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Abstract

We show that the existence of an equivalent dual LUR norm on a dual
Banach space can be characterized by a topological property similar to
the fragmentability. The compact spaces homeomorphic to weak∗ compact
subsets of a dual LUR Banach space have the same properties as the class
of Radon-Nikodým compact spaces.

1 Introduction

A Banach space X is said to be Asplund if every convex function on X is Fréchet
differentiable on a dense Gδ-set. If a Banach space has an equivalent Fréchet
differentiable norm then it is Asplund but the converse is not true, see [2] for
example. Šmulyan criterion provides a method to construct an equivalent Fréchet
differentiable norm on X: any equivalent norm on X is Fréchet differentiable
provided that its dual norm on X∗ is locally uniformly rotund (the notation used
in this paper about Banach spaces is standard and it can be found in most of the
books, see [2] for instance).

Definition 1.1 Let X be a Banach space endowed with a norm ‖.‖ and let SX

denote its unit sphere. The norm ‖.‖ is said to be locally uniformly rotund (LUR),
if limk ‖x− xk‖ = 0 whenever x, xk ∈ SX are such that limk ‖x + xk‖ = 2.

In this paper we study how close is the property of being the dual of an Asplund
space from having an equivalent dual LUR norm. We shall need the following
topological definitions. The first one has been introduced by Jayne and Rogers
in [12].

Definition 1.2 Let (X, τ) be a topological space and let d be a metric on X. We
say that X
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1) is fragmentable by d if for every ε > 0 and every nonempty A ⊂ X there is
U ∈ τ such that A ∩ U 6= ∅ and diam(A ∩ U) < ε.

2) has property P (d, τ) if there is a sequence (An) of subsets of X, such that
for every x ∈ X and every ε > 0, there is n ∈ N and U ∈ τ such that
x ∈ An ∩ U and diam(An ∩ U) < ε.

Namioka and Phelps showed in [17] that a Banach space X is Asplund if
and only if the unit ball of X∗ endowed with the weak∗ topology is fragmented
by the norm. They also showed [17] that if a dual Banach space X∗ has an
equivalent w∗-Kadec norm, that is, the weak∗ and the norm topologies agree on
the unit sphere, then X is Asplund. Property P was introduced in [18] for pairs
of topologies, but when stated as above it is equivalent to properties introduced
and studied by Hansell [7] and Jayne, Namioka and Rogers [10]. The main result
of this work is the following theorem which says that dual LUR renormability of
a dual space X∗ is a nonlinear topological property.

Theorem 1.3 Let X∗ be a dual Banach space. The following conditions are
equivalent:

i) X∗ admits an equivalent dual LUR norm.

ii) X∗ admits an equivalent w∗-Kadec norm.

iii) X∗ has P (‖.‖, w∗).

Statement iii) above completes the characterizations of renormability given in
[19]. Let us mention that there are no analogous results in Banach spaces for the
weak topology. There exists a Banach space having a Kadec norm but with no
equivalent strictely convex norm [8]. It is unknown whether every σ-fragmentable
Banach space (in particular, if X has P (‖.‖, w)) has an equivalent Kadec norm
[10].

We prove an interpolation result in the spirit of the results by Davis, Figiel,
Johnson and Pelczyński for Eberlein compacta [4] and Namioka for Radon-
Nikodým compacta [4, 16]. It can also be regarded as a “reciproque” of the
transfer technique of Godefroy, Troyanski, Whitfield and Zizler for LUR renorm-
ing [6, 2].

Theorem 1.4 Let X a Banach space, let K ⊂ X∗ be a w∗-compact subset which
has P (‖.‖, w∗). Then there exists a Banach space Y such that Y ∗ has a dual
LUR norm and a bounded linear operator T : X → Y with dense range such that
K ⊂ T ∗(BY ∗).

A compact Hausdorff space is said to be a Radon-Nikodým compact if it is
homeomorphic to a weak∗-compact subset of a dual Banach space having the
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Radon-Nikodým property. A result of Namioka states that a weak∗-compact
subset of a dual Banach space X∗ which is fragmented by the norm of X∗ is a
Radon-Nikodým compact. All these facts sugest us to introduce the following
class of compact Hausdorff spaces.

Definition 1.5 A compact Hausdorff space K is called a Namioka-Phelps
compact if it is homeomorphic to a weak∗-compact subset of a dual Banach
space having a dual LUR norm.

Clearly, any Namioka-Phelps compact space is Radon-Nikodým. Namioka
characterizes internally the Radon-Nikodým compacta as those compact Haus-
dorff spaces which are fragmented by a lower semicontinuous metric. We will
prove an analogous result.

Theorem 1.6 A compact Hausdorff space K is Namioka-Phelps if and only if
it has property P (d, τ) with some τ -lower semicontinuous metric d.

If K is a Radon-Nikodým compact, then the space C(K) is weak-Asplund, that
is, every convex function on C(K) is Gâteaux differentiable on a dense Gδ-set.
Similarly, we obtain the following result.

Theorem 1.7 If K is a Namioka-Phelps compact space, then C(K) has an
equivalent Gâteaux differentiable norm.

The organization of the next sections is as follows. In section 2 we study com-
pact spaces having the property P with some metric showing the analogue with
the properties of fragmentable compact spaces studied by Namioka in [16]. In
section 3 we prove the main result of this paper concerning the characterization
of the existence of equivalent dual LUR norms in a dual Banach space. Finally,
we study embedding properties of the Namioka-Phelps compact spaces.

Acknowledgments. The results here are part of my Ph.D. Thesis prepared
under the supervision of R. Deville and G. Vera. I am grateful to them. I am
also indebted to G. Godefroy and J. Orihuela for fruitful discussions.

2 Compact spaces with property P

A network of some topology is a family of subsets such that any open set is a
union of subsets from that family. In [18] we introduced the property P for a
couple of topologies. If X is a set and δ and τ topologies on X, we say that X
has P (δ, τ) if there is a sequence (An) of subsets of X such that for every x ∈ X
and every V ∈ δ with x ∈ V , there is n ∈ N and U ∈ τ such that x ∈ An∩U ⊂ V .
This property can be reformulated in terms of networks as follows: X has P (δ, τ)
if {An∩U : n ∈ N, U ∈ τ} is a network for δ. One can observe that this definition
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of property P extends Definition 1.2. We say that a topological space X has
property P (δ, τ) with τ -closed sets, if the sets An ⊂ X can be taken τ -closed.
The following is in [18].

Lemma 2.1 Suposse that a set X has P (d, τ) with a sequence of subsets (An).
If the metric d is τ -lower semicontinuous, then X has P (d, τ) with the sequence
(An

τ
). In particular, X has P (d, τ) with τ -closed sets.

Proposition 2.2 Let X be a set, δ and τ two topologies on X. The following
statements are equivalent:

i) X has P (δ, τ) with τ -closed sets.

ii) There is a τ -lower semicontinuous function F : X → R such that for every
net (xω) with τ -limω xω = x and limω F (xω) = F (x), then δ-limω xω = x.

A real function with the property stated in ii) will be called a Kadec function.

Proof. ii) ⇒ i) For every x ∈ X and every V ∈ δ with x ∈ V there is U ∈ τ
and ε > 0 such that if y ∈ U and |F (y) − F (x)| < ε, then y ∈ V . Let (rn) an
enumeration of the rational numbers. Define

An = {y ∈ X: F (y) ≤ rn}.

The sets An are τ -closed because F is τ -lsc. We claim that X has P (δ, τ) with
the sequence An. Indeed, take rationals rm < F (x) < rn and rn − rm < ε.
Consider the τ -open set U ′ = U \Am. Then we have that

x ∈ An ∩ U ′ ⊂ V,

which proves the claim.
i) ⇒ ii) Let ΞA be the characteristic function of the set A. Consider the series

F (x) =
∞∑

n=1

4−n ΞX\An
(x)

It follows that F is τ -lsc. Let (xω) be a net with τ -limω xω = x and limω F (xω) =
F (x). We claim that δ-limω xω = x. Indeed, a simple reasoning gives us that

lim
ω

ΞX\An
(xω) = ΞX\An

(x)

for every n ∈ N. Now, for every δ-neighbourhood V of x there is n and U ∈ τ
such that x ∈ An∩U ⊂ V . Since ΞX\An

(xω) must be constant for ω big enough,
we deduce that xω ∈ An. Also, for ω big enough, xω ∈ U . Thus xω ∈ V . This
shows the δ-convergence of (xω) to x.

The following result compares with [16, Theorems 1.2, 1.4].
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Corollary 2.3 Every weak compact subset of a Banach space has P (‖.‖, w), and
every Eberlein compact space is Namioka-Phelps.

Proof. Without loss of generality, we assume that X = span‖.‖(K). Then the
space X will have an equivalent LUR norm ‖|.‖|, which is in particular a Kadec
norm. Then apply Proposition 2.2. Any Eberlein compact space is isomorphic to
a weak compact subset of a reflexive space, which has an equivalent LUR norm
which clearly is dual.

A family of subsets of a topological space is said to be isolated if every point
belonging to a subset of the family has a neighbourhood that does not meet
another member of the family. A family of subsets is said to be σ-isolated if it
is the union of countable number of isolated families. Hansell studied in [7] the
class of topological spaces having a σ-isolated network as a natural generalization
of metrizable spaces, see also [15]. The following result is a consequence of the
work of Hansell, and it shows the relation between fragmentability and property
P .

Theorem 2.4 Let (K, τ) be a compact Hausdorff space and let d be a τ -lower
semicontinuous metric on K. The following are equivalent:

i) K has P (d, τ).

ii) d has a network which is σ-isolated with respect to τ .

iii) τ has a σ-isolated network and d fragments (K, τ).

Proof. i) ⇒ iii) Any τ -lsc metric on K is finer than τ . Let B =
⋃∞

m=1 Bm be
a basis of d such that every family Bm is d-discrete. Fix n,m ∈ N and E ∈ Bm.
Define

HE = {x ∈ An: ∃U ∈ τ s.t. x ∈ An ∩ U ⊂ E}.
It is easy to see that Nn,m = {HE : E ∈ Bm} is τ -isolated and N =

⋃
n,m Nn,m is

a network of d. Since τ is coarser than d, we have that N is a σ-isolated network
of τ . On the other hand, it is shown in [18] that K has P (d, τ), then (K, τ)
is σ-fragmented by d. Since d is τ -lsc and (K, τ) is compact, a result from [11]
states that (K, τ) is fragmented by d.
iii) ⇒ ii) If (K, τ) has a σ-isolated network, then it is in particular hereditarily
weakly θ-refinable, that is, every family of of open sets in X has a σ-isolated
(non necessary open) refinement. Hansell shows [7] that if a hereditarily weakly
θ-refinable space is fragmented (or σ-fragmented) by some metric d, then the
topology of d has a network N =

⋃∞
n=1 Nn such that every Nn is σ-isolated

respect to τ .
ii) ⇒ i) If N =

⋃∞
n=1 Nn is a network of d such that every Nn is σ-isolated

respect to τ , then it is easy to verify that K has P (d, τ) with the sequence of
sets An =

⋃
Nn.
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Corollary 2.5 If X∗ is a dual Banach space and K ⊂ X∗ is a w∗-compact
subset having P (‖.‖, w∗), then K is fragmentable by the norm. In particular, if
X∗ has P (‖.‖, w∗), then X∗ has the Radon-Nikodým property.

The following result compares with [16, Lemma 2.1].

Theorem 2.6 Let (Ki, τi) be compact spaces for i = 1, 2 and let di be metrics
on Ki. Suppose that there is a surjection T : K1 → K2 such that T is τ1-τ2

continuous and d1-d2 continuous. If K1 has P (d1, τ1) with τ1-closed sets, then
K2 has P (d2, τ2) with τ2-closed sets.

Proof. If K1 has P (d1, τ1) with τ1-closed sets, there is a τ1-lsc function F1: K1 →
[0, 1] with the Kadec property by Proposition 2.2. Define a function F2: K2 →
[0, 1] as follows:

F2(x) = inf{F1(x′): T (x′) = x}
Since F1 is τ1-lsc, this infimum is attained. We claim that F2 is τ2-lsc. Indeed,
suppose that limω xω = x in (K2, τ2) and F2(xω) ≤ r for every ω. Take points
x′ω ∈ K1 such that T (x′ω) = xω and F1(x′ω) = F2(xω). Let x′ ∈ K1 be a cluster
point of (x′ω). Since F1 is τ1-lsc we have that F1(x′) ≤ r. On the other hand,
by continuity, T (x′) = x, so F2(x) ≤ F1(x′). This shows that F2(x) ≤ r and
the claim is proved. We claim now that F2 has the Kadec property and then
the result will follow from Proposition 2.2. Suppose not, that is, there is a net
(xω) in K2 with τ2-limit a point x such that limω F2(xω) = F2(x), and there is
ε > 0 such that d2(xω, x) > ε. Take points x′ω ∈ K1 such that T (x′ω) = xω and
F1(x′ω) = F2(xω). Let x′ be a cluster point of (x′ω). Without loss of generality
we can assume that (x′ω) is τ1-converging to x′. Clearly, we have that T (x′) = x
and the following inequalities

lim
ω

F2(xω) = F2(x) ≤ F1(x′) ≤ lim
ω

F1(x′ω) = lim
ω

F2(xω).

We deduce that limω F1(x′ω) = F1(x′). By the Kadec property of F1 we have
that limω d1(x′ω, x′) = 0, and from the d1-d2 continuity of T we deduce that
limω d2(xω, x) = 0, which is a contradiction with our supposition.

Corollary 2.7 Let T : X∗ → Y ∗ be a bounded linear operator between dual spaces
which is w∗-w∗ continuous. If K ⊂ X∗ is a w∗-compact subset having P (‖.‖, w∗),
then T (K) has P (‖.‖, w∗) in Y ∗.

The following result compares with [16, Lemma 2.2].

Lemma 2.8 Let (Kn, τn) be compact spaces for i ∈ N and let dn be a metric
on Kn such that Kn has P (dn, τn) with τn-closed sets for every n ∈ N. Let τ
be the topology product of the τn-topologies on K =

∏∞
n=1 Kn and let d a metric

compatible with the product of the dn-topologies on K. Then K has P (d, τ) with
τ -closed sets.
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Proof. Take for every n ∈ N a τn-lsc Kadec function Fn: Kn → [0, 1]. An easy
lower semicontinuity argument shows that

F (x) =
∞∑

n=1

2−nFn(xn)

is a τ -lsc Kadec function on K linking d with τ , where x = (xn).

The following result can be regarded as a topological version of the transfer
technique of Godefroy-Troyanski-Whitfield-Zizler [6, 2], see Theorem 4.1.

Theorem 2.9 Let (X, τ) be a topological space and let d be a τ -lower semicon-
tinuous metric on X. Suppose that there exists τ -compacts sets Kn ⊂ X having

P (d, τ) such that
⋃∞

n=1 Kn

d
= X. Then X has P (d, τ).

Proof. We can suppose the sequence (Kn) increasing and the metric d bounded.
By Proposition 2.2, for every n ∈ N there is a τ -lsc Kadec function Fn: Kn →
[0, 1]. We define the functions fn on X as follows

fn(x) = inf{d(x, y) + Fn(y): y ∈ Kn}.
Note that the infimum is attained. We claim that fn is τ -lsc. Indeed, suppose
that τ -limω xω = x and fn(xω) ≤ r for every ω. Take points yω ∈ Kn such that
fn(xω) = d(xω, yω) + Fn(yω). Let y ∈ Kn a cluster point of (yω). Then we have
that

fn(x) ≤ d(x, y) + Fn(y) ≤ r

because of the lower semicontinuity of d and Fn. Now we define a function F on
X by the formula

F (x) =
∞∑

n=1

2−nfn(x).

We claim that F has the Kadec property. Indeed, suppose not. We can take a
net (xω) in X with τ -limit a point x such that limω F (xω) = F (x), and there is
ε > 0 such that d(xω, x) > ε. A standard argument of lower semicontinuity gives
that limω fn(xω) = fn(x) for every n ∈ N. Fix n ∈ N such that 1/n < ε/3 and
d(x,Kn) < ε/3. We can take points yω ∈ Kn such that

fn(xω) = d(xω, yω) + Fn(yω)

Let y ∈ Kn a cluster point of (yω). Without loss of generality we can assume
that τ -limω yω = y. Since

d(x, y) + Fn(y) ≤ lim
ω

fn(xω) = fn(x) ≤ d(x, y) + Fn(y)

we have that
lim
ω

[d(xω, yω) + Fn(yω)] = d(x, y) + Fn(y)
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Using the lower semicontinuity, we deduce that limω d(xω, yω) = d(x, y) < ε/3
and limω Fn(yω) = Fn(y). The last equality gives that limω d(yω, y) = 0, thus
for ω big enough we have that d(xω, yω) < ε/3 and d(yω, y) < ε/3. Since
d(x, y) < ε/3 we have that d(xω, x) < ε, which is a contradiction.

Given a Banach space X, a bounded subset Z ⊂ X∗ is said to be norming if
there is λ > 0 such that λ‖x‖ ≤ sup{|x∗(x)|: x∗ ∈ Z} for all x ∈ X. Notice that
the supremun defines an equivalent norm on X which is lower semicontinuous for
the topology of convergence on Z, denoted σ(X,Z). A linear subspace Z ⊂ X∗

is said to be norming if BX∗ ∩ Z is a norming subset.

The following result compares with [16, Theorem 2.5].

Proposition 2.10 Let X be a Banach space, let Z ⊂ X∗ be a norming subset
and let K ⊂ X∗ be a bounded σ(X,Z)-compact subset which has P (‖.‖, σ(X, Z)).
Then span‖.‖(K) and acoσ(X,Z)(K) have P (‖.‖, σ(X, Z)).

Proof. Let I(n, m) = [−m,m]× . . .× [−m,m] (n times) with the usual topology
of Rn. Let Kn,m = I(m,n)×K× . . .×K (n times). If τ is the product topology
when K is endowed with σ(X, Z), then Kn,m is τ -compact. If K is endowed with
the norm topology, then the product topology is metrized by a metric that we
call d. By Lemma 2.8 Kn,m has P (d, τ). The map Tn,m from Kn,m to X defined
by Tn,m(α1, . . . , αn, x1, . . . , xn) = α1x1 + . . . + αnxn is clearly τ -σ(X, Z) con-
tinuous and d-‖.‖ continuous, thus every σ(X,Z)-compact set Tn,m(Kn,m) has
P (‖.‖, σ(X, Z)) by Theorem 2.6. Since span(K) =

⋃
n,m Tn,m(Kn,m), we have

that span‖.‖(K) has P (‖.‖, σ(X, Z)) by Theorem 2.9. The result for the σ(X, Z)-
closed absolutely convex hull follows from the fact acoσ(X,Z)(K) = aco‖.‖(K)
because K is fragmentable by the norm, see [16].

The following result compares with [16, Theorem 5.6].

Theorem 2.11 If K is a Namioka-Phelps compact, then (BC(K)∗ , w
∗) is also a

Namioka-Phelps compact.

Proof. In the proof of [16, Theorem 5.6] it is shown that if K is a Radon-Nikodým
compact, then there is a dual Banach space X∗ and a bounded injective w∗-w∗-
continuous linear operator T : C(K)∗ → X∗ such that T (K) is fragmented by the
norm ‖.‖ of X∗. If K is moreover Namioka-Phelps, then T (K) has P (‖.‖, w∗).
Then T (BC(K)∗) = aco‖.‖(T (K)) has P (‖.‖, w∗) by Proposition 2.10, and thus,
T (BC(K)∗) is Namioka-Phelps.

3 Dual LUR renorming

A dual Banach space X∗ having a dual LUR norm has the Radon-Nikodým
property. The space C[0, ω1] shows that the converse is not true. Fabian and
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Godefroy proved [5] that a dual Banach space with the Radon-Nikodým property
has an equivalent LUR norm (not necessary dual, of course). The LUR norm in
that case can be made a dual norm under additional hypothesis, e.g. if the predual
X is WCD, or the space X∗ is itself WCD, see [2]. Following Hansell [7], we say
that a dual Banach space X∗ is dual-descriptive if it has the Radon-Nikodým
property and the weak∗ topology has a σ-isolated network. The class of dual-
descriptive spaces coincide with the dual Banach spaces having a countable cover
by sets of local small diameter in the sense of Jayne, Namioka and Rogers [10].
A dual Banach space with a w∗-Kadec norm is dual-descriptive [7]. Our main
result states that the existence of an equivalent dual LUR norm is a topological
property. Partial results in this direction were obtained in [19], in the spirit of
the Moltó-Orihuela-Troyanski characterization of LUR renormability [14].

Theorem 3.1 Let X∗ be a dual Banach space. The following conditions are
equivalent:

i) X∗ admits an equivalent dual LUR norm.

ii) X∗ admits an equivalent norm such that weak topology and the weak∗ topol-
ogy coincide on its unit sphere.

iii) X∗ is dual-descriptive.

iv) X∗ (resp. SX∗) has P (‖.‖, w∗).
Proof. i) ⇔ ii) It is proved in [19].
i) ⇒ iv) It follows from Proposition 2.2.
iv) ⇔ iii) It follows from Theorem 2.4.
iv) ⇒ ii) If a dual Banach space X∗ has P (‖.‖, w∗), then X∗ has the Radon-
Nikodým property, by Corollary 2.5. A result from [18] establishes that there is a
w∗-lower semicontinuous real function F on X∗ with ‖.‖ ≤ F (.) ≤ 3‖.‖ such that
the norm and the w∗-topology coincide on the set S = {x∗ ∈ X∗: F (x∗) = 1}.
Let K = {x∗ ∈ X∗: F (x∗) ≤ 1}. Since X∗ has the Radon-Nikodým property,
co‖.‖(K) will be a w∗-compact set, symmetric and with nonempty norm interior,
that is the unit ball of some equivalent dual norm on X∗. Without loss of
generality we can suppose X∗ endowed with that norm, namely BX∗ = co‖.‖(K).
We will show that the norm and the w∗-topology coincide on SX∗ .
Suppose not, that is, there is some ε > 0 and some net (x∗ω) in SX∗ w∗-converging
to a point x∗ ∈ SX∗ such that ‖x∗ω − x∗‖ > ε. Take Radon probabilities µω on
K such that x∗ω =

∫
K
I dµω (integrals are taken in the sense of Bochner, see [3]).

Without loss of generality we can suppose that (µω) converges in (C(K)∗, w∗) to
a Radon probability µ on K. We must have that x∗ =

∫
K
I dµ.

Since ‖x∗ω‖ = ‖x∗‖ = 1, we have that µω and µ are supported by SX∗ ∩K ⊂ S.
We can take disjoint norm compact sets Ki ⊂ S for i = 1, . . . , n with diameter
less than ε/7 such that µ(

⋃n
i=1 Ki) > 1− ε/12. We can take a norm compact set

K0 ⊂ S disjoint from
⋃n

i=1 Ki such that µ(
⋃n

i=0 Ki) > 1− ε/12n. Take disjoint
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norm open sets Vi for i = 0, . . . , n with Ki ⊂ Vi and the diameter of Vi for
i = 1, . . . , n less that ε/6. Since the norm and the w∗-topology coincide on S, we
can take w∗-open sets Ui such that Ui ∩ S = Vi ∩ S.
By Urysohn’s Lemma, we can take w∗-continuous functions fi for i = 0, . . . , n
from BX∗ to [0, 1] such that fi|Ki

= 1 and fi|X∗\Ui
= 0. Since

∫
K

fidµω converges
to

∫
K

fidµ ≥ µ(Ki) for i = 0, . . . , n we will have for ω big enough that µω(Vi) =
µω(Ui) ≥

∫
K

fidµω > µ(Ki) − ε/12n2 for i = 0, . . . , n. On the other hand,
it must be µω(Vi) < µ(Ki) + ε/6n. If not, then µω(Vj) ≥ µ(Kj) + ε/6n for
some j. Summing the above inequalities for i 6= j we will have µω(

⋃n
i=0 Vi) >

µ(
⋃n

i=0 Ki) + ε/6n − nε/12n2 > 1 − ε/12n + ε/6n − ε/12n = 1 which is a
contradiction. Thus we have that |µω(Vi) − µ(Ki)| < ε/6n and µω(

⋃n
i=1 Vi) >

1− ε/6.
Fix any i = 1, . . . , n. We can take points x∗1, x

∗
2 ∈ co‖.‖(Vi) such that µ(Ki)x∗1 =∫

Ki
I dµ and µω(Vi)x∗2 =

∫
Vi
I dµω. Since the diameter of Vi is less than ε/6, then

‖x∗1 − x∗2‖ ≤ ε/6. We have that

‖
∫

Vi

I dµω −
∫

Ki

I dµ‖ = ‖µω(Vi)x∗2 − µ(Ki)x∗1‖

≤ |µω(Vi)− µ(Ki)|.‖x∗2‖+ µ(Ki)‖x∗1 − x∗2‖ ≤ (1/n + µ(Ki))(ε/6)

We will show that ‖x∗ω − x∗‖ < ε to get the final contradiction

‖x∗ω − x∗‖ = ‖
∫

K

I dµω −
∫

K

I dµ‖

≤ ‖
∫

K\⋃n
i=1 Vi

I dµω −
∫

K\⋃n
i=1 Ki

I dµ‖ +
n∑

i=1

‖
∫

Vi

I dµω −
∫

Ki

I dµ‖

≤ ε/6 + ε/12 +
n∑

i=1

(1/n + µ(Ki))(ε/6) < ε.

This shows that the norm ‖.‖ is w∗-Kadec.

Corollary 3.2 Let X be a Banach space such that its dual X∗ satisfies any of
the statements of Theorem 3.1. Then X has an equivalent Fréchet differentiable
norm.

Let X be an Asplund Banach space. We shall consider the following construc-
tion on its dual X∗. For any weak∗-compact convex subset B ⊂ X∗ and ε > 0
take

(B)′ε = {x∗ ∈ B: ∀U ∈ w∗, x∗ ∈ U, diam(B ∩ U) > ε}.
Define by transfinite induction the sets (Bα

ε ) as follows

B0
ε = BX∗ ,
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Bα+1
ε = (Bα

ε )′ε
and for α a limit ordinal

Bα
ε =

⋂

β<α

Bβ
ε .

Now take Sz(X, ε) = inf{α: Bα
ε = ∅, and Sz(X) = supε>0 δZ(X, ε). The ordinal

number Sz(X) is called the Szlenk index of X. The following result was proved
by Lancien [13] using a Kunen-Martin type argument.

Corollary 3.3 (Lancien) If X is a Banach space with Sz(X) < ω1, then X∗

has an equivalent dual LUR norm.

4 Transfer and embedding

The following is a transfer result for LUR renorming of Godefroy-Troyanski-
Whitfield-Zizler [6, 2]. A topological version of it is Theorem 2.9.

Theorem 4.1 (Godefroy, Troyanski, Whitfield & Zizler) Let X be a Ba-
nach space, let Z ⊂ X∗ be a norming subset, let Y ∗ be a dual Banach space
having a dual LUR norm and let T : Y ∗ → X be a bounded linear operator w∗-
σ(X,Z) continuous. Then X has an equivalent σ(X, Z)-lower semicontinuous

norm which is LUR at the points of T (Y ∗)
‖.‖

.

We shall prove the following interpolation result in the spirit of the Davis-
Figiel-Johnson-Pelczyński Theorem, that can be regarded as a reciproque of The-
orem 4.1.

Theorem 4.2 Let X a Banach space, let Z ⊂ X∗ be a norming subset and let
K ⊂ X be a bounded σ(X,Z)-compact subset which has P (‖.‖, σ(X, Z)). Then
there exists a dual Banach space Y ∗ having a dual LUR norm and a bounded
one-to-one linear operator T : Y ∗ → X which is w∗-σ(X, Z) continuous such that
K ⊂ T (BY ∗).

Proof. After Lemma 2.10 we know that K0 = aco‖.‖(K) is an absolutely convex
compact set with P (‖.‖, σ(X, Z)). Thus K0 is fragmented by the norm. Following
Namioka [16], there is an Asplund space Y and a bounded injective linear operator
T : Y ∗ → X which is w∗-σ(X,Z) continuous such that K0 ⊂ T (BY ∗) ⊂ 2nK0 +
B[0, 1/2n] for every n ∈ N. By Theorem 2.9 we have that T (BY ∗) will be a
descriptive σ(X,Z)-compact subset of X. Since T is an homeomorphism when
restricted to BY ∗ , we deduce that (BY ∗ , w

∗) has a σ-isolated network. Thus Y ∗

is dual-descriptive and it has an equivalent dual LUR norm by Theorem 3.1.

Corollary 4.3 Let X be a Banach space, let Z ⊂ X∗ be a norming subset and let
K ⊂ X be a bounded σ(X,Z)-compact subset which has P (‖.‖, σ(X, Z)). Then
X has an equivalent σ(X,Z)-lower semicontinuous norm which is LUR at the
points of span‖.‖(K).

11



Proof. Apply the Theorems 4.2 and 4.1.

The following extends a well known result of Deville [1] concerning the dual
LUR renorming of C(K)∗ where K is a scattered compact space such that
K(ω1) = ∅, see also [2].

Corollary 4.4 Let K be a Hausdorff compact space. The following are equiva-
lent:

i) C(K)∗ has an equivalent dual LUR norm.

ii) K is a countable union of relatively discrete subsets.

Proof. Suppose that C(K)∗ has an equivalent dual LUR norm. Then C(K)∗

has P (‖.‖, w∗), and in particular, K has P (‖.‖, w∗) with some sequence of subsets
(An). The following sets

Dn = {x ∈ An: ∃U ∈ w∗, x ∈ U, diam(An ∩ U) < 1}
are relatively discrete and cover K. Conversely, assume that K is a countable
union of relatively discrete subsets. Then it is easy to see that K has P (d, τ)
where d is the discrete metric. By Theorem 2.4, K is d-fragmentable, so K
must be scattered. Regarding K as a subset of C(K)∗, it has P (‖.‖, w∗) and
C(K)∗ = span‖.‖(K) has an equivalent dual LUR norm by Corollary 4.3.

Remark 4.5 A Hausdorff compact space K satisfies statement ii) of Corollary
4.4 if and only if K is scattered and it has a σ-isolated network. There exists a
scattered compact space K which is Eberlein, is also a countable union of relatively
discrete subsets and K(ω1) 6= ∅, see [2].

Proposition 4.6 Let K be Hausdorff compact space. The following statements
are equivalent:

i) K is Namioka-Phelps.

ii) There is a lower semicontinuous metric d such that K has P (d, τ).

iii) K is Radon-Nikodým and it has a σ-isolated network.

Proof. i) ⇔ iii) ⇒ ii) It is clear after Theorem 2.4.
ii) ⇒ i) Let d be a lower semicontinuous metric on (K, τ) such that K has
P (d, τ). There is a dual space X∗ containing K as w∗-compact subset in such
a way that the metric d is induced by the norm [9]. Then the result will follow
from Theorem 4.2.

Theorem 4.7 Let K be a Namioka-Phelps compact space. Then C(K)∗ has
an equivalent W∗LUR norm. In particular, C(K) has an equivalent Gâteaux
differentiable norm.
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Proof. The proof of [16, Theorem 5.6] shows that if K is a Radon-Nikodým
compact, then there is a dual Banach space X∗ and a bounded injective w∗-w∗-
continuous linear operator T : C(K)∗ → X∗ such that T (K) is fragmented by
the norm ‖.‖ of X∗. If K is Namioka-Phelps we have that T (K) has P (‖.‖, w∗).
By Corollary 4.3, we can suppose X∗ that is endowed with a dual norm which is
LUR at the points of T (C(K)∗). Define an equivalent dual norm ‖|.‖| on C(K)∗

by the formula ‖|x‖|2 = ‖x‖2 + ‖T (x)‖2. We claim that ‖|.‖| is W∗LUR. To see
that, take points x, xn in C(K)∗ with ‖|x‖| = ‖|xn‖| = 1 and limn ‖|xn + x‖| =
2. By a standar convexity argument [2, p. 45], we have that limn ‖T (xn)‖ =
‖T (x)‖ and limn ‖T (xn) + T (x)‖ = 2‖T (x)‖. Since ‖.‖ is LUR at T (x), we have
that limn ‖T (xn) − T (x)‖ = 0. In particular, T (xn) is w∗-convergent to T (x),
and hence (xn) is w∗-convergent to x because of the w∗-continuity of T−1 on
T (BC(K)∗).

Remark 4.8 If K is a scattered Namioka-Phelps compact space, then it verifies
the hypothesis of Corollary 4.4. In particular, C(K) has an equivalent Fréchet
differentiable norm.
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