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Abstract With the first commercially available 5G in-

frastructures, worldwide’s attention is shifting to the

next generation of theorised technologies that might be

finally deployable. In this context, the cybersecurity of

edge equipment and end-devices must be a top priority

as botnets see their spread remarkably increase. Most of

them rely on algorithmically generated domain names

(AGDs) to evade detection and remain shrouded from

intrusion detection systems, via the so-called Domain

Generation Algorithm (DGA). Despite the issue, by ap-

plying concepts such as distributed computing and fed-

erated learning, the cybersecurity community has pro-

totyped and developed dynamic and scalable solutions

that leverage the increased capabilities and connectiv-

ity of edge devices. This article proposes a lightweight

and privacy-preserving framework that pushes the in-

telligence modules to the edges aiming to achieve early

DGA-based botnet detection in mobile and edge-oriented

scenarios. Experimental results prove the deployability

of such architecture at all levels, including resource-

constrained end-devices.

Keywords Domain Generation Algorithm (DGA) ·
Machine Learning · 5G · Cybersecurity · Edge Artificial

Intelligence · Federated Learning

1 Introduction

As predicted [6], the past five years have seen the expo-

nential growth of the research interest in 5G technology,

and, nowadays, the first 5G commercial infrastructures
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are being deployed worldwide. Among other aspects

and together with the newly improved service deliv-

ery requirements, the ultra-densification of connected

devices forces scenarios in which fixed network archi-

tectures are not an option anymore [2]. Despite the nu-

merous challenges that remain open [7], the research

community has started to look beyond 5G [25].

A critical lesson that the community learned from

the 5G research is that the service layer can be decou-

pled from the network architecture, resulting in frame-

works that feature dynamic capabilities such as self-

configuration, on-demand scalability, and self-protection.

In such a scenario, Artificial Intelligence (AI) can be

seen as a necessary construction block to sustain this re-

quired dynamicity. Indeed, the enabling technology that

can offer the capabilities mentioned above consists of

using the AI –Machine Learning (ML) and Deep Learn-

ing (DL)– to automate networks and services virtual-

isation, e.g., AI for software-defined network (SDN) and

network functions virtualization (NFV) self-optimisation.

As a point of fact, several projects and vendors (5G

America [1] and SELFNET [10] among others) proved

that intelligent and scalable platforms based on ML-

powered SDN/NFV could meet the exponentially in-

creasing demands.

Not surprisingly, with this automation grade, the

cybersecurity feature as a key principle across the het-

erogeneous solutions. Even though numerous frameworks

have been developed to provide the required automa-

tion, security aspects are often overlooked [7]. To pro-

vide an example, proactive and reactive Intrusion De-

tection Systems (IDSs) appear to be limited to super-

vised analysis of network flows [7,15,24].To be precise,

and to the best of our knowledge, there are a few high-

grade network IDSs that include machine learning capa-

bilities for other purposes than analysing network flows
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[7]. However, a clear trend is the widespread adoption

of ML solutions at the farthest edges of the networks.

Indeed, the concept of pushing computation towards

the users is considered as one of the enabling technolo-

gies of the 21st century [12,26]. To be precise, both

the concepts of AI-for-Edge and AI-on-Edge [12] have

been widely explored before under different names, such

as Multi-access Edge Computing (MEC), Mobile Cloud

Computing (MCC), Transparent Computing (TC), Fog

Computing, cloudlet [26]. All of them employed virtu-

alisation techniques (e.g., SDN/NFV) to decouple the

services from the underlying hardware and features AI

to optimise them automatically.

Notwithstanding the deployed analysis techniques,

researchers agree on the urgency of tackling botnets

and Advanced Persistant Threats (APTs), and specif-

ically to identify their communication channels before

the actual attacks can take place [21,37,39]. Within

this context, the usage of Domain Generation Algo-

rithms (DGAs) appeared as a clear trend due to the

asymmetrical efforts required to sinkhole the generated

domains [37,39]. The paper at hand will focus on ML

applications for tackling these communication channels

by providing the means to identify DGA-based botnets

at scale.

The subject of detecting algorithmically generated

domains (AGDs) is, in fact, offering a fertile research

topic from multiple standpoints:

(i) firstly, the inherit randomness of the Fully Qualified

Domain Names (FQDNs) makes static rule-based

IDSs ineffective in favour of ML solutions;

(ii) secondly, the amount of FQDNs to be analysed com-

pels researchers to develop scalable architectures;

(iii) thirdly, browsing history is to be considered a pri-

vate subject, thus requiring privacy-aware solutions;

and,

(iv) finally, it has been proved that APTs can stay dor-

mant for prolonged periods before performing mali-

cious actions, thus compelling preemptive detection

capabilities.

In summary, the proposed approach leverages the

well-known ideas that support the SDN/NFV paradigm

to provide automated and scalable detection and re-

action capabilities –also known as security-as-a-service

(SECaaS) [40]. To be precise, the proposed framework

demonstrates the capabilities of DGA-based botnet de-

tection services deployed on the farthest edges of the

network.

Hence, the fivefold contributions of the paper at

hand can be outlined as follows.

– Firstly, this research will identify and discuss the key

principles of Edge AI applied to ML-based network

security;

– secondly, the literary works on DGA-based botnet

detection are examined and mapped to the architec-

tural designs that characterise Edge AI, eventually

providing a comparison with pros and cons for each

architectural design;

– thirdly, after a constructive discussion regarding the

SECaaS deployment location, an experimental frame-

work architecture is drafted;

– fourthly, a set of experiments will prove both the

soundness of the Edge AI approach and the effec-

tiveness of lightweight and explainable traditional

ML algorithms in identifying DGA-based botnets;

and,

– finally, the key ideas and principles identified through-

out the research are blended in a lesson learned and

future work discussion.

The rest of the paper at hand is structured as fol-

lows. Firstly, Section 2 will report the necessary back-

ground in terms of both Edge AI architectures and ap-

plications, with a specific focus on the difference be-

tween deployment locations; secondly, Section 3 will

present the proposed prototypical framework for DGA-

based botnet detection on edge. Then, Section 4 will

gather and discuss some critical aspects with particu-

lar attention to future research objectives, while, finally,

Section 5 will provide a conclusive summary.

2 Edge AI to look beyond 5G

To look beyond 5G technology is necessary to consider

the enabling technologies that make the 5G ecosystem

working [3]. Among them, the most important ones

are undoubtedly the SDN, the NFV, the orchestration

frameworks, and the containerisation theory [7]. Al-

though Beyond 5G (B5G) heavily relies on wireless

technology improvements [41], they are out of the scope

for this research. Hence, instead of focusing on what

makes B5G possible hardware-wise, this research looks

at what architectural solutions and frameworks can be

used.

Across the scale, the trend is clear: AI can and

should automate and optimise most of these steps [12].

In this research, the main focus is on the early de-

tection of DGA-based botnets in scenarios that features

large volumes of data and a high degree of user mo-

bility. As previously shown by [37], both classical ML

(i.e., those algorithms and models that do not employ

neural networks) and DL solutions have been deployed

to tackle this malware threat.



Early DGA-based botnet identification: pushing detection to the edges 3

In the context of 5G and B5G networks, where po-

tentially billions of devices are susceptible to malware

infections, the ability to detect DGA-based botnets be-

fore they activate to attack other systems is critical.

Edge AI offers a promising set of tools to study, design,

and deploy scalable ad effective detection solutions.

Hence, using the DGA-based botnet detection as a

use case, the remaining of this section is structured to

introduce the necessary background on Edge AI (Sec-

tion 2.1), the different architectural designs (Section 2.2),

and their relations with the cybersecurity aspects (Sec-

tion 2.3).

2.1 On the subject of Edge AI

As thoroughly surveyed by several authors [12,26,32,

43], the Edge AI discipline encompasses all those tech-

niques intended to move the ML (with great focus on

DL ones) towards the end users instead of the cloud.

In this research, we adhere to the definitions proposed

by [43] that classifies the approaches to Edge AI as

layers of a pyramid. Starting from the Cloud scenario,

each subsequent level moves a part of the process to-

wards the edges, having in the highest tier (Level 6)

the whole process performed within the end devices.

To be precise, with device it is identified any potential

device that presents the properties of being of users’

propriety and usage. Thus, in this category, falls both

personal and company-issued devices such as laptops

and smartphones, but also IoT devices such as routers,

cameras, sensors.

As described in this section, Fig. 1 will describe and

discuss the properties and differences of these six ap-

proaches (compared to the well-known cloud approach).

An entirely different subject is the application of AI

to optimise and self-configure the network slices that

provide the services, a topic defined as Intelligence for

Edge or AI for Edge [12,32]. In the same surveys, the

authors reported a collection of technologies designed to

work at the edge of the networks; we suggest the readers

refer to them, alongside with the numerous surveys in

the area [11,18,19,23,26,33], for detailed information

regarding the subject.

The SECaaS theory provides an example of this se-

mantic difference. Generally speaking, a network IDS,

such as the DGA-based botnet detection framework in-

here presented, might be configured as a service using

any virtualisation technology. Within the 5G ecosys-

tem, this IDS would be designed as virtual network

function (VNF) to be deployed as other services by the

orchestrator. Similarly to 5G orchestration-level intel-

ligence, AI for Edge [12] encompasses those ML appli-

cations that provide optimisation and learning capa-

bilities to the management modules. On the contrary,

AI on Edge covers the study of what kind of intelli-

gence should be deployed in the IDS service, not how

to deploy it; e.g., how to separate malicious AGDs from

legitimate FQDNs.

As for 5G orchestration, the location of the deploy-

ment of the service does influence the performances,

especially in the context of the depicted use case of

DGA-based botnet SECaaS. Thus, to highlight the dif-

ferences between the approaches, in Fig. 1 are reported

the prototypical architectures for each level in regards

to the training (indicated with a red diamond marked

with the TR acronym) and inference (indicated with

a blue triangle with the INF acronym) phases. In this

novel computation paradigm, low requirements tasks

can be executed at the edges of the network, often di-

rectly on the end devices.

On the one hand, classical approaches rely upon

the cloud datacenters for training the AI models [32],

i.e., the most resource-consuming part of the process.

Whether it is possible to perform the training phase on

the edges –and ultimately on the end-devices– heavily

depends, among others, on:

(i) the use case, as not all scenarios have critical issues

that can be mitigated by offloading the intelligence

to the edges;

(ii) the latency and delay requirements, as, depending

on the use case, there might be some constraints

on the privacy requirements, e.g., personalised user

experience that strictly requires that no user data

leave the device [16];

(iii) the isolation requirements as coexisting applications,

cryptographical restrictions, and network slicing lim-

itations may cause privacy and data issues;

(iv) the amount of data to be processed, e.g., a face

recognition service that needs to process hours upon

hours of multiple feeds necessitate a non-trivial amount

of bandwidths;

(v) the resource constraints of the end-devices, espe-

cially in the Internet of Things (IoT) ecosystem where

the issues related to battery usage, broadband con-

nection unreliability are more noticeable.

On the other hand, generally speaking, the data

originate at the most remote edge of the network, i.e., in

the end-devices. As the data needs to be processed and

inferred by the AI models, it is reasonable to aim at

completing as much computation as possible directly

on the devices (Levels 3 and 6 of Figure 1) or eventu-

ally offloaded to the edge (Levels 2, 4, and 5). Nonethe-

less, moving ML components to the device has some

limitations, mainly regarding limited energy, comput-

ing capabilities, and storage [13].
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Fig. 1: Comparison overview for Edge AI protypical architectures.

a/b User data limit when the inference process is carried out at the edge level (a) or at the cloud level (b).

Finally, and referring to Fig. 1, it is worth mention-

ing that only two levels, namely the third and the sixth,

guarantee that the users’ data never leaves the device.

In Fig. 1, such limit is indicated with a double line, that

can be either continuous or dotted. As will be described

later on, in this last case, it represents the actual data

limit in the case where no cloud-offloading is activated.

Similarly, in the second and fifth levels, the inference

process is performed on edge. Since these services are

deployed closer to the users, there is a significant re-

duction in both latency and bandwidth; however, the

security implications of leaving the data at the edge

level are still unclear [18,22,23]. To be precise, if multi-

ple edges merge their data to the cloud, privacy issues

might arise, i.e., the privacy concerns gathering around

the extensive use of AI on end-devices are not related

to the devices themselves, but with how and where the

data are transmitted, processed and stored. Nonethe-

less, one of the main advantages of the centralised cloud

relies on this uploaded and shared knowledge. In a col-

laborative environment such as has been studied before
[27], IDSs can benefit from the intelligence gathered

from multiple sources. Specifically, collaborative, cloud-

based IDSs have been proved effective against zero day

(0-day) malwares [8].

2.2 Architectural Differences

With regards to the different options presented in Fig. 1,

this section will introduce a brief analysis of the most

engaging aspects. To do so, we will introduce the Fig. 2

that presents a vertical analysis for Levels 2, 3, 4, and

5. To be precise, this section will unfold the options and

capabilities of a DGA-based detection framework to be

deployed as a collection of SECaaSs.

To start with the inference process location, Fig. 2a

and Fig. 2b present two edges configurations. To begin

with, Fig. 2a reports a prototypical architecture for a

5G-like network slice that interposes between the inter-

nal resolver and the remote ones. In this scenario, the
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Fig. 2: Architecture for a DGA-based botnet detection framework deployed at different levels of Edge AI framework.

network slice is configured to apply a policy enforcer

whose rules are defined by, for example, a ML classifier.

Similarly, Fig. 2b reports a prototypical architecture for

a on-device resolver that intercepts user’s requests be-

fore sending them. In both configurations, the requested

FQDN is extracted from the DNS query, processed by

the feature extraction microservice, and classified us-

ing a pre-trained-cloud model. The difference between

Fig. 2a and Fig. 2b dwells in the actual location of this

process, i.e., the edge and the end-device. Notice that

both configurations require a trained model, which has

been conveniently trained in the cloud. Mind also that

there are no obligations to share the inferred data with

the cloud services; thus, both the isolation and the pri-

vacy requirements can be achieved.

Similarly, Level 4 (Fig. 2c) and Level 5 (Fig. 2d)

achieve the same isolation property by analysing the

data directly on edge, without offloading it to the cloud.

To better discuss it, it is necessary to refer back to

Fig. 1, and specifically Levels 1 and 4. In both cases,

the inference process takes place on edge; however, the

architecture does leave open the possibility of offload-

ing such tasks to the cloud services if needed. To put it

in other terms, since the edges are generally resource-

constrained, they might decide to offload part of the in-

ference to the cloud services to optimise the workload.

Offloading strategies include partial offloading, verti-

cal collaboration, and horizontal collaboration, to cite

a few (the readers might refer to [32] for a detailed

survey on the subject). The main difference between

the two approaches resides in the possibilities offered

by transferring part of the training to the edges. That

is to say, in Level 4, each edge can update the model

and eventually share it with the cloud in a federated

fashion. Even though the fourth level could be, in the-

ory, designed to transfer the data to the cloud for load

balancing purposes, in the scenario depicted in Fig. 2c,

this is not the case. The classifier is designed to work
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only on edge; thus, the data limit can be considered on

the edge boundaries, and not on the cloud ones.

So far, both Fig. 2a, Fig. 2b, and Fig. 2c have the

training phase deployed as a cloud SECaaS. By con-

trast, in Fig. 2d the same process is configured to have

the training phase on edge. To be precise, in Fig. 2d the

in-edge training process uses a cloud-collected dataset

that is augmented with private and locally-available

data. It is worth mentioning that the training process

does not require both local and cloud samples. How-

ever, shared knowledge [22,27] is effective in tackling

cybersecurity threats, specifically in the case of 0-days

malwares. Although the scenario described in Fig. 2d

offers a collaborative base for sharing knowledge, it does

not include the actual share of the trained model (or its

hyperparameters) as Fig. 2c (Level 4) does. In Fig. 2c,

we assume that the edges are cooperating to produce

an optimal model without sharing users’ data, thus en-

forcing the isolation and privacy requirements. On the

contrary, in Fig. 2d, the edges cannot share the user

data to the cloud, hence forcing the central cloud to

obtain its data somewhere else. In any case, a hybrid

architecture is achievable, where multiple edges adopt

a different model depending on local requirements: for

example, in a context such the one offered by the DGA-

based botnet detection, sharing users’ browsing history

might not be feasible without substantial anonymisa-

tion. Nonetheless, as proved in [37,39], sharing a list

of domain names (both legitimate FQDNs and AGDs)

does not constitute a privacy issue.

2.2.1 Outlined differences, pros and cons

To summarise the different approaches, Table 1 reports

their properties, advantages and disadvantages when

the architectural models are applied to the DGA-based

botnet detection.

For this comparison, it is worth mentioning that the

difference between a 5G-style edge environment and a

corporate domain one is of utmost importance, being

it key to understanding the potential risks and bene-

fits associated with cloud data [29]. In this scenario,

several assumptions are, in fact, reasonable. Besides

small and micro-enterprises, it is plausible to consider

a private cloud environment, perhaps with a dedicated

IT team or even a security operation center (SOC) in

case of larger corporations. The resources available to

these entities are not the same as those at the disposal

of 5G-RAN nodes, albeit they share some advantages

and disadvantages of Edge AI. Firstly, from the com-

putation resources available, cloud training and test-

ing feature virtually infinite resources; however, farthest

edge pieces of equipment have limited means while end-

devices have substantial constraints. Not surprisingly,

latency heavily depends on the proximity to the users,

the closest to them, the fastest the response. The con-

cept of data source availability is deeply connected to

the sharing framework between the participants, in this

context, such as presented by [22], the cloud can either

receive aggregated and anonymised data or a selection

of parameters to update accordingly, ultimately provid-

ing a virtually unlimited overview of the network. The

economic resources available at the highest levels also

justifies the assumption of high-quality labelled data

originating from the ones shared by the edges. The same

happens within medium to large corporations, where a

dedicated SOC might be providing curated data for the

AI processes to work. For the same reason, data access

can be limited to corporation assets, thus providing a

similar isolation level as edge devices; as widely stated

before in literature, once the data reaches the cloud,

there is no guarantee besides what the service provider

declared in the term of service (ToS).

In general, the strength of deploying a DGA-based

botnet detection on edge relies on providing broad pro-

tection services (due to the collaborative efforts [27])

closer to the user, provided that the security triad (Con-

fidentiality, Integrity, and Availability) of the data is

guaranteed. However, as for every other collaborative

framework, defensive mechanisms against data and model

poisoning must be considered [34].

Finally, in terms of computational requirements for

Edge AI, Khan et al. [19] reported a curated syllabus

on expected technologies that are, in general, required

for enabling Edge AI, while Coppolino et al. [11] specif-

ically discussed hardware-based enhancement to make

Edge AI feasible. Furthermore, Lin et al. [22] presented

a comprehensive survey on actual implementations ap-

proaches, architectures and libraries to enable Edge AI

in a decentralised and collaborative fashion.

2.2.2 Critical aspects of services location

To summarize, cloud services provide, by far, the most

common scenario. In this context, a broadly employed–and

thus lacking in innovation–approach is to propose frame-

works that can provide SECaaS through self-deployable

VNF [4,40]. For these functionalities, most authors across

the board agree on primary key performance indica-

tors (KPIs) such as detection rates, yield capabilities,

and guaranteed availability, indeed, the cloud scenario

is characterised by scalable and high-reliable VNF that

provide the required services to massive amounts of cus-

tomers. Amid the criticalities, there are the privacy is-

sues, well discussed in the past [20], that arise with

sharing the data to third parties (first and foremost the
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Metric
DGA-based SECaaS deployment location

Cloud
Corporate Domain

Private Cloud
Edge End Device

Computational
resources availability

Unlimited
Depends on

corporate resources
Limited

Constrained by
power, battery

and performance
Latency Potentially high Significantly high Low Zero

Data source

availability

Labelled
Significantly high if
in a collaborative

framework

Depends on the size,
scope, and availability

of SOC.
None None

Not

Labelled

Potentially unlimited
if in a collaborative

framework

Limited to corporate
nodes

Limited to node Limited to device

Data access and isolation
Third party accessible
and variable with ToS

Corporate Service provider User

Benefits from
shared

intelligence

Receiving data

or models

Multiple data sources,
early identification of

new threats
Broad Protection

Sharing data

or models

Higher protection for
the framework
participants

Might get economical
benefit from sharing

data or models

Directly none. Indirectly, it
contributes to the ecosystem

Risks from
shared

intelligence

Receiving data

or models
Data or model poisoning

Sharing data

or models

Security CIA non-compliance,
potentially higher risk of exposure due to higher data value

Security CIA
non-compliance

Table 1: Qualitative comparison of different architectural approaches for a DGA-based detection framework com-

patible with Edge AI.

GDPR-related issues). Nevertheless, aggregating and

collecting a massive amount of data can provide use-

ful information to CERT and nation-wise monitoring

actors without harming users’ privacy.

With regards to DGA-botnet detection, the scenario

itself does not offer any relevant challenge besides the

ones already identified and explored in literature. Al-

though supported by practically unlimited resources,

SECaaS at cloud level suffers from scalability issues in

regards to the number of connected devices, a critical

aspect for B5G ecosystems.

Similarly to the cloud services, a few authors have

designed SECaaS bearing in mind the potentialities of

edge computing, for example, by pushing the VNFs to

the remotest areas of the networks. Regarding the KPIs,

and besides those already defined for the cloud ser-

vices, authors have collected and defined several metrics

based on the hardware requirements needed for run-

ning the VNF. Although some authors make the dis-

tinction between the different categories of KPI indica-

tors (e.g., quality of service (QoS) and quality of expe-

rience (QoE) among others), such a discussion falls out-

side of the scope of this research. Indeed, this research

field hankers for a precise and formal definition of met-

rics and indicators to enable a quantitative comparison

between reproducible frameworks. To cite an example

of such indicators, there is the capacity of utilisation,

i.e., the percentage of classification capacity used over

a predefined time unit that enables optimised load bal-

ancing for network intrusion detection [15].

To further discuss the applicability of a DGA-based

detection module at the edge level, it is necessary to

separate the concept of edge and corporate domain.

Edge computing – On the one hand, the edge-related

discussion should pivot on the automated, human-free,
capabilities, highlighting themes such as the limited

computational resources, the extremely low-latency re-

quirements and the native isolation from the cloud ser-

vices.

Corporate domain – On the other hand, corporate do-

mains can be partially overlapped with the concept

of the private cloud, thus centring the discussion on

themes such as the protection and isolation of the sen-

sible data rather than fully automated detection capa-

bilities. The private cloud environment provides miti-

gation against the already mentioned privacy issues of

the cloud providers, without tackling the benefits of the

broad protection that a shared knowledge base can pro-

vide [9].

Provided that the corporate domain can guaran-

tee the security CIA compliance, and as previously re-

ported in Table 1, the scenario can present several ben-

efits to the SECaaS, specifically in terms of the amount

of data and overall network visibility. In comparison,
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a fully automated on-edge configuration would permit

much faster responses due to the reduced latency and

high self-capabilities. However, a dedicated SOC, if avail-

able, can be handy in detecting anomalies and new

APTs, thus providing constant updates and improve-

ments to the detection models.

Lastly, only a few authors have proposed detection

solutions that work entirely on the end-devices [14,23].

In this constrained scenario, hardware related KPIs be-

comes critical, e.g., execution time and resource con-

sumption. Bear in mind that the end-device category

does not only include smartphones and personal de-

vices, but it also encompasses a broad category of IoT

devices such as home routers and Industrial Internet of

Thingss (IIoTs) sensors. Indeed, Edge AI solutions pro-

liferate in industrial scenarios due to the low resources,

high availability constraints [35].

2.3 Edge AI and cybersecurity

There are a few notable solutions worth mentioning

concerning the cybersecurity side of the applications

compatible with the Edge AI paradigm.

Besides the inherited threat model from the cloud,

edge computing introduces new security risks due to

its traits [23]. Ideally, a fully privacy-preserving ap-

proach would only manage strictly necessary data with-

out transmitting them to any external processing centre

(in Fig. 1, only levels three and six achieves this status).

We invite the readers to refer to [12,22,32] for technical

analysis of up-to-date libraries to deploy frameworks in

such fashion.

On the attack side of the cybersecurity, Isakov et al. re-

ported an in-depth analysis of the current state of the

art regarding the threats [18]. In their survey, they

firstly introduced a taxonomy on vulnerabilities and

criticalities of neural networks that can be exploited

by criminals to gain an advantage on the cyber de-

fences; also Liu et al. [23] reported a collection of se-

curity threats that target data explicitly.

On the defensive side, several aspects need to be

taken into account. First and foremost, most (if not all)

data have protection and isolation requirements; conse-

quently, the security challenges associated with those

subjects are of the highest importance and priority. In

such a sense, several surveys have collected, analysed,

and compared specific mitigation techniques to the vul-

nerabilities that have been gradually uncovered. Among

them, Liu et al. [23] analysed the phases of collection,

processing, and storage of the data management on the

edges, with particular attention to the open challenges

and future research directions.

For another aspect of the defensive side, classical

ML powered detection frameworks are evolving toward

decentralised, edge-oriented solutions. Two scenarios pre-

vail among others when looking at the research interest;

on the one hand, the industrial environment offers re-

quirements for high-availability, low-resources and low-

latency services. The derived research challenges cause

the research community to thrive [35,42]. On the other

hand, the challenges and requirements offered by the

5G self-protection scenarios mainly lead the commu-

nity to design IDSs as full-cloud services [24], having

just some of them offloading part of the inference pro-

cess to the edges [15,17]. In that sense, [14] stands out

by presenting a working solution for a Level 6 (fully on-

device) architecture for IoT devices. Notably, mixed so-

lutions like the ones proposed by the federated learning

paradigm [22,33], i.e., those solutions where the train-

ing is at least partially performed on edge are hyped

and are notably worth further researches.

Within network detection, to the best of our knowl-

edge, this is the first attempt to explore DGA detection

on the edges. Notably, several frameworks have been

proposed just in the last year [5,28,31,36], however,

besides apparent reproducibility issues [39], every work

allegedly resolves the challenges related to DGA-based

botnet detection. Nevertheless, there is a clear trend in

terms of the chosen technology, i.e., Long Short-Term

Memory network (LSTM)-based and, in general, DL-

powered framework [28,31,36].

In addition to generic network-based malware de-

tection, a particular focus should be dedicated to the

APT threat [21]. These advanced malwares are often

recompiled for the specific target and present multiple

obfuscated variants that do not match classical signa-

tures. However, the extensive usage of machine learning

in log and data mining has been proved useful to de-

tect malware infection symptoms, especially new ones

(0-day). In the context of this manuscript, the same

ideas are applied to the network communication phase

[39] to identify a botnet communication as early as its

first connection to the Command & Control (C&C). In

the context of Edge AI and, in general B5G, it appears

that this threat explodes with the number of newly con-

nected and poorly protected devices [35].

Last but not least, the distributed nature of these

architectures requires to discuss the underling security

primitives that guarantee the confidentiality and in-

tegrity of the shared data [29]. However, subjects like

trust and reputation management alongside with access

control, authentication and encryption will not be dis-

cussed in this research article as they are out of scope

and they have already been widely covered in literature

[29].
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3 Experimental DGA-based botnet detection

on Edge

Most of the Edge AI reported in the previous sections

offer little-to-no architectural challenges besides the one

offered by implementing the actual algorithms on the

resource-constrained edge devices. Despite that, the Fed-

erated Learning approach offers an intermediate solu-

tion that connects the best cloud performances with

the isolation and scalability offered by the edge char-

acteristics. The remaining of this section is structured

as follows: Section 3.1 depicts the framework’s architec-

ture, while Section 3.2 presents a brief remark in terms

of minimum computational resources and modules lo-

cations.

3.1 Proposed architecture

The framework described in the paper at hand is de-

signed to be compatible with the Edge AI Level 4 in a

Federated Learning fashion. Fig. 3 presents its architec-

ture, including both the cloud level services and two dif-

ferent edge-level environments leveraging the idea of a

collaborative framework The edges, represented as iso-

lated domains, receive a shared and pre-trained detec-

tion model that can be augmented with locally available

data. However, albeit it is possible to improve the model

in such a way using the same data structure (e.g., fea-

ture set and format, among others) it is also true the

opposite. Locally poisoned data could skew the model

in an adversarial fashion [34,30]. Similarly, each domain

can willingly provide data or partial models to be in-

cluded in the shared cloud next training iteration. Bear

in mind that, as will be demonstrated by the experi-

mental results, the whole edge plan might be shifted to

an end-device, provided that the libraries for executing

the code are available. To the best of our knowledge,

this is the first attempt to establish a DGA-based bot-

net detection framework that can be deployed this far

in the edges.

At a high level, Fig. 3 presents three areas, namely

the Cloud level (on the top half, with a white back-

ground) and two edge levels (on the bottom half, with

yellow and blue backgrounds). Edges are also identified

as “domains” due to the extendibility of the proposed

framework to an enterprise scenario. In such a case, the

company infrastructure might be composed of several

edges that rely on a single shared training subcompo-

nent.

One of the crucial advantages of having enforced the

separation of the detection modules relies on the data

and model isolation [22]. The cloud components can be

seen as multiple SECaaS provided by a cybersecurity

vendor, while each edge/domain represents a federated

subscriber. In Fig. 3, “Domain A” does not share model

nor data to the cloud, simulating a restricted environ-

ment where the collected user data cannot be pushed

to the cloud. No information regarding eventual APTs

and 0-days are thus available for the federation. On the

contrary, “Domain B” does share the pieces of evidence

and samples of collected malwares, enabling the cloud

model to be updated with the new information. Instead

of data, the hyperparameters of the model could be

shared to provide an extra isolation level [22].

Among the various levels identified in Fig. 1 and

discussed in Section 2, we considered Level 4 as the

one that provides both the flexibility of deployment re-

quired by automated 5G scenarios and the compati-

bility with the isolation requirements characteristics of

corporate environments. To be precise, as will be dis-

cussed in Section 3.2, the whole process could be ex-

ecuted directly on the end-devices (thus achieving the

Level 6 compatibility); however, we deemed more in-

teresting to evaluate the potential flexibility offered by

the federated learning environment, i.e., a collabora-

tive network of virtualised and lightweight SECaaS to

provide DGA-based botnet detection at scale.

In this configuration, the two domains represent the

duality of the Level 4 architecture design presented

in Fig. 1. The user data limit is, indeed, different. In

fact, for domain “Domain A”, that does not share user

data with the central cloud, the limit is enforced at

the boundaries of the edge. Independently from the lo-

cation of the classification process, “Domain B” does

share data with the cloud provider, thus moving the

limit mentioned above to the boundaries of the cloud

services. To summarise, the isolation properties heavily

depend on the actual deployment configuration and ap-

plication scenarios; policies and restrictions might ap-

ply to different use cases, as well as risks and benefits.

In terms of the chosen technology, besides several

DL algorithms that can be used for DGA-based botnet

detection [28,31,36,37], we will adhere to the explain-

able AI philosophy in the current manuscript. Indeed,

although DL solutions are trending, this research will

empirically demonstrate that classical and lightweight

models can achieve excellent results. Albeit Federated

Learning focuses on DL, the same principles can also

apply to some classical models, first and foremost the

tree-based ones. As a consequence, all the experiments

will be carried out with decision-tree based solutions

like the Random Forest algorithm or modern approaches

such as the XGBoost or LightGBM.

The remainder of this section has been divided into

three parts to ease the framework exploration process;

firstly, the data are described and presented in Section
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Fig. 3: Architecture and data flow for the proposed L4-compatible experiment.

3.1.1; then, the primary framework’s loop (i.e., steps

from 1○ to 8○) is analysed in Section 3.1.2; finally, an

example of the feedback loop (i.e., steps from A○ to H○)

is provided in Section 3.1.3 in the advent of a new 0-day

infection.

3.1.1 Preprocessing and feature analysis

The proposed experiment uses the data collected by

the authors [39] and publicly released in [38]. In the

dataset, 50 malware variants have been collected and
described, providing both the raw lists of AGDs and

a preview of the extracted features. Nevertheless, not

all reported features provide enough information to be

used for detection purposes [37,39]. Hence, a feature

selection process has been carried out to limit the over-

heat provided by the curse of dimensionality, also given

the context of low-resource or resource-constrained de-

vices provided by the Edge AI scenario [37]. Further-

more, some malware classes have been grouped due

to their indistinguishability [39] with a combination of

clustering techniques and careful human revision. Of

the 50 malware families identified, 21 clusters have been

identified. Fig. 4 reports the classes with the associ-

ated clusters. The clustered data have been resampled

(200,000 FQDNs for the training set, and 9628 FQDNs

for the testing set, both stratified).

Features are ranked with a recursive feature elimina-

tion process, eliminating one feature per iteration. Ex-

perimental results suggest that the top 10 features are

representative enough to achieve good classification re-

Features Algorithm F1 Micro F1 Macro

Full Random Forest 0.9523 0.9514
Top 10 Random Forest 0.9399 0.9386
Full LightGBM 0.9612 0.9604
Top 10 LightGBM 0.9473 0.9459
Full XGBoost 0.9024 0.8988
Top 10 XGBoost 0.8794 0.8749

Table 2: Model performances comparison for feature se-

lection.

sults. Table 2 reports these classification performances

for the three classifiers picked for the analysis. By com-

bining the information reported in Table 2 with the

one reported in Table 3 it is possible to notice that

the average resource consumption halves by accepting

a 2% loss in F1 score. The proposed trade-off enables

scalable and dynamic reconfiguration of the detection

model, but simply switching to the most reactive and

less computationally expensive model depending on the

traffic volumes. To be precise, Table 3 reports the re-

sults in terms of resource consumption’s for both the

full feature set and the top 10 feature sets.

3.1.2 Data flow and experimental results

For the experiments, the framework samples 10,000 do-

main names for each provided class obtained from [38],

and the framework is built upon the Random Forest

classifier with the warm start option enabled to allow

the in-edge upgrade of the model.
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Fig. 4: Partial Hierarchical Cluster of UMUDGA [38] classes, all the non-connected boxes are considered standalone

classes.

Feat. Algorithm Type
Total
Time

Instance
Time

Memory
Peak

Memory
Increment

Full RF Train 75.243 0.00038 1157.18 395.82
Full RF Test 0.630 0.00007 1066.05 12.23
Top 10 RF Train 31.555 0.00016 1115.76 363.69
Top 10 RF Test 0.651 0.00007 1124.62 12.27
Full LightGBM Train 305.845 0.00153 1377.81 641.18
Full LightGBM Test 2.436 0.00025 757.02 0.34
Top 10 LightGBM Train 45.275 0.00023 768.75 9.84
Top 10 LightGBM Test 1.627 0.00017 769.01 0.26
Full XGBoost Train 1669.997 0.00835 1543.91 595.18
Full XGBoost Test 1.529 0.00016 1345.97 0.31
Top 10 XGBoost Train 261.434 0.00131 757.41 2.48
Top 10 XGBoost Test 1.411 0.00015 757.49 0.08

Table 3: Model resources consumption comparison for feature selection (duration are in seconds, memory usage is

in MiB).

The data flows from a central shared data source,

indicated in Fig. 3 with the number 1○ to the edge

classifiers indicated with the number 8○. The elements

marked with circled letters are instead analysed later

in Section 3.1.3.

A standard 80/20 separation is adopted for split-

ting the data in step 2○. On the one hand, the resulting

testing set (20%) will be used at cloud and edge levels

to ensure comparability results. On the other hand, the

training data (80%) is shuffled and separated into three

different, possibly stratified sets with configurable pro-

portions in 3○. The subcomponent separates the data

to simulate data that are available only at the edges

level 4○.

The cloud training module 5○ will use the first data

set to train the base model 6○ to be shared with the

edges. The first experimental results are gathered at

this phase by evaluating this classifier model against

the testing set and reported in Table 4.

The base model is then shared with all edges be-

longing to the federation and augmented with locally

collected data 7○; these data are simulated by sharing

one training set with the edge in step 3○. The updated

model is evaluated in 8○ against the same testing data

used in the previous phase; the results are also available
in Table 4. From the table perspective, it is possible to

notice that the results provided by updating the model
7○ and validating it against the testing set 8○ do not

necessarily lead to an improvement in the model. In

other words, retraining the model with additional data

might not result in an increased detection ratio [30].

Nevertheless, this local-update functionality is of un-

doubted interest, and future researches might consider

it when exploring security architectures.

3.1.3 Simulating a Zero-Day APT

One of the critical aspects of having ML-powered detec-

tion modules is the capability of identifying suspicious

behaviours never seen before. This experiment aims to

simulate the framework data flow in case of a new mal-

ware (which could be easily interpreted as an early stage

APT infection).

While referring to Fig. 3), this experiment flow is

identified by circled letters (i.e., from A○ to H○) instead



12 Mattia Zago et al.

Phase Trees Classes Samples 0-Day F1 Micro F1 Macro Confidence

5○ Cloud Training 50 21 127,761 7 0.929 0.928 0.957
6○ Cloud Testing 50 21 39,926 7 0.931 0.930 0.910
7○ Edge Retrain 50 +10 21 159,702 7 0.931 0.930 0.935
8○ Edge Test 50 +10 21 39,926 7 0.931 0.929 0.906
A○ Edge Test Zero Day 50 +10 21 8,000 3 0.776 0.855 0.812
E○ Cloud Retrain with Zero Day 50 22 128,761 3 0.930 0.931 0.957
F○ Cloud Testing 50 +10 22 47,926 3 0.943 0.933 0.925
G○ Edge Retrain 50 +10 22 187,725 3 0.929 0.929 0.934
H○ Edge Testing 50 +10 22 47,927 3 0.943 0.937 0.923

Table 4: Random Forest performances for the simulated experiment, before and after injecting the zero day.

Role Component Time (s) Med. STD

Server
5○ Fitting 65.05 60.55 79.05 64.70 76.26 64.04 64.03 63.81 63.56 64.04 6.33
5○ 10 CV 236.30 235.92 274.03 13.20 14.35 13.44 15.02 13.85 14.49 14.49 117.86
6○ Validation 0.31 0.31 0.35 0.31 0.35 0.32 0.70 0.33 0.33 0.33 0.13

Client
w/ retrain

Load Model 0.10 0.10 0.15 0.09 0.14 0.12 0.12 0.15 0.10 0.12 0.02
7○ Add. Fitting 2.73 2.78 3.01 2.80 3.07 2.91 2.94 2.90 2.93 2.91 0.11
8○ Validation 0.37 0.36 0.41 0.45 0.41 0.37 0.46 0.48 0.47 0.41 0.05

Client
w/o retrain

Load Model 0.08 0.11 0.11 0.12 0.13 0.13 0.14 0.13 0.10 0.12 0.02
8○ Validation 0.32 0.31 0.35 0.34 0.37 0.34 0.34 0.31 0.32 0.34 0.02
Processors 1 1 1 2 2 2 4 4 4

Memory 1GB 2GB 4GB 1GB 2GB 4GB 1GB 2GB 4GB

(a) Time requirements

Role Component Memory Usage (MB) Med. STD

Server
5○ Fitting 251 251 251 266 266 267 294 294 299 266 20
5○ 10 CV 677 677 677 806 827 825 764 917 970 806 106
6○ Validation 427 426 426 540 561 558 470 624 671 540 91

Client
w/ retrain

Load Model 410 410 410 409 410 410 409 410 410 410 0
7○ Add. Fitting 410 410 410 427 424 427 435 432 434 427 11
8○ Validation 410 410 410 432 430 431 442 437 442 431 14

Client
w/o retrain

Load Model 410 410 410 410 409 410 410 410 410 410 0
8○ Validation 410 410 410 410 410 411 417 417 418 410 4
Processors 1 1 1 2 2 2 4 4 4
Memory 1GB 2GB 4GB 1GB 2GB 4GB 1GB 2GB 4GB

(b) Memory requirements

Table 5: Performances of the machine learning processes depending on the resources dedicated to the virtualised

environment

of numbers. In step A○, a few AGD samples are injected

in the analysed set of data to simulate a previously

unseen malware establishing a communication channel

with the C&C.

Two scenarios are available at this point, i.e., de-

pending on the Edge concept’s interpretation, some ca-

pabilities might or might not be enabled. On the one

hand, in “Domain A”, (that simulates a classic, fully

automated, 5G-RAN environment) the new threat will

remain unnoticed. On the other hand, in “Domain B”

(that simulates a corporate domain with active moni-

toring tools), the SOC eventually notices the confidence

decrease (see Table 4, row A○ Edge Test Zero Day) and

investigate the matter. In this last scenario, some sam-

ples will be eventually collected B○ and used to update

the local model C○. Possibly, and in a federated learning

fashion, these data could be shared and aggregated at

the cloud level D○, to be studied ( E○ and F○), and even-

tually distributed to some edges G○ as the base model.

Similarly to the forward-loop (steps 1○- 8○), the results

are reported in Table 4.

3.2 Resources requirements

A computation analysis has been carried out to eval-

uate the various components capabilities and require-

ments. The results, presented in Table 5, encompass

both the time (Table 5a) and the memory (Table 5b)

requirements of the subcomponents. In the table, the

training process indicated in Fig. 3 as 5○ has been di-

vided into the initial generic fitting and the optional

cross-validation process. Similarly, the clients have been
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divided accordingly to the option availability of a re-

training component (indicated in Fig. 3 as 7○).

To begin with the experiment configuration, a unique

VNF has been configured to execute each submodule

independently. On the subject of resources allocated,

several typical profiles have been taken into account,

ranging from 1 dedicated core and 1 GB SDRAM (typ-

ical configuration of a Raspberry PI IoT device) to 4

dedicated cores and 4 GB SDRAM (typical configura-

tion of a low-end personal laptop). With the specific

configuration of the chosen ML model, lowering the

minimum memory resources is not possible. Neverthe-

less, new specialised IoT-oriented ML libraries might

provide comparable detection performances while op-

erating under lower resources requirements. Both the

results reported in Table 5 and previously in Table 3

demonstrate that even without optimised mobile-specific

ML libraries it is possible to achieve excellent and ex-

plainable detection results in a resource-constrained en-

vironment.

4 Lessons learned and future works

Edge AI represents an innovative solution to several

high-ends cybersecurity issues. While local models excel

at keeping the information isolated from others, they

also require a non-negligible amount of shared data to

be able to target threats effectively.

In other words, while predictive models such as [16]

works well by only using the individual user data, other

detection models–such as the one proposed in this re-

search–are not suitable to work individually. To be pre-

cise, detection models benefit from the shared knowl-

edge base gathered either at cloud level or collabora-

tively in an edge-federated fashion; local models are

great to learn the particular context in which they are

deployed, but they miss the broad vision that only the

cloud can provide. Indeed, some scenarios might re-

quire extensive computations for preprocessing before

the actual inference process kicks-in; for example, in the

context of IIoT, most of the sensors deployed do not

have the minimum resources (including battery capac-

ity) to perform any intensive computation [35]. For the

DGA-based botnet detection, tackling the malwares at

the DNS level enables to deploy lightweight platform-

independent probes capable of privacy-aware real-time

inspections at scale. Future researches should include

the tradeoff between performances, latency, and privacy

aspects in the architectural design.

Concerning the data protection subject, future re-

searches might focus on ways to aggregate and anonymise

data (e.g., homomorphic and searchable encryption),

knowledge transfer learning, gossip training, as well as

explainable ML (and DL) models which hyperparame-

ters could be shared within the collaborative network.

The parameter sharing approach could potentially re-

move a substantial amount of computation and still

provide a powerful detection suite. In this sense, future

works might include detectors capable of preemptively

block connections that are suspected of belonging to

botnet networks by merely analysing the DNS queries.

On the subject of traditional ML vs DL solutions,

we deem that a remark is needed: DL is not required in

every domain. In the depicted scenario, the DGA data

does not feature complex non-linear relationships. As

established before [37,39] and remarked in Section 3, a

small number of features will suffice to train classical

ML algorithms achieving good results. As empirically

demonstrated in the section, a fully on-device DGA-

based botnet detection is possible with traditional ML

algorithms, given that enough samples for each class

are provided. Moreover, most approaches focus on su-

pervised learning as it provides relatively straightfor-

ward and verifiable pipelines; despite their clear benefit,

supervised solutions require large datasets and careful

data supervision. Unsupervised approaches have also

been explored, although not in-depth [37], and future

researches might focus on analysing semi-supervised hy-

brid solutions to take advantage of the massive amounts

of unlabelled data.

For another key lesson, attacks at collaborative mod-

els are not something new [30], as a such, DGAs are

going to evolve to mimick legitimate FQDNs and po-

tentially to tackle the detection algorithms directly in

an adversarial fashion. On-edge solutions, and precisely

in a federated learning ecosystem, have been proved

susceptible to adversarial attacks [22]. In such a sense,

future works might discuss whether edge computing is

necessary, desired, or even feasible.

Finally, as previously indicated by the authors [37,

39], the field in-here studied features a general lack of

reproducibility:

– First and foremost, the data used to power the frame-

works are rarely shared; therefore, future researches

should make use of already shared and well-known

datasets, or provide their own with the appropriate

comparisons to the state-of-art.

– Secondly, the deployed models are described, but

not released (often neglecting to comment on the

hyperparameters configuration); as such, future re-

searches should focus on producing reproducible re-

sults that can be tested and validated by the com-

munity.

– Thirdly, although quantitative comparison frame-

works for ML (and DL) algorithms do exist, their

application is often limited to aggregated indexes
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that might deceive the results, e.g., the Area Under

the Curve (AUC); hence, future researchers should

report all the outcomes, especially the negative ones.

– Lastly, the actual implementations are often described

and tested outside a proper validation framework; in

such a sense, future researches might focus on de-

veloping a suite of tools and indicators to enable

formal comparisons.

5 Conclusions

Albeit the disruptive innovation led by the 5G enabling

technologies, researchers did not stop in exploring more

advanced solutions. Among others, Edge AI is believed

to be the next enabling technology for what is coming

beyond the 5G. It is in this direction that collaborative

concepts, such as federated learning, empowers the raw

potential of 5G bandwidth and number of devices, com-

bining it with lightweight but highly effective machine

learning models. On-device AI might, in some cases,

represent the perfect solution for data-sensible scenar-

ios; however, Edge AI aspires to serve as an interme-

diate compromise between cloud practically unlimited

resources and privacy constraints. With this scenario

in mind, this research empirically proves that a DGA-

based botnet detection module is not only feasible to

be deployed in the resources-constrained environment,

but it also would benefit from shared intelligence in a

federated fashion. A natural evolution of this research

would be to extend the detection models also to tackle

frequent domain name attacks such as the typosquat-

ting (i.e., URL hijacking) or to identify less-known tech-

niques such as the DNS-based data exfiltration.
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