 that W contains a slice S =
S(BF(M), f, α) where f is not local. By [40, Proposition 2.7] S, and thus
W , contains a denting point of BF(M). This ends the proof.

We will now use Theorem 6.4 to provide further examples of the interplay
between APEPs and extremality. In Section 3, we showed that APEPs
are not necessarily extreme points. This can also happen to molecules in
Lipschitz-free spaces.

Example 6.5. Let M = {0, 1} × [0, 1] ∪
{
(12 , 0)

}
⊂ R2. Then each mn :=

m(0, 1
n
),(1, 1

n
) is an extreme point of BF(M); in fact, it is preserved because M
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is compact [4, Theorem 4.2]. Moreover, mn converges to m := m(0,0),(1,0),
so m is APEP by Theorem 6.4. But m is not extreme because the segment
between (0, 0) and (1, 0) is not empty.

Observe that, up to this point, we have not obtained any example of a
(non-preserved) extreme point which fails to be an APEP. The next example
shows that this is indeed possible.

Example 6.6. Let M be a uniformly discrete metric space such that there
exists an extreme point mxy ∈ ext

(
BF(M)

)
that is not preserved (such ex-

amples exist, e.g. [4, Example 4.3]). We claim that mxy is not an APEP.
Indeed, by Theorem 6.4, mxy can only be an APEP if there exist preserved
extreme points mxnyn such that xn → x and yn → y but, since M is topo-
logically discrete, this implies that xn = x, yn = y for n large enough, and
thus mxy is preserved.

It is also possible to construct a metric space M such that BF(M) has
a non-preserved extreme point that is the norm limit of preserved extreme
points, hence APEP by Theorem 6.4:

Example 6.7. In R2 with the ℓ1 metric, consider the set N consisting of
the points p = (0, 0), q = (1, 0), and pk = (0, 1k ), qk = (1, 1k ) for k ∈ N. Let
M = N ∪ {xn : n ∈ N}, endowed with the aforementioned metric for N and

d(xn, p) = d(xn, q) =
1
2 + 1

n

d(xn, pk) = d(xn, qk) =
1
2 + 1

k + 1
n

d(xn, xm) = 1 + 1
n + 1

m

for n ̸= m ∈ N. Note that the quantity

d(pk, x) + d(qk, x)− d(pk, qk)

is at least 1
k−

1
k+1 for all k ∈ N and x ∈ M \{pk, qk}, therefore every molecule

mpkqk is a preserved extreme point of BF(M). Since pk → p, qk → q, the
molecule mpq is an APEP by Theorem 6.4. Similarly, the quantity

d(p, x) + d(q, x)− d(p, q)

is strictly positive for x ∈ M \ {p, q}, however its value for x = xn is 2
n ,

which can be made arbitrarily small while d(p, x), d(q, x) > 1
2 . Thus mpq is

an unpreserved extreme point of BF(M).

Observe that Theorem 6.4 reveals that, for a molecule mxy in F(M), if
mxy is an APEP then every weakly open subset W of BF(M) containing
mxy contains slices of arbitrarily small diameter. At this point, it could
be wondered whether, in the particular case of Lispchitz-free spaces, this
fenomenon occurs because, in fact, mxy is contained in non-empty weakly
open subsets of arbitrarily small diameter. In the following example we show
that this does not hold and that it is possible for a molecule mxy to be an
APEP and have the property that every non-empty weakly open subset W
of BF(M) containing mxy satisfies diam (W ) = 2.
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Before exhibiting the example, let us recall that a point x in the unit
sphere of a Banach space X is said to be a ∆-point (respectively super ∆-
point) if every slice (resp. relatively weakly open subset) of the unit ball of
X containing x contains points at distance 2− ε from x for every ε > 0.

Example 6.8. Consider the metric space MV constructed by Veeorg in [39,
Section 3] as follows. In R2, consider the points p = (0, 0) and q = (1, 0)
and, for n ∈ N, the set

Sn =
{
(2−nk, 2−n) : k = 0, 1, . . . , 2n

}
.

Then MV is the set {p, q} ∪
⋃∞

n=1 Sn endowed with the metric

d((x1, y1), (x2, y2)) =

{
|x1 − x2| , if y1 = y2

|y1 − y2|+min {x1 + x2, 2− (x1 + x2)} , if y1 ̸= y2
.

Now let pn = (0, 1
2n+1), qn = (1, 1

2n+1) and set M = MV ∪ {pn, qn : n ∈ N}
with the metric defined by the same formula. See Figure 1.

1/16
1/8

1/4

1/2

p q

p1 q1

p2 q2

p3 q3

Figure 1. The metric space M from Example 6.8.

Similarly to Example 6.7, the molecule mpq is an unpreserved extreme
point of BF(M) that is an APEP. Indeed, any u ∈ M \ {p, q} has the form
u = (x, y) for some y > 0 and therefore

d(p, u) + d(q, u)− d(p, q) = (x+ y) + (1− x+ y)− 1 = 2y

is always positive, but can be made arbitrarily small while keeping e.g. x = 1
2

to make sure that d(p, u) and d(q, u) remain large, so mpq is an unpreserved
extreme point. Moreover, each molecule mpnqn is a denting point of BF(M)

as, given any u = (x, y) ∈ M \ {pn, qn}, a similar computation yields

d(pn, u) + d(qn, u)− d(pn, qn) = 2

∣∣∣∣y − 1

2n + 1

∣∣∣∣
which has a positive lower bound in M . Thus mpq is an APEP of BF(M) by
Theorem 6.4 as pn → p, qn → q.

In this example, mpq is even a ∆-point. This follows from [1, Theorem
6.7] as p and q are discretely connectable in M , i.e. their distance can be
approximated by discrete paths in M with arbitrarily small jumps (passing
through the sets Sn).
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Remark 6.9. Recently, E. Basset, Y. Perreau, A. Procházka and T. Veeorg
announced the result that, in any Lipschitz-free space, every molecule that
is a ∆-point is a super ∆-point. This (still unpublished) result would imply
that the APEP mpq from Example 6.8 is a super-∆ point. In particular,
APEPs can fail to be points of (weak- to norm-)continuity even in Banach
spaces with the RNP.

An even stronger notion is that of Daugavet point, i.e. a point x ∈ SX

such that every slice S of BX contains points at distance 2 − ε from x,
regardless of whether x ∈ S or not. However, for Lipschitz-free spaces,
APEPs of BF(M) can never be Daugavet points, as Daugavet points are at
distance 2 from any denting point by [26, Proposition 3.1].

7. Tensor products

In this section, we aim to study APEPs in projective tensor product
spaces. Following the spirit of previous works dealing with the extremal
structure in projective tensor products like [20, 42], we will focus on studying
the APEP of sets of the form co(C ⊗D) in X⊗̂πY for bounded, closed and
convex subsets C ⊆ X and D ⊆ Y . We refer the reader to Subsection 2.3
for necessary notation and background on tensor product theory.

Let us start with the search of necessary conditions for APEPs in co(C ⊗
D). It is natural that they would have to be elementary tensors. This is
precisely the statement of the next result under appropriate assumptions on
the space K(X,Y ∗).

Theorem 7.1. Let X and Y be Banach spaces such that K(X,Y ∗) is sep-
arating for X⊗̂πY . Let C ⊆ X and D ⊆ Y be bounded, closed and convex
subsets. If z is an APEP of co(C ⊗D) ⊆ X⊗̂πY , then z = x⊗ y for some
x ∈ C and y ∈ D.

This result should be compared with [20, Theorem 1.1], where a similar
statement is proved for preserved extreme points.

Proof. Let z be an APEP of co(C⊗D). An application of Lemma 3.5 yields
that

z ∈ C ⊗D
w
= C

w ⊗D
w
,

thanks to [20, Theorem 2.3]. Finally, since C,D are weakly closed, it follows
that z = x⊗ y for some x ∈ C and y ∈ D.

Remark 7.2. In view of [20, Theorem 1.1] it is natural to suspect that, in
the above theorem, if z = x⊗ y ̸= 0 is an APEP then both x and y should
be APEPs in C and D respectively. However, we will show in Example 7.8
that such result does not hold.

In order to establish sufficient conditions for APEPs of a set of the form
co(C⊗D), the above result says that we can reduce to analysing the elemen-
tary tensors. Now in our first sufficient condition we center our attention
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on [20, Proposition 3.2], where it is proved that if x0 is a strongly exposed
point of C and y0 is a w-strongly exposed point then x0⊗ y0 is a w-strongly
exposed point. However, since in the notion of APEP we do not need to
localise the point x0 ⊗ y0, it seems that the assumptions that x0 is denting
and y0 is APEP should be enough to get that x0 ⊗ y0 is APEP. This is
precisely the content of the following result.

Theorem 7.3. Let X,Y be Banach spaces. Let C ⊆ X and D ⊆ Y be
bounded, closed and convex subsets. Let x0 be a denting point of C and y0
be an APEP of D. Then, x0 ⊗ y0 is APEP of co(C ⊗D).

Proof. We can assume that C,D are both different from {0}, since oth-
erwise co(C ⊗ D) = {0}. Hence, without loss of generality, assume that
supz∈C ∥z∥ = supw∈D ∥w∥ = 1. Let U be a relatively weakly open neigh-
bourhood of x0⊗y0 in co(C⊗D). We may assume that U =

⋂n
i=1 S(co(C⊗

D), Ti, αi) for some T1, . . . , Tn ∈ SL(X,Y ∗) and some α1, . . . , αn > 0. Since
x0⊗y0 ∈ U , we have Ti(x0)(y0) > supz∈co(C⊗D) Ti(z)−αi for every 1 ⩽ i ⩽ n.

Thus, we may find ε0 > 0 so that Ti(x0)(y0) > supz∈co(C⊗D) Ti(z)− αi + ε0
for every 1 ⩽ i ⩽ n. Since x0 ∈ dent (C), there are some δ′ > 0 and x∗ ∈ X∗

with supx∈C x∗(x) = 1 such that diam (S(C, x∗, δ′)) < ε0
4 . Moreover, notice

that y0 belongs to the set

W =
n⋂

i=1

{
y ∈ D : Ti(x0)(y) > sup

z∈co(C⊗D)
Ti(z)− αi + ε0

}
which is a relatively weakly open subset of D. Since y0 is an APEP of D,
there are some δ′′ and y∗ ∈ Y ∗ with supy∈D y∗(y) = 1 such that S (D, y∗, δ′′) ⊆
W . Finally, taking δ = min

{
δ′, δ′′, ε04

}
and considering the non-empty slice

S = S(co(C ⊗D), x∗ ⊗ y∗, η2) where 0 < η < min
{
δ
4 ,

1
2

}
, we conclude that

S ⊆ U , exactly as in the proof of [20, Proposition 3.2]. Thus, x0 ⊗ y0 is an
APEP of co(C ⊗D) as desired.

Now we continue looking for sufficient conditions for a point x0 ⊗ y0 to
be an APEP. Let us consider the following definition from [20].

Definition 7.4. Let X and Y be Banach spaces, and let A ⊆ X⊗̂πY . We
say that u ∈ A has a compact neighbourhood system for the weak topol-
ogy in A if, given any weakly open subset U containing u, there are slices
S(A, Ti, αi) given by compact operators Ti ∈ K(X,Y ∗) such that

u ∈
n⋂

i=1

S(A, Ti, αi) ⊆ U.

Remark 7.5. It is immediate that the above definition is an equivalent refor-
mulation to the definition given in [20, Definition 3.3]. It is also clear that u
has a compact neighbourhood system for the weak topology in A ⊂ X⊗̂πY
if and only if u is a point of cointinuity of the identity map

id : (A, σ(X⊗̂πY,K(X,Y ∗))) → (A,w).
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It is now time for some examples of this situation.

Example 7.6.

(1) Given two Banach spaces X,Y such that L(X,Y ∗) = K(X,Y ∗), it
is clear that every u ∈ A has a compact neighbourhood system for
the weak topology in A for every A ⊆ X⊗̂πY .

(2) Let C ⊆ X andD ⊆ Y be two closed, absolutely convex and bounded
subsets and let x0 ∈ dent (C) , y0 ∈ dent (D). Then x0 ⊗ y0 has a
compact neighbourhood system for the weak topology in co(C⊗D).
Indeed, it is proved in [42, Theorem 1] that given ε > 0 there exist
x∗0 ∈ X∗ and y∗0 ∈ Y ∗ such that x0 ⊗ y0 ∈ S(co(C ⊗D), x∗0 ⊗ y∗0, α)
and that diam (S(co(C ⊗ D), x∗0 ⊗ y∗0, α)) < ε. The result follows
since the operator

x∗0 ⊗ y∗0 : X −→ Y ∗

x 7−→ x∗0(x)y
∗
0

is clearly compact.
(3) In [20, Example 3.8] an equivalent norm | · | on ℓ2 is given such that

e1 is a w-strongly exposed point of B(ℓ2,|·|) but e1 ⊗ e1 is not a w-
strongly exposed point of B(ℓ2,|·|)⊗̂π(ℓ2,|·|). According to [20, Theorem

1.3], the point e1⊗e1 fails to have a compact neighbourhood system
for the weak topology in B(ℓ2,|·|)⊗̂π(ℓ2,|·|).

The following result establishes that APEPs remain stable under tensor
products, provided that a suitable compact neighbourhood system exists.

Theorem 7.7. Let X and Y be two Banach spaces, and let C ⊆ X, D ⊆ Y
be bounded, closed and convex subsets. Let x0 ∈ ape (C) and y0 ∈ ape (D).
Assume that x0⊗y0 has a compact neighbourhood system for the weak topol-
ogy in co(C ⊗D) ⊆ X⊗̂πY . Then x0 ⊗ y0 is an APEP of co(C ⊗D).

This result should be compared with [20, Theorem 1.3], where an analo-
gous statement is proved for w-strongly exposed point. Moreover, we employ
here many ideas from the proof of that result.

Proof. We can assume that C,D are both different from {0}, since oth-
erwise co(C ⊗ D) = {0}. Hence, without loss of generality, assume that
supz∈C ∥z∥ = supw∈D ∥w∥ = 1. Let U be a weak neighbourhood of x0 ⊗ y0

in co(C ⊗ D). By the assumption, we can assume that U =
n⋂

i=1
S(co(C ⊗

D), Ti, αi) for certain compact operators T1, . . . , Tn : X → Y ∗. Furthermore,
we can assume supu∈co(C⊗D) Ti(u) = 1 for every i. Let η > 0 small enough

so that Ti(x0⊗y0) > 1−αi+η holds for every 1 ⩽ i ⩽ n. Moreover, observe

that x0 ∈
n⋂

i=1
{z ∈ C : Ti(z)(y0) > 1 − αi + η}, which is a relatively weakly

open subset of C. Since x0 is an APEP of C there exists a non-empty slice
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S(C, x∗0, δ
′) such that supz∈C x∗0(z) = 1 and that

S(C, x∗0, δ
′) ⊆

n⋂
i=1

{z ∈ C : Ti(z)(y0) > 1− αi + η}.

Now, for every 1 ⩽ i ⩽ n, the set Ti(S(C, x
∗
0, δ

′)) is a relatively compact
subset of Y ∗. Using the compactness condition on all the T ′

is we can find a
finite set x1, . . . , xm ∈ S(C, x∗0, δ

′) so that the balls B(Ti(xj),
η
2 ), 1 ⩽ j ⩽ m,

cover Ti(S(C, x
∗
0, δ

′)) for every 1 ⩽ i ⩽ n. Observe that Ti(xj)(y0) > 1 −
αi + η holds for every 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ m. Consequently,

y0 ∈
n⋂

i=1

m⋂
j=1

{y ∈ D : Ti(xj)(y) > 1− αi + η}.

Since y0 is an APEP ofD we can find a slice S(D, y∗0, δ
′′) such that supw∈D y∗0(w) =

1 and that

S(D, y∗0, δ
′′) ⊆

n⋂
i=1

m⋂
j=1

{y ∈ D : Ti(xj)(y) > 1− αi + η}.

We claim now that

S(C, x∗0, δ
′)⊗ S(D, y∗0, δ

′′) ⊂
n⋂

i=1

S
(
co(C ⊗D), Ti, αi −

η

2

)
.

Indeed, let x ∈ S(C, x∗0, δ
′) and y ∈ S(D, y∗0, δ

′′). We have, for every i ∈
{1, . . . , n}, an index ji ∈ {1, . . . ,m} such that ∥Ti(x) − Ti(xji)∥ < η

2 . On

the other hand, since S(D, y∗0, δ
′′) ⊆

n⋂
i=1

m⋂
j=1

{y ∈ D : Ti(xj)(y) > 1− αi + η}

we have that, for every 1 ⩽ i ⩽ n, Ti(xji)(y) > 1− αi + η. Consequently

Ti(x)(y) ⩾ Ti(xji)(y)− ∥Ti(xji)− Ti(x)∥ > 1− αi + η − η

2
= 1− αi +

η

2
.

Take δ := min{δ′, δ′′, η
8max1⩽i⩽n ∥Ti∥ ,

1
2} and consider S := S(co(C⊗D), x∗0⊗

y∗0, δ
2) which is non-empty since supz∈C x∗0(z) = 1 = supw∈D y∗0(w). More-

over,

S ⊆ co(S(C ⊗D,x∗0 ⊗ y∗0, δ)) + 4δBX⊗̂πY

by virtue of [20, Lemma 2.1]. Now, given 1 ⩽ i ⩽ n, since 1− δ ⩾ max{1−
δ′, 1−δ′′} we conclude that every element x⊗y of S(C⊗D,x∗0⊗y∗0, δ) satisfies
x∗0(x) > 1 − δ′ and y∗0(y) > 1 − δ′′, so Ti(x)(y) > 1 − αi +

η
2 . Since Ti is a

linear continuous functional on X⊗̂πY we conclude that Ti(z) ⩾ 1− αi +
η
2

holds for every 1 ⩽ i ⩽ n and every z ∈ co(S(C⊗D,x∗0⊗y∗0, δ)). Henceforth,
given z ∈ S we can find u ∈ co(S(C⊗D,x∗0⊗y∗0, δ)) and v ∈ BX⊗̂πY

so that
z = u+ 4δv. Now, given 1 ⩽ i ⩽ n we get

Ti(z) = Ti(u) + 4δTi(v) ⩾ 1− αi +
η

2
− 4δ ∥Ti∥ > 1− αi,
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from where we conclude that z ∈
n⋂

i=1
S(co(C ⊗D), Ti, αi) = U . This proves

that S ⊆ U .
Summarising, we have proved that every relatively weakly open subset of

co(C ⊗D) containing x0 ⊗ y0 actually contains a non-empty slice S(co(C ⊗
D), x∗0⊗y∗0, α). From here we conclude that x0⊗y0 is an APEP, as requested.

Let us now observe that we do not need both elements x0 and y0 to be
APEPs in Theorem 7.7.

Example 7.8. Let X = C([0, 1]) and let Y = ℓp for 2 < p < ∞. Clearly
both X and Y have the AP and, moreover,

L(X,Y ∗) = L(C(K), ℓp′) = K(C(K), ℓp′) = K(X,Y ∗)

by [3, Exercise 6.10] since 1 < p′ < 2. Let x = 1
2f where f(t) = 1 for every

t ∈ [0, 1], and take y ∈ SY . It is clear that x is not an APEP of BX by
Theorem 4.1. However x⊗y = f⊗

(
1
2y
)
is an APEP by Theorem 7.7 since f

is an APEP of BX (Theorem 4.1) and 1
2y is an APEP of BY by Example 3.3.

It is clear that in above example is based on the absence of uniqueness in
the representation of an elementary tensor in a projective tensor product.
In order to deal with this difficulty, and taking into account the hypotheses
in Theorems 7.1 and 7.7, we will end the section by studying APEPs under
the assumption that K(X,Y ∗) = L(X,Y ∗), in other words, that every T ∈
L(X,Y ∗) is compact. If we additionally require that either X or Y has the
AP then we get

(X⊗̂πY )∗ = L(X,Y ∗) = K(X,Y ∗) = X∗⊗̂εY
∗.

Note that, for instance, this is the case when X = ℓp and Y = ℓq′ with
1 ⩽ q < p < ∞ and 1/q + 1/q′ = 1, thanks to Pitt’s theorem (see e.g.
Proposition 4.49 in [17]); a version for Lorentz and Orlicz sequence spaces
holds too [7]. Recall also that for a reflexive space X and a Banach space
Y , one of them with the compact approximation property, the condition
K(X,Y ) = L(X,Y ) is equivalent to the fact that every operator from X
to Y attains its norm. This is shown in [13], extending previous results of
Holub and Mujica in the reflexive case.

In the next result we study APEPs of the unit ball of a projective tensor
product X⊗̂πY under the assumption that L(X,Y ∗) = K(X,Y ∗). The
main technique will be the one used in [32, Theorem 2.1]. As a byproduct,
we obtain a description of all preserved extreme points in this case.

Theorem 7.9. Let X,Y be Banach spaces such that X∗ or Y ∗ has the AP
and K(X,Y ∗) = L(X,Y ∗). Let z ∈ BX⊗̂πY

with z ̸= 0. Then:

a) z ∈ ape
(
BX⊗̂πY

)
if, and only if, z = x⊗ y for some x ∈ ape (BX)

and y ∈ ape (BY ).
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b) z ∈ pre-ext
(
BX⊗̂πY

)
if, and only if, z = x ⊗ y for some x ∈

pre-ext (BX) and y ∈ pre-ext (BY ).

For the proof, we will make use of the following lemma, whose statement
should be compared with [20, Theorem 2.3].

Lemma 7.10. Let X,Y be Banach spaces. If C ⊆ X∗ and D ⊆ Y ∗ are
bounded subsets, then

C
w∗

⊗D
w∗

= C ⊗D
w∗

,

considering X∗ ⊗ Y ∗ ⊆ (X⊗̂εY )∗.

Proof. If C = {0} or D = {0} then the result is trivial, so assume C,D ̸=
{0}. First of all, since C and D are bounded we may assume that

sup
x∗∈C

∥x∗∥ = 1 = sup
y∗∈D

∥y∗∥ .

We show first that C
w∗

⊗ D
w∗

⊆ C ⊗D
w∗

. For each x∗ ∈ X∗, define the
operator Tx∗ : X⊗̂εY → Y given by Tx∗(x ⊗ y) = x∗(x)y for all x ∈ X
and y ∈ Y , which extends by linearity and continuity to the whole X⊗̂εY .
Hence, the adjoint T ∗

x∗ : Y ∗ → (X⊗̂εY )∗ is given by

T ∗
x∗(y∗) = x∗ ⊗ y∗ ∈ (X⊗̂εY )∗, ∀y∗ ∈ Y ∗,

and it is w∗-w∗-continuous. Therefore,

{x∗} ⊗D
w∗

= T ∗
x∗

(
D

w∗)
⊆ T ∗

x∗(D)
w∗

= {x∗} ⊗D
w∗

⊆ C ⊗D
w∗

,

and this holds for every x∗ ∈ C. So, C⊗D
w∗

⊆ C ⊗D
w∗

and also C
w∗

⊗D ⊆
C ⊗D

w∗
, by a symmetric argument. Hence,

C
w∗

⊗D
w∗

⊆ C
w∗

⊗D
w∗

⊆ C ⊗D
w∗w

∗

= C ⊗D
w∗

.

It remains to prove that C
w∗

⊗ D
w∗

⊇ C ⊗D
w∗

. Take z ∈ C ⊗D
w∗

and pick a net (x∗α ⊗ y∗α)α ⊆ C ⊗D converging weak* to z. Since C
w∗

and

D
w∗

are weak*-compact, we may assume (by taking subnets if necessary)

that (x∗α)α and (y∗α)α converge weak* to some x∗ ∈ C
w∗

and y∗ ∈ D
w∗

respectively. Let us show that (x∗α ⊗ y∗α)α converges weak* to x∗ ⊗ y∗ in
(X⊗̂εY )∗. It is clear that ((x∗α ⊗ y∗α)(x⊗ y))α = (x∗α(x)y

∗
α(y))α converges to

x∗(x)y∗(y) = (x∗⊗ y∗)(x⊗ y) for all x ∈ X and y ∈ Y . By linearity, we also
have (x∗α ⊗ y∗α)(v) → (x∗ ⊗ y∗)(v) for v ∈ X ⊗ Y . Finally, take u ∈ X⊗̂εY
and ε > 0. On the one hand, pick v ∈ X⊗Y such that ∥u− v∥ ⩽ ε

4 . Hence,
for every α, we have

|(x∗α ⊗ y∗α − x∗ ⊗ y∗) (u− v)| ⩽ (∥x∗α∥ ∥y∗α∥+ ∥x∗∥ ∥y∗∥) ε
4
⩽

ε

2
.

On the other hand, pick β such that

|(x∗α ⊗ y∗α) (v)− (x∗ ⊗ y∗) (v)| < ε

2
, ∀α ≽ β.
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Then,

|(x∗α ⊗ y∗α − x∗ ⊗ y∗)(u)| < ε

2
+

ε

2
= ε, ∀α ≽ β,

so (x∗α ⊗ y∗α)α converges weak* to x∗ ⊗ y∗. By uniqueness of the limit,

z = x∗ ⊗ y∗ ∈ C
w∗

⊗D
w∗

.

Now we can provide the pending proof.

Proof of Theorem 7.9. a) Thanks to Theorem 7.7 we know that if x is an
APEP of BX and y is an APEP of BY , then x ⊗ y is APEP of BX⊗̂πY

.
Conversely, assume that z is APEP of BX⊗̂πY

. By Theorem 7.1, z ∈ BX ⊗
BY . It remains to be shown that z = x⊗ y for some x ∈ ape (BX) and y ∈
ape (BY ). By virtue of Theorem 3.8, that is equivalent to x ∈ ext (BX∗∗)

w∗

and y ∈ ext (BY ∗∗)
w∗

. Furthermore, since z ∈ BX⊗̂πY
is APEP we have

z ∈ ext
(
B(X⊗̂πY )∗∗

)w∗

∩BX⊗̂πY
. Therefore, let us show that

(7.1) ext (BX∗∗)
w∗

⊗ ext (BY ∗∗)
w∗

= ext
(
B(X⊗̂πY )∗∗

)w∗

Indeed,

ext (BX∗∗)
w∗

⊗ ext (BY ∗∗)
w∗

= ext (BX∗∗)⊗ ext (BY ∗∗)
w∗

,

using Lemma 7.10. Finally, ext (BX∗∗) ⊗ ext (BY ∗∗) = ext
(
B(X∗⊗̂εY ∗)∗

)
by [32, Theorem 1.1] and X∗⊗̂εY

∗ = K(X,Y ∗) = L(X,Y ∗) = (X⊗̂πY )∗,
thanks to [33, Corollary 4.13]. Hence,

ext
(
B(X∗⊗̂εY ∗)∗

)w∗

= ext
(
B(X⊗̂πY )∗∗

)w∗

.

This proves (7.1).
Finally, since z is an APEP of BX⊗̂πY

, by (7.1) we have z = x∗∗⊗ y∗∗ for

some x∗∗ ∈ ext (BX∗∗)
w∗

⊂ BX∗∗ and y∗∗ ∈ ext (BY ∗∗)
w∗

⊂ BY ∗∗ . Moreover,
thanks to Theorem 7.1, we also have z ∈ BX ⊗ BY . It follows easily that
x∗∗ ∈ BX and y∗∗ ∈ BY , because z ̸= 0. Thus, x∗∗ is an APEP of BX and
y∗∗ is an APEP of BY , which concludes the proof of a).

b) The proof follows immediately by the description of the extreme points
of B(X⊗̂πY )∗∗ given before.

Now the following remark is pertinent.

Remark 7.11.

(1) In [20, Question 3.9] it is asked whether x⊗y is a preserved extreme
point of BX⊗̂πY

when x ∈ BX and y ∈ BY are preserved extreme
points of BX and BY respectively. Theorem 7.9 gives an affirmative
answer under the assumption that L(X,Y ∗) = K(X,Y ∗) and that
either X∗ or Y ∗ has the AP.
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(2) In connection with the above question, in [20, Example 3.8], an
equivalent norm | · | on ℓ2 and a point x0 ∈ B(X,|·|) are given such
that x0 is w-strongly exposed point (in particular, it is a preserved
extreme point) by a certain functional f ∈ SX∗ such that x0 ⊗ x0 is
not a w-strongly exposed point.

It is a natural question whether x0 ⊗ x0 is a preserved extreme
point, and indeed it seems to be the first example to check in order
to look for a negative answer to [20, Question 3.9] above.

Let us point out, however, that x0⊗x0 is an extreme point. Indeed,
it is not difficult to prove that x0⊗x0 is an exposed point (by f⊗f).

Moreover, it can be proved that x0 ⊗ x0 ∈ dent
(
B(X,|·|)⊗̂π(X,|·|)

)
, so

in particular it is an APEP. If x0 ⊗ x0 is not a preserved extreme
point, then this furnishes another example of an extreme, almost
preserved extreme point that is not preserved extreme.

We finish by extending Theorem 7.9 from the case of the unit ball of a
projective tensor product to the case of co(C ⊗ D) when C and D have
non-empty interior.

Theorem 7.12. Let X and Y be two Banach spaces such that L(X,Y ∗) =
K(X,Y ∗) and such that either X or Y has the AP. Let C ⊆ X and D ⊆ Y be
two bounded, closed, convex and symmetric subsets with non-empty interior.
Given z ∈ co(C ⊗D) with z ̸= 0 we have:

a) z ∈ ape (co(C ⊗D)) if, and only if, z = x⊗ y for some x ∈ ape (C)
and y ∈ ape (D).

b) z ∈ pre-ext (co(C ⊗D)) if, and only if, z = x ⊗ y for some x ∈
pre-ext (C) and y ∈ pre-ext (D).

Proof. Let us begin by observing that 0 is an interior point of C (the same
holds for D). Indeed, take any interior point u ∈ C and δ > 0 such that
u + δB0

X ⊆ C, where B0
X stands for the open unit ball. By symmetry, we

also have −u+ δB0
X ⊂ C. It follows that δB0

X ⊂ C since C is convex.
Now, by the properties of C, we have that C is the unit ball of some

equivalent norm on X. We denote by X̃ such an equivalent renorming for
which BX̃ = C. Similarly, we define Ỹ to be an equivalent renorming of Y

such that BỸ = D. Observe that by the assumptions either X̃ or Ỹ has the

AP, and that L(X̃, Ỹ ∗) = K(X̃, Ỹ ∗). Finally, note that

BX̃⊗̂πỸ
= co(BX̃ ⊗BỸ ) = co(C ⊗D).

Now the conclusion follows by Theorem 7.9 since X⊗̂πY and X̃⊗̂πỸ are
isomorphic Banach spaces, so the weak∗ topologies of their corresponding
biduals are the same.

Remark 7.13. The above result should be compared with [32, Theorem 2.2],
which generalises [32, Theorem 1.1] from the unit ball of the dual of a space
of operators to certain weak∗ compact neighbourhoods of 0 in such space.
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8. Concluding remarks and open questions

In this section we collect some comments and open questions which are
derived from our work.

From our study of APEP in the unit ball of ℓ1-sums of spaces, the following
remains open.

Question 8.1. Let {Xi : i ∈ I} an arbitrary infinite family of Banach
spaces and let X be its ℓ1-sum. If 0 ∈ BX is APEP in BX , must there exist
i such that 0 ∈ Xi is APEP in BXi?

For the case of ℓp-sums, in Proposition 4.9 we have characterised when
the norm-one elements are APEP of the unit ball. However, we were unable
to describe those APEP whose norm is strictly smaller than 1.

Question 8.2. Let X be the ℓp-sum of a family {Xi : i ∈ I} of Banach
spaces, where 1 < p < ∞, and let (xi) ∈ BX with ∥(xi)∥ < 1. When is (xi)
an APEP of BX?

Even though we do not have a complete characterisation, let us now
present a sufficient condition concerning the above question.

Proposition 8.3. Let X be the ℓp-sum of a family {Xi : i ∈ I} of Banach
spaces, where 1 < p < ∞, and let (xi) ∈ BX with ∥(xi)∥ < 1. Set J := {i ∈
I : ∥xi∥ ̸= 0}. Assume that there exists i0 ∈ I \ J such that 0 is APEP in
BXi0

and that
xj

∥xj∥ is APEP in BXj for every j ∈ J . Then (xi) is APEP in

BX .

Proof. The proof will be quite similar to that of Proposition 4.9. Let U
be a weak∗ neighbourhood of (xi) in X∗∗. We will show that U intersects
ext (BX∗∗) and this will be enough by Theorem 3.8. Since the weak∗ topology
of X∗∗ is the product topology of the weak∗ topologies in X∗∗

i , we may
assume that U =

∏
i∈I Ui where Ui is a weak∗ neighbourhood of xi (or

X∗∗
i ) for each i ∈ I. Given j ∈ J , since xj ̸= 0 then, by assumption

and Theorem 3.8, there exists ej ∈ ext
(
BX∗∗

i

)
such that ∥xj∥ ej ∈ Uj .

Moreover, since 0 is an APEP of BXi0
we may select ei0 ∈ ext

(
BX∗∗

i0

)
such

that (1− ∥(xi)∥p)
1
p ei0 ∈ Ui0 . Let y = (yi) ∈ X∗∗ be defined by

yi =


∥xi∥ ei , if i ∈ J

(1− ∥(xi)∥p)
1
p ei0 , if i = i0

0 , otherwise.
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Note that y ∈ U and

∥y∥ =

(∑
i∈I

∥yi∥p
)1/p

=

∑
j∈J

∥xj∥p +
(
(1− ∥(xi)∥p)

1
p

)p1/p

=

∑
j∈J

∥xj∥p + 1−
∑
j∈J

∥xj∥p
 1

p

= 1

since (xi) ∈ SX , so y ∈ ext (BX∗∗) by (4.2). This ends the proof.

Another question coming from Subsection 4.3 is the following.

Question 8.4. Let {Xi : i ∈ I} be an arbitrary infinite family of Banach
spaces and let X be its ℓ∞-sum. Can necessary or sufficient conditions for
a point (xi) ∈ BX to be APEP be given?

Regarding Lipschitz-free spaces, in Section 6 we proved that every APEP
ofBF(M) must be either a molecule or 0, and we characterised those molecules
that are APEP. We showed that 0 can be an APEP, but only if M does not
bi-Lipschitz embed in Rn, and that this necessary condition is not sufficient
(Examples 6.2 and 6.3). The following remains open.

Question 8.5. For which metric spaces M is 0 an APEP of BF(M)?

Finally, let us collect some open questions from our results in Section 7.
First of all, concerning Theorem 7.1 we wonder the following.

Question 8.6. In the statement of Theorem 7.1, can we infer that if z ̸= 0
then x and y are APEP in C and D respectively?

At a first glance it seems that from Example 7.8 the answer to the above
question should be no. Observe, however, that the actual problem there is
the existence of an appropriate representation of the element z as an ele-
mentary tensor of APEP, which certainly does exist in the above mentioned
Example 7.8.

Our last question has to do with the possibility of removing the assump-
tion of the existence of a compact neighbourhood system for the weak topol-
ogy in Theorem 7.7.

Question 8.7. Let X and Y be Banach spaces, and let C ⊆ X, D ⊆ Y
be symmetric bounded closed convex subsets. If x0 ∈ C and y0 ∈ D are
APEPs, is x0⊗y0 an APEP of co(C⊗D)? Can we obtain this at least when
C = BX and D = BY ?

We conclude this section by presenting an alternative proof of Theo-
rem 5.3. This proof, inspired by a construction due to W. Schachermayer,
A. Sersouri, and E. Werner [35], offers a more geometric perspective, in
contrast to the measure-theoretic approach developed in Section 5.
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We need the following elementary result, whose proof is included for com-
pleteness.

Lemma 8.8. Let C be a convex set and let y ∈ X such that y /∈ C. Then

dist (y, C) = dist (y, C
w∗

),

where the weak-star closure above is taken in X∗∗.

Proof. Take any 0 < r < dist (y, C). Then C and B(x, r) can be separated
by a hyperplane determined by some x∗ ∈ X∗. Then the same hyperplane

separates B(x, r)
w∗

and C
w∗

in X∗, thus dist (y, C
w∗

) ⩾ r.

Following [35], for a measurable subset A ⊂ [0, 1] with positive measure,
we denote

FA = {f ∈ L1[0, 1] : f = f · χA, f ⩾ 0, ∥f∥1 = 1}.

Second proof of Theorem 5.3. First, note that we may assume that X is
separable. Indeed, ifX fails the RNP then there is a separable Y ⊂ X failing
the RNP. Now, for a bounded closed convex set C ⊂ Y and a point x0 ∈ C,
we have that x0 ∈ ape (C) as a subset of Y if and only if x0 ∈ ape (C) as a
subset of X, since the weak topology in Y coincides with the weak topology
inherited from X.

Now, let X be a separable Banach space failing the RNP. We will show

that there is a bounded closed convex set C ⊂ X with dist

(
X, ext

(
C

w∗)w∗)
>

0 (and so, by Theorem 3.8, ape (C) = ∅).
SinceX fails the RNP, there is a non-representable operator T : L1[0, 1] →

X. Let (yn)
∞
n=1 be a dense sequence in X. The proof of Theorem 1.1 in [35]

shows that there exists γ > 0 and subsets Dn
1 , . . . , D

n
N(n) ⊂ [0, 1] such that,

if we denote E :=
⋂∞

n=1

⋃N(n)
i=1 Dn

i and En
i = E ∩Dn

i , we have:

a) dist (yn, T (FDn
i
)) > γ for all i ∈ {1, . . . , N(n)} and n ∈ N.

b) For each n ∈ N, every extreme point y∗∗ of T (FE)
w∗

belongs to

T (FEn
i
)
w∗

for some i ∈ {1, . . . , N(n)}.
We claim that C = T (FE) satisfies the desired property. First, note that
C is bounded, closed and convex (since FE is a convex set). Now, let

y∗∗ ∈ ext
(
C

w∗)w∗

and take a net (y∗∗s )s ⊂ ext
(
C

w∗)
with y∗∗s

w∗
→ y∗∗. Fix

n ∈ N. By property b) above, there is in ∈ {1, . . . , N(n)} such that the net

(y∗∗s )s is frequently in T (FEn
in
)
w∗

. Thus, y∗∗ ∈ T (FEn
in
)
w∗

. By Lemma 8.8,
we get

dist (yn, y
∗∗) ⩾ dist (yn, T (FEn

in
)
w∗

) = dist (yn, T (FEn
in
))

⩾ dist (yn, T (FDn
in
)) > γ

and so dist (X, y∗∗) ⩾ γ. This proves the desired claim.
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L’Université Pierre et Marie Curie, vol.36, 1979.

[10] J. Bourgain and M. Talagrand, Dans un espace réticulé, la propriété de Radon-
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