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1 Rectangles and partitions

In all that follows we will assume that the dimension of the space is a fixed
number d ∈ N. The case d = 1 is the one dimensional Riemann integral that
has been studied previously in first year, but the characterizations of Riemann
integrability in terms of continuity point are not likely studied in that setting.
A rectangle in Rd will always be a compact rectangle R = [a1, b1]×· · ·× [ad, bd]
unless we specify other kind of rectangle (open). The d-dimensional volume of
the rectangle is the nonnegative number

vol(R) = (b1 − a1)(b2 − a2) . . . (bd − ad)
The rectangle is non degenerate if vol(R) > 0. Clearly, the topological interior
of R is the set

(a1, b1)× · · · × (ad, bd)

Two rectangles R1 and R2 are said not overlapping if they meet only on their
borders.

Any non degenerate rectangle R can be tiled with smaller non degener-
ate rectangles {Ri}ni=1 which are pairwise not overlapping. To see that, just
consider the rectangles of the form I1 × · · · × Id where each Ik is an interval
coming from a finite partition of [ak, bk]. Then arrange all these rectangles into
a sequence {Ri}ni=1. The tiling {Ri}ni=1 of R obtained in this way is called a
grill of R. It is not difficult to see that vol(R) =

∑n
i=1 vol(Ri) in this case, but

something more general is true. Given a rectangle R, a collection π = {Ri}ni=1

is said a partition of R if they are not overlapping and
⋃n

i=1Ri = R.

Proposition 1.1. If {Ri}ni=1 is a partition of a rectangle R, then

vol(R) =
n∑

i=1

vol(Ri).
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Proof. Assume that R = [a1, b1] × · · · × [ad, bd] is non degenerate, since in
other case the result is trivial. As well, we may assume that {Ri}ni=1 contain
no degenerate rectangle, since after removing them we still have

⋃n
i=1Ri = R

(the union of the interiors are dense in R). Fix a coordinate 1 ≤ k ≤ d. The
k-projection of Ri is a subinterval of [ak, bk]. Consider the one-dimensional
partition of [ak, bk] generated for all the endpoints of such intervals for 1 ≤
i ≤ n, and then consider the grill {R′j}mj=1 obtained form those intervals by
cartesian products. For each 1 ≤ j ≤ m there is exactly one 1 ≤ i ≤ n
such that R′j ⊂ Ri since both have nonempty interior. Consider the sets
Ai = {j : R′j ⊂ Ri} for 1 ≤ i ≤ n which are disjoint and

⋃n
i=1Ai = {1, . . . ,m}.

Observe that {R′j}j∈Ai
is a partition of Ri. Now

n∑
i=1

vol(Ri) =
n∑

i=1

∑
j∈Ai

vol(R′j) =
m∑
j=1

vol(R′j) = vol(R)

With similar arguments it is possible to prove the following

Proposition 1.2. If {Ri}ni=1 is collection of non overlapping rectangles and
{R′j}mi=1 is another collection of rectangles such that

⋃n
i=1Ri ⊂

⋃m
j=1R

′
j, then∑n

i=1 vol(Ri) ≤
∑m

j=1 vol(R′j).

A partition π′ = {R′j}mj=1 is finer than π = {Ri}ni=1 if for every j : 1 . . .m
there is i : 1 . . . n such that R′j ⊂ Ri. Observe that in this case we have

Ri =
⋃
{R′j : R′j ⊂ Ri}.

Given two partitions π = {Ri}ni=1 and π′ = {R′j}mj=1 is always possible to
find a third partition which is finer. Just take the rectangles Ri ∩ R′j having
nonempty interior.

2 Integrals on compact rectangles

Given a bounded function f : R → R defined on a rectangle and partition
π = {Ri}ni=1 of R, we consider the numbers

L(f, π) =
n∑

i=1

inf{f,Ri}vol(Ri)
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U(f, π) =
n∑

i=1

sup{f,Ri}vol(Ri)

named lower and upper sums respectively. Observe that for π1 ≤ π2 partitions
of R we always have

L(f, π1) ≤ L(f, π2) ≤ U(f, π2) ≤ U(f, π1)

The Darboux lower and upper integrals of f (on R) are defined this way∫
f = sup{L(f, π) : π partition of R}

∫
f = inf{U(f, π) : π partition of R}.

Definition 2.1. A bounded function f : R→ R is said Riemann integrable (on

R) if
∫
f =

∫
f . In that case, its integral (in Riemann sense) is that common

value
∫
f =

∫
R
f :=

∫
f =

∫
f .

Recall that the oscillation of a function f : R → R on a set A ⊂ R is the
number

osc(f, A) = sup{|f(x)− f(y)| : x, y ∈ A}
In order to establish the properties of integrable functions the following crite-
rion will be very useful.

Proposition 2.2. A bounded function f : R → R is Riemann integrable if
and only if for every ε > 0 there is a partition π = {Ri}ni=1 of R such that

n∑
i=1

osc(f,Ri)vol(Ri) < ε

Hint of Proof. Just notice that osc(f,Ri) = sup{f,Ri} − inf{f,Ri}.

The first application provides us with an important class of integrable func-
tions.

Corollary 2.3. If f : R→ R is continuous, then it is Riemann integrable.

Proof. Since R is compact, then f is uniformly continuous. Given ε > 0, take
a partition π = {Ri}ni=1 made of rectangles small enough to guarantee that
osc(f,Ri) < ε/vol(R).

3



Proposition 2.4. Let R(R) denote the set of functions which are Riemann
integrable on R. Then

1. R(R) is a vector space and
∫
R

(αf + βg) = α
∫
R
f + β

∫
R
g whenever

f, g ∈ R(R) and α, β ∈ R.

2. R(R) is stable by products (so it is an algebra).

3. If f, g ∈ R(R) and f ≤ g, then
∫
R
f ≤

∫
R
g.

4. If f ∈ R(R), then f+, f−, |f | ∈ R(R) and |
∫
R
f | ≤

∫
R
|f |.

5. If f ∈ R(R) and S ⊂ R a rectangle, then f |S ∈ R(S).

6. If f ∈ R(R) and {Ri}ni=1 is a partition of R, then
∫
R
f =

∑n
i=1

∫
Ri
f .

Hint of Proof. Observe that∫
R

f +

∫
R

g ≤
∫
R

(f + g) ≤
∫
R

(f + g) ≤
∫
R

f +

∫
R

g

and ∫
R

αf = α

∫
R

f,

∫
R

αf = α

∫
R

f

for α > 0, while if α < 0 then∫
R

αf = α

∫
R

f,

∫
R

αf = α

∫
R

f.

Integrability of products can be reduced to integrability of squares of positive
functions. In such a case, we have

osc(f 2, A) ≤ 2 sup{f, A}osc(f, A)

which is suitable for that purpose.

3 Integrability and continuity points

The goal of this section is to give a characterization of Riemann integrability
by means of the set of continuity points of the function. Let us begin with a
simple but useful observation.
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Proposition 3.1. If f ∈ R(R), f ≥ 0 and
∫
R
f = 0, then f(x) = 0 whenever

x ∈ R is a point of continuity of f .

A bounded set A ⊂ Rd is said of null content if for every ε > 0 there is
a family of rectangles {Ri}ni=1 such that A ⊂

⋃n
i=1Ri and

∑n
i=1 vol(Ri) < ε.

Notice that being of content null is stable by subsets, finite unions and closures.

A set A ⊂ Rd is said of null measure if for every ε > 0 there is a family of
rectangles {Ri}∞i=1 such that A ⊂

⋃∞
i=1Ri and

∑∞
i=1 vol(Ri) < ε. Measure null

sets are stable by subsets and countable unions. Of course, content null sets
are measure null, but the converse is not true: just consider A = [0, 1]∩Q. As
the countable union of its singletons it is of null measure. On the other hand,
A = [0, 1] so this set cannot be of null content. Notice that a compact set of
null measure is of null content since there is no restriction in considering the
cover made of open rectangles (slightly larger ones).

Given a function f : R → R, we may define its oscillation at some x ∈ R
as

osc(f, x) = inf{osc(f, U) : U neighborhood of x}.
Observe that f is continuous at x if and only if osc(f, x) = 0. Moreover, for
every δ > 0 the set {x ∈ R : osc(f, x) < δ} is open (relatively to R). The
following is the celebrated Riemann-Lebesgue characterization of the Riemann
integrability.

Theorem 3.2. Let f : R→ R be a bounded function defined on a non degen-
erate compact rectangle R ⊂ Rd. The following statements are equivalent:

i) f is Riemann integrable on R;

ii) {x ∈ R : osc(f, x) ≥ δ} is of null content for every δ > 0;

iii) the set of discontinuity points of f is of null measure.

Proof. Note that the equivalence between ii) and iii) is consequence of this
set equality

{x ∈ R : osc(f, x) > 0} =
∞⋃
n=1

{x ∈ R : osc(f, x) ≥ 1/n}

bearing in mind that the first are the discontinuity points of f and the second
is represented as a union of compact subsets of R.
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Suppose that f is Riemann integrable. For ε, δ > 0, take a partition {Ri}ni=1

of R into rectangles such that

n∑
i=1

osc(f,Ri)vol(Ri) < δε

Consider the open set O =
⋃n

i=1R
◦
i . If y ∈ O ∩ {x ∈ R : osc(f, x) > δ}, then

osc(f,Ri) > δ if y ∈ Ri. Take N = {i : 1 ≤ i ≤ n, osc(f,Ri) > δ} and observe
that

δ
∑
i∈N

vol(Ri) <
∑
i∈N

osc(f,Ri)vol(Ri) < δε

following that O ∩ {x ∈ R : osc(f, x) > δ} is covered by {Ri}i∈N . Since
R \ O =

⋃n
i=1 ∂Ri is of null content and ε > 0 arbitrary, we deduce that

{x ∈ R : osc(f, x) > δ} is of null content.
Supose now that statement ii) holds. Given ε > 0, set M = osc(f,R) and
take a cover {Sj}mj=1 by open rectangles of the set {x : osc(f, x) ≥ ε/vol(R)}
such that

∑m
j=1 vol(Sj) < ε/M . If O =

⋃m
j=1 Sj, then R \O is compact. Every

x ∈ R \O has an open neighborhood Ux such that osc(f, Ux) < ε/vol(R). Let
ξ > 0 be the Lebesgue number of the covering {Ux}x∈R\O. Note that R\O is a
finite union of non overlaping rectangles, that can be decomposed into smaller
nonoverlaping rectangles of diameter less than ξ. That family of rectangles
can be extended to a partition {Ri}ni=1 of R adding rectangles filling R ∩ O.
With all these ingredients we have

n∑
i=1

osc(f,Ri)vol(Ri) =
∑
R◦

i⊂O

osc(f,Ri)vol(Ri) +
∑

Ri⊂R\O

osc(f,Ri)vol(Ri)

≤M
∑
R◦

i⊂O

vol(Ri) +
ε

vol(R)

∑
Ri⊂R\O

vol(Ri) ≤M
ε

M
+

ε

vol(R)
vol(R) = 2ε.

That proves the Riemann integrability of f .

Corollary 3.3. If f ∈ R(R), f ≥ 0 and
∫
R
f = 0, then {x ∈ R : f(x) 6= 0} is

of null measure.

4 Integration on domains

Let D ⊂ Rd a bounded subset and f : D → R a bounded function. We say
that f is Riemann integrable on D if given a compact rectangle R ⊃ D, the
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function f̃ : R→ R defined as f̃(x) = f(x) if x ∈ D and f(x) = 0 if x ∈ R \D
is Riemann integrable on R. In such a case, we take∫

D

f :=

∫
R

f̃ .

It is not difficult to check that the definition is independent of the chosen rect-
angle R, and taking R(D). Properties of function integrables on rectangles
extend naturally to R(D). In a similar fashion, for f : Rd → R with compact
support, that is, if the set {x ∈ Rd : f(x) 6= 0} is bounded, we may define

∫
f

in terms of integration on rectangles.

The integrability of f : D → R depends on the continuity points of the
extended function f̃ which in turn depends both on the values of f and the
“distribution” of D into Rd. It seems to be a good idea to investigate the sets
of Rd where the continuous functions, at least, are integrable.

Definition 4.1. A bounded subset A ⊂ Rd is said Jordan measurable (or
Jordan domain) if its indicator function χA is Riemann integrable. In such a
case, the number c(A) =

∫
χA is called the Jordan content of A.

Observe that null content sets are those Jordan measurable sets having
content zero. For a bounded set A ⊂ Rd we may define the inner content

c∗(A) =
∫
χA and the outer content as c∗(A) =

∫
χA. We have that a bounded

setA is measurable Jordan if and only if c∗(A) = c∗(A), whose interpretation
is related to the Greek’s exhaustion method for areas and volumes.

Proposition 4.2. A bounded subset A ⊂ Rd is Jordan measurable if and only
if its boundary ∂A is of null content.

Proof. The discontinuities of χA happen exactly at the points of ∂A.

We have defined the Jordan content from the Riemann integral. The other
way around is posible as shows the following result. The details of the proof
are left to the reader.

Proposition 4.3. Let R ⊂ Rd be a rectangle.

1. If f : R → [0,+∞) a bounded function and consider F = {(x, t) : x ∈
R, 0 ≤ t ≤ f(x)}. Then∫

R

f = c∗(F ),

∫
R

f = c∗(F )
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where the Jordan content is taken in Rd+1. In particular, f is Riemann
integrable if and only if F is Jordan measurable, and then

∫
R
f = c(F ).

2. Bounded sets defined by subgraphs and epigraphs of Riemann integrable
functions are Jordan measurable.

3. A bounded function f : R → R is Riemann integrable if and only if its
graph {(x, f(x)) : x ∈ R} is of null content in Rd+1.

We have the mean value property of the integral.

Proposition 4.4. If D is a Jordan set and f ∈ R(D) then

inf{f,D} ≤ 1

c(D)

∫
D

f ≤ sup{f,D}.

Proof. Just compare f with λχD with λ ∈ {inf{f,D}, sup{f,D}} and inte-
grate.

The characterization Theorem 3.2 is extended with no trouble.

Proposition 4.5. A bounded function f : D → R is Riemann integrable on a
Jordan domain D if and only if the set of its points of discontinuity is of null
measure (equivalently, the set of points where the oscillation is bigger than δ
is of null content for every δ > 0).

Note that Jordan sets are stable by finite unions, finite intersections and
differences. We say that two Jordan sets A and B do not overlap if A ∩ B ⊂
∂A∪∂B. The problem of measuring sets in Rd is solved in the frame of Jordan
sets.

Proposition 4.6. If Ai
n
i=1 ⊂ Rd is a non overlapping finite family of Jordan

sets, then its union is Jordan as well and c(
⋃n

i=1Ai) =
∑n

i=1 c(Ai).

A Jordan partition of a Jordan set D is a non overlapping finite family
{Di}ni=1 of Jordan sets such that D =

⋃n
i=1Di. Jordan partitions provide

a good frame for Riemann sums, which provide a more explicit way for the
computation of integrals.

Theorem 4.7. Let f ∈ R(D) where D is a Jordan domain. For every ε > 0
there is δ > 0 such that if {Di}ni=1 is a Jordan partition of D into sets of
diameter less than δ, then

|
n∑

i=1

f(ti)c(Di)−
∫
D

f | < ε
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for any choice of points ti ∈ Di.

Proof. Without loss of generality we may assume that D is compact. Indeed,
take D and extend f to D \ D as zero. Fix ε > 0. Let M = osc(f,D). The
set x ∈ D : osc(f, x) ≥ ε/c(D) is covered by finitely many open rectangles such
that its union is an open set O with c(O) < ε/2M . For any point x ∈ D \ O,
take Ux 3 x such that osc(f, Ux) < ε/2c(D) and consider the Lebesgue number
ξ of the open cover {O} ∪ {Ux}x∈D\O. If {Di}ni=1 is a Jordan partition such
any set Di has diameter less than ξ, take N to be the set of such indices i for
which Di ⊂ O. We have

|
n∑

i=1

f(ti)c(Di)−
∫
D

f | ≤
n∑

i=1

∫
Di

|f(ti)− f |

=
∑
i∈N

∫
Di

|f(ti)− f |+
∑
i 6∈N

∫
Di

|f(ti)− f |

≤
∑
i∈N

Mc(Di) +
∑
i 6∈N

ε

2c(D)
c(Di) ≤Mc(O) +

ε

2c(D)
c(D) ≤ ε

whenever the points ti ∈ Di are chosen.
In fact, the thesis in the previous statement implies the Riemann integra-

bility suitably reformulated. Indeed, if the Riemann sums

n∑
i=1

f(ti)c(Di)

have a common limit when the Jordan partition {Di}ni=1 is either refined or
the maximum diameter of its sets goes to zero, then the function f must be
integrable on D.

The convergence of Riemann sum can be applied to prove the change of
variables formula in a very important particular case.

Theorem 4.8. Let E ⊂ [0,+∞) × [0, 2π] a Jordan domain mapped on the
Jordan domain D ⊂ R2 by the map (θ, r) → (r cos θ, r sin θ). Then for any
f ∈ R(D) we have∫∫

D

f(x, y) dxdy =

∫∫
E

f(r cos θ, r sin θ) r drdθ
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Proof. Without loss of generality we may assume that E is a rectangle, since
the extension of f to be zero on the complement do not change the value of
the integrals. Set f̃(r, θ) = f(r cos θ, r sin θ). Take a partition on E with nodes
{(ri, θj)}n,mi=1,j=1. The rectangles are mapped on sectors Di,j having area

c(Di,j) =
ri−1 + ri

2
(ri − ri−1)(θj − θj−1)

The associate Riemann sum over D with the evaluation on central points is
n∑

i=1

m∑
j=1

f(
ri−1 + ri

2
cos(

θi−1 + θi
2

),
ri−1 + ri

2
cos(

θi−1 + θi
2

))c(Di,j)

which approaches
∫∫

D
f(x, y) dxdy. On the other hand, the sum coincides with

n∑
i=1

m∑
j=1

f̃(
ri−1 + ri

2
,
θj−1 + θj

2
)
ri−1 + ri

2
(ri − ri−1)(θj − θj−1)

which is a Riemann sum associate to
∫∫

E
f(r cos θ, r sin θ) r dr dθ. The refining

of the partition in the sense of Theorem 4.7 gives the equality of the two
integrals of the thesis.

5 Iterated integrals

Until this moment we have not said how Riemann integrals in Rd are com-
puted. The idea is to reduce to iterated integral in spaces of lesser dimension,
which in practice means that all can be reduced to one dimensional integrals
where the calculus of primitive functions is the main device for its computation.

Next result is known as Fubini theorem for Riemann integral.

Theorem 5.1. Let R ⊂ Rd1 and S ⊂ Rd2 rectangles and f ∈ R(R × S). For
x ∈ R take fx(y) = f(x, y) defined on S and consider its Darboux integrals

L(x) =

∫
S

fx, U(x) =

∫
S

fx.

Then L,U ∈ R(R) and ∫
R×S

f =

∫
R

L =

∫
R

U

Moreover, fx ∈ R(S) for x ∈ R except a null measure set.

10



Proof. Consider partitions into rectangles {Ri}ni=1 and {Sj}mj=1 of R and S
respectively. Observe that vol(Ri × Sj) = vol(Ri)vol(Sj), where each volume
is understood according to the dimension of the space. If x ∈ Ri then

sup{fx, Sj} ≤ sup{f,Ri × Sj}

that implies

U(x) =

∫
S

fx ≤
m∑
j=1

sup{fx, Sj}vol(Sj) ≤
m∑
j=1

sup{f,Ri × Sj}vol(Sj)

Taking supremum on x ∈ Ri we get to

sup{U,Ri} ≤
m∑
j=1

sup{f,Ri × Sj}vol(Sj)

that implies∫
R

U ≤
n∑

i=1

sup{U,Ri}vol(Ri) ≤
n∑

i=1

m∑
j=1

sup{f,Ri × Sj}vol(Ri × Sj)

Taking infimum on the left hand side we get that∫
R

U ≤
∫
R×S

f =

∫
R×S

f

A similar argument will show that∫
R

L ≥
∫
R×S

f =

∫
R×S

f

On the other hand, we have these obvious inequalities∫
R

L ≤
∫
R

U ≤
∫
R

U

All together implies that
∫
R
U =

∫
R
U , so U is Riemann integrable on R.

Similarly, we have
∫
R
L =

∫
R
L and so the Riemann integrability of L, as well

as the equality with
∫
R×S f . Now observe that

∫
R

(U−L) = 0 and the function
U − L is positive, so U = L except a null measure set.
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