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Abstract—Modern authentication systems still suffer of some
limitations that threaten users’ data protection. To strengthen the
overall security of authentication processes, the continuous au-
thentication paradigm has been increasingly employed. Nonethe-
less, this fresh methodology still poses a number of challenges that
remain unsolved. In this paper, we present a novel framework
that is able to provide context-aware IoT-based continuous and
non-intrusive authentication and authorization services. To do
so, we propose a collection of ontologies that represents the
defined information model. Hence, these ontologies are combined
together with efficient authentication and authorization policies
to build a full-fledged IoT Continuous Authentication Framework
(IoTCAF). The conducted experiments demonstrate the feasibil-
ity and scalability of the proposed framework leveraging the
characteristics of IoT pervasiveness.

Index Terms—continuous authentication, IoT, authorization,
security

I. INTRODUCTION

The constant evolution of modern computer systems is
undoubtedly changing our lives. Nowadays, they are not only
effectively smaller, faster, and easier to use than before, but
also they are cheaper and more pervasive. Despite of their
benefits, over the last years there are a few critical aspects that
have not evolved as expected. Among them, the authentication
process can be highlighted as one of the most relevant.

Traditional authentication systems were based on choosing
one of the next well-known Authentication Factors (AF) to
identify users: some secret that a user knows, some token
that a user has, or something that a user is. In contrast,
modern authentication solutions combine them in different
ways, such as the two-factor authentication system involving
two independent channels for authenticating the user (e.g., a
smart card and a PIN code). However, these systems have
limitations due to their nature:

• AFs that leverage on user’s knowledge such as passwords
or PIN codes. Even if this secret is not trivial to guess and
is safely stored, it remains vulnerable to social engineer-
ing attacks. Additionally, there is a concrete possibility
that the user may forget this authentication secret.

• AFs that leverage on user’s possessions such as smart-
cards. Limitations are similar to the previous category: a
physical object can be forgotten or stolen. Additionally,
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the possession of a specific authentication object often
conflicts with the usability of the entire authentication
system, since the user is forced to bear it.

• AFs that leverage on user’s characteristics such as
fingerprint, or face recognition. The strong aspects of
this category represent also their major limitations since
biometric measures cannot be lost or changed but at the
same time they cannot be revoked and updated.

In order to strengthen the overall security of the authen-
tication process, the continuous authentication paradigm has
been increasingly employed. Continuous authentication, also
referred to as active authentication, was introduced to propose
novel mechanisms to validate users’ identity, thus addressing
the problems showed by the usual techniques [1]. This method-
ology can continuously authenticate the legitimacy of a user
over time by analyzing their behavioral profile. For example, a
possible way to identify the user is to evaluate their interaction
with a specific device [2]. Despite the numerous advantages,
this paradigm still poses some challenges that will characterize
future researches, such as accuracy of the authentication
process, elapsed time, and processing complexity [3].

Recently, another technology is getting the interest of both
the academia and the industry. The Internet of Things (IoT) is
as an emerging technology with notable potential of develop-
ment. IoT is considered as a part of the Internet of the future,
where billions of “intelligent objects” will communicate to
provide services to humans as an ultimate goal [4]. These
devices may be located almost everywhere, from vehicles to
buildings, home appliances, or cell phones, passively sensing
the environment to collect relevant information. In this context,
the versatility and ubiquity of the IoT devices can be used
to build a full-fledged authentication system. By leveraging
the events gathered from IoT devices, it is possible to create
accurate behavioral profiles based on the interactions with the
surrounding smart objects during the time. In the literature,
most of the presented solutions propose to leverage few dimen-
sions to model users’ profile [5]. One could say that combing
and correlating the events stemming from different devices
would give a higher accuracy to the authentication system,
thus making feasible the detection of potential anomalies.

Additionally, the acquisition of the continuous flow of
data generated by those ubiquitous devices allows one to



passively identify and track users, without requiring direct user
interactions or any intrusive authentication mechanism. The
system confidence in users’ identity is hence used as parameter
for the authorization services, finally enabling the access to
specific resources. This natively permits both to enforce non-
repudiations properties and minimize the number of intrusive
authorization requests within the framework boundaries.

The main contributions of the paper can be summarized as
follows:

• We present a formal definition of the information model
for the continuous authentication framework, which rep-
resents a solid base to develop the related ontologies for
the IoT ecosystem.

• We introduce the authentication and authorization rules,
in the form of policies, which are used from the proposed
system to effectively identify users and to assign them the
right permissions to perform certain actions.

• We propose the IoT-enabled Continuous Authentication
Framework (IoTCAF), a novel architecture capable of
providing a continuous and non-intrusive authentication
and authorization solution for users according with their
interaction with the surrounding IoT devices.

• We demonstrate the feasibility of the IoTCAF architec-
ture through experiments on throughput and scalability.

The paper remainder is organized as follows. Section II
gives an overview of the current state of the art of the contin-
uous authentication paradigm in IoT scenarios. Section III de-
fines the information model for the continuous authentication
framework. Upon that formalization, Section IV characterizes
the policies used to authenticate and eventually authorize the
users within the system. Finally, Section V presents the IoT-
CAF architecture and Section VI its experimental evaluation.
To sum-up and conclude, Section VII briefly discusses about
the outcomes and the potential future works.

II. RELATED WORK

Although the IoT solutions are in a growing way, security
features surrounding the “smart objects” remain questionable.
The enormous amount of information flowing among the
IoT devices attracts malicious entities that aim at gaining
unauthorized access to unprotected data [6]. In addition, since
most of the data are exchanged using wireless protocols, the
communications between devices are inherently vulnerable
to several attacks (e.g., eavesdropping, man in the middle,
jamming, etc.). So, worldwide researchers are struggling to
find efficient solutions that are able to address these security
challenges. This evidence is reflected in the literature, where
several works have been proposed to provide effective authen-
tication methodologies for the IoT ecosystem. Among them,
the methodologies that continuously authenticate users and/or
devices within the IoT framework look promising, since they
passively leverage the continuous data flow to achieve the
authentication duties. In the following, the major proposals are
analyzed and grouped in three main categories: IoT authenti-
cation schema, IoT machine-to-machine continuous authenti-
cation, and IoT user-to-machine continuous authentication.

A. IoT authentication schema

In this subsection, some of the most recent proposals regard-
ing the authentication methodologies in IoT environments are
analyzed. Firstly, in [7], the authors proposed an encryption-
based authentication schema for smart homes. Specifically, the
authors introduced a lightweight key establishment protocol
aiming at verifying the identity of smart devices. The protocol
makes use of symmetric key cryptography, and leverages
the presence of a security service provider. The IoT devices
exchange the secret though the security service provider, which
is also responsible of generating the tokens. Furthermore,
in [8], a security framework for smart devices in home appli-
ances is proposed, with particular focus on the authentication
procedure. The proposed framework deploys different modules
within the devices to guarantee integrity, availability, and
authentication of the nodes. The authentication process is
performed through a pairing certification-based process, where
IoT devices must exhibit an authentication certificate in order
to be verified by the system. Similarly, in [9], a certification-
based authentication schema is introduced, which takes ad-
vantage of IPv6 addresses and Software-Defined Networking
(SDN) technologies to identify the things in the network cor-
rectly. On the other hand, in [10], a data collection mechanism
for location-based authentication system is presented. In the
context of industrial IoT, the authentication system leverages
ambient information collected from the IoT devices to identify
a particular node. Specifically, the freshness and the number
of the collected data are dynamically evaluated to perform
a valid collection and, consequently, a correct identification.
Additionally, in [11], the authors present a lightweight authen-
tication schema suitable for resource-constraint IoT devices.
The protocol provides mutual authentication between each
object and the remote user using nonces and hashes through
gateway nodes. In such cases, the presented authentication
protocols do not require any encryption primitive or certificate
explicitly.

All the above-mentioned contributions are suitable for the
IoT ecosystem, since they contemplate the resource-constraint
inherent nature of the IoT nodes. Nonetheless, none of the
above considers the possibility of employing a constant pro-
cess of authentication. One could safely argue that a continu-
ous authentication system would be of crucial importance in a
dynamic environment such as IoT, where nodes are character-
ized by high mobility, thus needing a constant identification
within the system.

B. IoT M2M continuous authentication

Regarding the Machine-to-Machine (M2M) continuous au-
thentication in IoT, in [2], a lightweight continuous authenti-
cation protocol applicable to a variety of IoT environments is
introduced. By applying hash function and XOR primitives,
the proposed protocol achieves mutual authentication of the
devices using light-computational operations. More specifi-
cally, the protocol utilizes tokens to support the continuous
authentication mode in which the tokens contain the dynamic
features calculated from the correspondent devices.



C. IoT U2M continuous authentication

In the context of IoT User-to-Machine (U2M) authentica-
tion, in [12], the author proposed a novel context-aware multi-
attribute authentication solution to continuously authenticate
a user based on contextual information associated with user
mobility and the environment for energy utilization manage-
ment in smart homes. Location and tasks’ criticality nature
are used as contextual information to select the authentication
attributes. User profile is then dynamically updated over time,
thus guaranteeing the adaptability of the entire procedure.

Furthermore, a continuous authentication system for wear-
able glasses, called GlassGuard, was presented in [13]. The
system is automatically able to discriminate the real owner of
the smart object from a potential impersonator using biometric
features taken from touch gestures and voice commands.
Experiments conducted on Google Glasses showed above 93%
detection rate using the collected features.

Another proposal is presented in [14], where a transparent
authentication system using brainwaves as bio-features for IoT
networks was proposed. Extracting long-term memory ability
from users’ brainwaves, the authors collected the bio-features
identified in brainwaves as authentication tokens to perform
continuous identification in the background transparently.

Although the aforementioned works constitute a substantial
progress, very few consider a real scenario in which users do
not often possess any particular IoT device (e.g., biometric
readers, smart glasses). To this extent, a system that is able
to correlate the data coming from IoT devices to authenticate
the users in a transparent, passive, and non-invasive manner
is missing. This research paper is intended to fill this gap
by presenting an autonomous system in which users can be
authenticated based on their interactions with the IoT devices.

III. INFORMATION SYSTEM MODEL FOR CONTINUOUS
AUTHENTICATION IN IOT

This section presents some definitions and outlines the infor-
mation system model, which has been subsequently defined as
an ontology to shape the different components of the proposed
continuous authentication system.

A. System model

The components describing our IoT-enabled Continuous
Authentication Framework (IoTCAF) can be found in Fig. 1,
which is composed of a vector of three main components
defined as IoTCAF = (D,P,L). In Fig. 1, it is also shown
the relationships between such components, in which the IoT
Device component makes reference to the set D, Person to
P , and Location to the L set. The definition and modeling of
each set is described below.

The main element in any kind of IoT ecosystem is the set
of devices shaping the scenario and their features to provide
certain services to users, and also the system itself. They can
be defined as a set of l � IoT devices (see Fig. 1), denoted
by D = {D1, D2, ..., Dl}, where l is usually a high number
of “thin” devices, which could be i) security devices, willing
to support protection, ii) sensing devices to acquire given
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Fig. 1. Main components for continuous authentication in IoT.

information for monitoring and detecting events of interest,
and iii) leisure devices used by users in their daily lives, just to
name a few. These IoT devices will provide different services
depending on their functionalities, for example, a service such
as a surveillance camera, from which to capture videos and
images of the environment, or a mail service that users can
consume through their smartphones, tablets, or PCs.

Many of the IoT devices are directly used by users, inter-
acting with them for working or leisure purposes, while others
are deployed in the environment to enable security functions
(e.g., security cameras or proximity devices, among others).
Each user is represented in Fig. 1 as Person, whose terms (user
and person) are used in this paper interchangeably. Persons are
modeled as P = {P1, P2, ..., Pm}, where m is the number of
users of the environment. A person Pi ∈ P can be shown as a
user who can interact with IoT devices, whose relationship can
be expressed as D(Pi) = {Di1 , Di2 , ..., Dix}, although there
may also be users who could be authenticated in a continuous
way to grant them certain permissions; for example, to stay in
a certain area of the environment.

Location also represents an important component that needs
to be modeled, since the continuous authentication system
should consider location-based information in its decision-
making processes. Depending on where users are, or the IoT
devices’ placement, decision-making processes could grant
or deny the corresponding request. Fig. 1 depicts certain
links between Location and Person and IoT Device in or-
der to trace both users and devices, respectively, within the
managed environment. In this sense, location is modeled as
L = {L1, L2, ..., Ln}, where n is the number of places
such as areas, rooms, etc. Given that users and IoT devices
expose a tight relationship with location, in order to know
in which part of the environment they are located, such
locations are modeled as L(Pk) = {Lk1

, Lk2
, ..., Lkz

} and
L(Dj) = {Lj1 , Lj2 , ..., Ljy}, respectively. For the sake of
simplicity, this subsection presents only the model of a reduced
number of relationships between components, which will be
presented in detail in Section III-B.

It is worth noting that the system model introduced in this
section, defining the main components shown in Fig. 1, needs
to be extended with finer granularity in order to characterize



them in more specific subcomponents. For example, the IoT
devices in D should be defined in more detail depending on
their functions and features, such as security devices, sensing
devices, leisure devices, etc., as mentioned above.

B. Ontology

Based on the modeling of the main components of the
system described above, a collection of ontologies has been
developed to enable the sharing of knowledge between the
three main components (see Fig. 1) and the use of semantic
reasoning procedures to infer new knowledge according to the
information gathered by the IoT devices.

Fig. 2 shows the collection of ontologies designed, devel-
oped, and managed by our continuous authentication frame-
work IoTCAF, which formally shapes the three main concepts
managed by the framework:

• Location Ontology modeling a given smart space, which
is structured, for example, in different parts of a smart
office or home;

• Person Ontology to represent any user who is under the
framework domains and gets the benefits it offers when
using the IoT Devices; and

• IoT Devices Ontology, which constitutes the central
model of the architecture, as it is composed by the
devices providing information about the scenario status
and the ones that will apply the reactions decided by the
framework to grant or deny actions to users.

In each ontology, the top-level class of each of them is
shown by following the same colors used in Fig. 1.

The Location Ontology is defined through several subclasses
to refine the different spaces in which a given environment is
structured, where Location is the top-level class from which
the rest of subclasses inherit. As shown in Fig. 2, this ontology
uses a hierarchical model for shaping location, using four
subclasses with different levels of size and detail; namely
(from the largest to the smallest): Building, Block, Floor, and
Area. The latter has in turn been divided into more specific
spaces: Hallway, Stairs, and Room. The location hierarchical
model has been modeled taking into account that our system
is oriented to smart offices and smart homes, so that other
structures in space could have been modeled considering other
location-related subclasses.

The Location class of the Location Ontology is linked to
the top-level class of the other two ontologies through several
properties. These properties determine the location in which
a Person or an IoT Device is located, by making use of
the isLocated property. In addition, the isAuthorizedToStay
property has also been defined to determine whether a given
Person can be in a certain Location. Here, it is important
to highlight that this property is one of the consequences of
authorization policies defined in Section IV).

The top-level class in the Person Ontology is Person, which
presents two different properties (hasRole and hasAuthLevel
with the Role and Authentication Level classes, respectively)
with the aim of knowing whether the Person has sufficient
roles and authentication levels i) to use and interact with

a given IoT Device (isAuthorizedToUse property with the
IoT Device class) and ii) to be located in a certain location
(isAuthorizedToStay property with the Location class). These
last two properties are the consequences of the authorization
policies described in Section IV-B, which are created at
runtime by the framework administrator.

Finally, IoT Device is the top-level class of the IoT Devices
Ontology, which is categorized into two main subclasses
that inherit from the first. In particular, IoT devices have
been modeled depending on whether they are user-dependent
devices or not; that is, devices with which users interact (e.g.,
tablets or smart lock devices requiring the user’s fingerprint)
or devices deployed in the environment infrastructure (with
which users do not interact) to report information that will
be further analyzed (e.g., surveillance cameras or proximity
devices). Furthermore, the State class models the situation of
IoT Devices in a given moment of time. Among the possible
states, we highlight some of them such as active, interacting,
authenticated, in standby, or switched on/off. On the other
hand, the Service class presents two links to define the different
services that a given user could use (relationship with Person)
and to establish the list of services that are provided by such
devices (relationship with the IoT Device class).

IV. POLICY-BASED DECISION MAKING SYSTEM

The proposed solution continuously authenticates and au-
thorizes users to stay in certain spaces or use different IoT
devices by using semantic rules, which form policies. The
proposed architecture uses rules composed of two lists of pred-
icates, the antecedent, and the consequent. If all predicates of
the antecedent part take the Boolean value true, all predicates
in the consequent part are evaluated. It is important to know
that in our semantic rules the predicates in the consequent part
establish new relationships between entities of the ontologies,
no generating new entities.

Our policies are composed of the following elements: Type
is the kind of policy; Target is the person considered by
the policy to be authenticated or authorized; Location is the
place or environment in which the policy is applied; and
Result determines the relationship that the Target will have
with the IoT Device or Location regarding authentication and
authorization grants. Note that Result is the consequent part
of the semantic rule, while the rest of fields belong to the
antecedent part [15].

Our framework manages two kinds of policies: Authenti-
cation and Authorization policies. Both families are defined
by the Framework Administrator to decide the authentication
and authorization of the users to stay in a given space or use
specific IoT Devices. Below we show an example for each one
of these policies.

A. Authentication policies

Authentication policies consider the state of IoT devices,
which is influenced by the actions performed by users in the
environment, to make decisions about the level of authenti-
cation that users have in a given moment. Different levels
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Fig. 2. Set of ontologies making up the continuous authentication framework: Location, Person, and IoT Devices ontologies.

of authentication are generated by these policies according to
the user’s behavior patterns. These patterns are created, in a
transparent way for the users, by the IoT devices allocated in
the user’s environment or context. By default, the proposed
architecture establishes the lowest level of authentication in
absence of policies. The antecedent of these policies considers
different elements belonging to the three proposed ontologies
(Person, Location, and IoT Devices) and the consequent part
generates relationships between entities belonging to the Per-
son ontology. As an example, the next policy indicates that
persons will be continuously authenticated with the parent
level when they have associated the role Parent, they consume
services provided by a tablet located in the SmartHome and
the security device of the home (an alarm or CCTV smart
devices, for example) has already authenticated them.

IoTDevice(?secDevice) ∧
hasIoTDevice(#SmartHome, ?secDevice) ∧
hasState(?secDevice,#Authenticated) ∧
Person(?person) ∧
authenticates(?secDevice, ?person) ∧
isLocated(?tablet,#SmartHome) ∧
hasState(?tablet,#Active) ∧
provides(?tablet, ?service) ∧
isUsedBy(?service, ?person) ∧
hasRole(?person,#Parent) →
hasAuthLevel(?person,#ParentLevel)

B. Authorization policies

Authorization policies take into account the level of au-
thentication, provided by Authentication policies, to allow
users to stay in certain locations or use specific devices
located in the users’ environment. By default, the proposed
architecture denies the authorization in the absence of rules.
As an example, the next policy authorizes persons to stay in

the SmartOffice and use its IoT Devices when they are located
in that room with the Workerlevel of authentication.

Person(?person) ∧
hasAuthLevel(?person,#WorkerLevel) ∧
isLocated(?person,#SmartOffice) ∧
hasIoTDevice(#SmartOffice, ?ioTDevice) →
isAuthorizedToUse(?person, ?ioTDevice) ∧
isAuthorizedToStay(?person,#SmartOffice)

V. IOTCAF ARCHITECTURE

This section shows the proposed architecture, which is able
to provide users with a continuous unintrusive authentication
and authorization solution according to their interaction with
heterogeneous IoT devices. To reach the transparent authenti-
cation and authorization processes, IoTCAF consists of several
modules organized in three different layers according to their
functionalities. Fig. 3 illustrates the Data, Management, and
Service Layers composing the presented architecture.

a) Data Layer: This lower level includes all the IoT
Devices belonging to the smart-environment. Each device out-
puts a stream of events according to the device purpose. Such
events might be perceived either as distinct events generated
upon interaction between the user and the device (e.g., a
RFID reader) or as a continuous flow of information (e.g.,
a CCTV camera). As modeled by the ontology specified in
Section III-B, there exist two main categories of IoT devices,
according to which the events’ stream can be either sporadic
or continuous. These events are filtered and all the information
that might be used for authentication purposes is sent to the
Collector module in the Management Layer.

A Location Middleware module is taking care of locating
all the devices belonging to the framework. For example, a
device such as a CCTV camera might not be able to provide
a localization service, so it has to be located through other
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information, such as the unique identifier and the installation
location. As for the IoT Devices, the location data are sent
to the Collector that will interpret them according to the
previously mentioned ontology (Section III-B).

b) Management Layer: This layer represents the intel-
ligent core of this framework. It provides several features,
among them the possibility of modeling according to a stan-
dard format (the ontology) all the events generated by the
Data layer. This function is required in order to be able to
provide both the authentication and the authorization services
responsible for controlling the IoT devices. In this context,
these capabilities enable the framework to authenticate users
according to their behavior and interaction with the devices,
without losing the capabilities of providing layered security.
It is clear, in fact, that the layer receives different inputs from
multiple devices that are collected, integrated, and analyzed.
Two main sources of knowledge for the Reasoner module are
confined, namely the Policies and the Ontologies databases.
The former contains the definition of all the policies structured
in two groups, one for the authentication (Section IV-A) and
one for the authorization (Section IV-B); the latter includes
the three ontologies of IoT Device, Location, and Person as
described in Section III-B. However, the control flow starts
with the location information and events’ streams that are col-
lected by the Collector module, which takes care of interpret
and save them in the aforementioned ontologies database.

The information is then used by the Reasoner, whose
implementation details are highlighted in Section VI, which

ultimately triggers a decision and a reaction in the Engine.
The decision is taken according to the policies specified
in the aforementioned database applied over the collected
events modeled upon the class-specific ontology. The decision
is hence enforced by retro-fitting the reaction for the Data
layer. Finally, an administrative API is available for human
administrators in order to be able to configure (i.e., add, edit
or delete policies and ontologies) and tune (i.e., frequency of
update, etc.) the system.

c) Service Layer: This layer contains the set of services
provided by our solution to interact with different IoT devices
and authenticate or authorize users to use specific devices or
stay in given places. Here it is important to highlight that
some devices such as boundary authentication gateways do
not require these services because they are used firstly to
identify users. So, our solution has a specific authentication
and authorization service for each IoT device. To be able to
manage this process, some devices expose APIs that permit
the authentication and authorization of the users that are
interacting with them. Multiple services can be included later
on for increasing the maneuverability and the reactiveness of
the system to external inputs.

d) Actors: The main actors included in this architecture
are the Framework Admin, whose tasks include the config-
uration and the maintenance of the policies and ontology
database, and the Person who may interact with the devices.
The benefits for persons are clear, since avoiding intrusive
authentication and authorization procedure greatly simplifies
user experience without jeopardizing the environment security.
In fact, independently from their active interaction, the frame-
work is built so to be able to recognize and profile them, in
order to provide real and continuous authentication.

VI. DEPLOYMENT AND EXPERIMENTAL RESULTS

We have deployed IoTCAF to validate its proper functioning
and measure its throughput and scalability. In this context, the
representation of the information (ontologies and policies) and
the decision-making process (Reasoner and Engine) are based
on Semantic Web techniques, where Location, Person, and IoT
Device ontologies, shown in Section III, are defined in OWL 2
(Web Ontology Language) [16] and have been generated with
the Protégé tool [17]. We have chosen OWL 2 rather than other
languages like RDF, RDFS, or DAML+OIL because OWL 2
is more expressive than the rest. It was specifically designed
as an ontology language, being an open standard, and the main
ontology language used nowadays in Semantic Web. On the
other hand, semantic rules defining the policies of Section IV
are expressed in SWRL (Semantic Web Rule Language) [18].
SWRL includes a type of axiom, called Horn clause logic, of
the form if... then..., being the most widely used solution in
Semantic Web today.

The proposed architecture makes decisions about the au-
thentication and authorization of users according to the pre-
vious ontologies and semantic rules. For that, a semantic
reasoner, implemented by the Reasoner component of Fig. 3,
infers new knowledge that decides whether a given user



is authenticated, authorized, or not. We use Pellet [19] as
semantic reasoner, which receives ontological models with the
information shaped by the ontologies and policies. Finally, the
Engine component of the proposed architecture is in charge
of applying periodical queries, performed in SPARQL [20], to
the inferred model and gets the result about the authentication
and authorization of users.

Once the decision-making process has been explained, we
conducted several experiments with the aim of measuring its
throughput and scalability. These experiments were intended
to deal with two questions:

• Is the decision-making process time acceptable?
• How it scales with different IoT devices and authentica-

tion/authorization policies?

As experimental setting, the proposed framework and the
conducted tests were carried out in a dedicated PC with an
Intel Core i7-3770 3.40 GHz, 16 GB of RAM, and an Ubuntu
16.04 LTS as operating system. The results shown in this
section have been obtained by executing the experiments 100
times and computing their arithmetic mean.

A way to measure the performance of the decision-making
process is doing executions with different level of complexity.
This complexity is related to the number of individuals present
in the ontologies and the number of semantic rules making
up the policies. Increasing the number of individuals and
semantic rules will provoke an increment on the number
of statements, and thus on the complexity of executions.
The number of individuals contained in our ontologies is
referred as population. This was randomly generated, but in a
controlled way to achieve a real distribution of the elements
composing the environment. TABLE I depicts the number of
elements used in our environment and their percentages.

TABLE I
INDIVIDUAL DISTRIBUTION OF POPULATION.

Element Amount Percentage Element Amount Percentage
Buildings 1 0.1% Persons 4 0.1%
Floors 4 0.2% Roles 10 0.3%
Areas 20 0.6% IoTDevices 1,000 31.0%
Sections 80 2.5% Others 100 3.1%
Positions 2,000 62.1% Total 3219 100%

Another important aspect, related to the second question
highlighted in this section, is to evaluate how the scalability
of the decision-making process is. With this goal, we defined
an initial population of 30,000 individuals, which is increased
with other 30,000 individuals in each step. Table II shows the
complexity of the proposed ontologies (relationships between
the individuals and the statements generated by the semantic
reasoner). As observed, the number of statements is propor-
tionally increased according to the number of individuals.

Fig. 4 depicts the time, measured in milliseconds (ms), used
by the semantic reasoner to validate the ontology considering
different population groups (shown in Table II).

TABLE II
NUMBER OF INDIVIDUALS AND STATEMENTS PER POPULATION.

Population 0 1 2 3 4
Individuals 30,000 60,000 90,000 120,000 150,000
Statements 352,532 710,004 1,065,537 1,465,409 1,804,336
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Fig. 4. Consistency checking time.

Comparing the increase of individuals and statements with
the time required by the decision-making process, we can
observe that the proposed solution can support a very large
number of individuals or statements within a reasonable time.
Furthermore, the linearity property behind these results allows
us to deduce that a better computer system setting would
obtain lower reasoning times.

The previous experiment has demonstrated a linear rela-
tionship between individual/statements and the reasoning time,
but without considering policies. Thus, the main goal behind
the next test is to check how policies affect to the scalability
of the proposed solution. In this sense, we defined several
percentages of policies related with the persons contained in
our population groups.

Fig. 5 shows the variation of the time required by decision-
making process when the population (see Table II) and the
number of policies change. As we can see, policies have a
very low impact in our framework. For all populations, the
difference between having 10 and 200 policies per user is
around a few milliseconds.

As main conclusion of this section, we have demonstrated
with the previous experiments that when the number of in-
dividuals/statements is linearly increased in our ontology, the
decision-making process time also increases linearly. Further-
more, the semantic rules that form the policies do not have an
important impact on the decision-making process time.

VII. CONCLUSIONS AND FUTURE WORK

Despite the numerous efforts to develop successful au-
thentication systems, a number of challenges still remain
unsolved. In this regard, the paper at hand leverages the
multiple benefits of the IoT paradigm to propose IoTCAF,
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a novel IoT-enabled continuous authentication framework.
In particular, we developed an ontology to formally model
IoT scenarios and designed an architecture to deal with the
current status of a given IoT scenario, as well as administrator
policies to authenticate and authorize users seamlessly and
in a non-intrusive fashion. The conducted experiments have
demonstrated the suitability of our solution.

As future work we intend to apply machine learning tech-
niques to accurately build behavioral profiles of users and
integrate them within IoTCAF.
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