
UMUDGA: a dataset for profiling DGA-based botnet

Mattia Zagoa,∗, Manuel Gil Péreza, Gregorio Martínez Péreza

aDepartment of Information Engineering and Communications, University of Murcia, Campus Espinardo s/n 30100 Murcia
(Spain)

Abstract

Advanced botnet threats are natively deploying concealing techniques to prevent detection and sinkholing. To
tackle them, machine learning solutions have become a standard approach, especially when dealing with Algo-
rithmically Generated Domain (AGD) names. Nevertheless, machine learning state-of-the-art is non-specialist
at best, having multiple issues in terms of rigorousness, reproducibility and ultimately credibility. This research
focuses on the first critical step of the training phase, that is, the collection of data suitable for being anal-
ysed by algorithms. We have detected a common lack of scientific rigorousness in the literature regarding the
aforementioned AGD analysis and, therefore, we advocate two major contributions in this article: i) a thorough
analysis of the cyber panorama in terms of botnets that make use of Domain Generation Algorithms (DGAs)
as evasive techniques, that flows into ii) a full-fledged machine-learning-ready labelled dataset that features
over 30 million AGDs sorted in 50 malware variant classes. This mature dataset aims to fill the gap in the
comparability between the different researches published in the literature. Lastly, two minor contributions are
also included in this article: iii) we designed an exploratory analysis of the proposed dataset to provide both
data characteristics and potential future research lines, which eventually emerges as iv) a collection of suggested
guidelines. When proposing a machine learning solution, researchers should adhere to it in order to achieve
scientific rigorousness.

Keywords: Domain Generation Algorithm (DGA), Natural Language Processing (NLP), Machine Learning,
Botnet, Network Security

1. Introduction

The 2019 cybersecurity landscape is seriously perilous, in fact, as for the past few years, several technical
reports from major security stakeholders [1, 2, 3, 4, 5, 6, 7] have confirmed that cybercriminal activities are
rising in almost every sector. Although 2018 has seen a decrease in the number of malware variants available
in exploit kits (-63% according to [1]), the threat posed by botnets is increasing [2, 5, 6], especially when
considering the ones with backdoor functionalities (+34% in private vs +173% in enterprises [2]). One could
argue that the reason behind such “positive result” (from the cybercriminals standpoint) is due to the extensive
usage of well-known evasion techniques such as obfuscation, live encryption and Domain Generation Algorithm
(DGA) [8, 9, 10]. These techniques are employed by almost every major malware in the wild in order to bypass
Intrusion Detection Systems (IDSs) inspection measures since the infamous Kraken and Conficker malwares,
back in 2008. To be more precise, a DGA is a technique that makes use of pseudo-random routines and external
factors (such as time, data feeds, etc. [9]) to generate multiple Fully Qualified Domain Names (FQDNs) to use
as rendezvous-point (i.e., algorithmically generated domains, or AGDs) for the botnets’ Command & Control
(C&C) servers [10]. DGAs are a notably effective evasion technique that consists of generating thousands, often
millions, of pseudo-random domain names. Their strength relies in the asymmetry of resource required by the
attacker(s) (i.e., the botmaster(s), the malicious actor(s) in control of the C&C servers and thus in control of
the botnet) and the defenders (i.e., Internet Service Providers (ISPs), cyber security vendors and, in general,
the scientific community). That is to say, the defenders needs to detect and react against all AGDs, while the
attacker(s) to be able to communicate with the botnet only require a single, undetected and working domain
name.

To grasp the threat it is imperative to firstly understand its magnitude. That is to say, the most recent
technical reports estimate the number of malicious FQDNs to be around 9.9% of the total domain names, of

∗Corresponding author
Email addresses: mattia.zago@um.es (Mattia Zago), mgilperez@um.es (Manuel Gil Pérez), gregorio@um.es (Gregorio

Martínez Pérez)
URL: https://webs.um.es/mattia.zago (Mattia Zago), https://webs.um.es/mgilperez (Manuel Gil Pérez),

https://webs.um.es/gregorio (Gregorio Martínez Pérez)

Preprint submitted to Computers & Security January 4, 2021

which, 1 in 5 belongs to DGA-based botnets (around 1.8% of all the registered domain names) [1]. To be more
precise, according to the Spamhaus project [6] (and confirmed by [11], among others), the most abused domain
names extensions are by far .com and .uk. Secondly, it is clear that the botnet specialisation are versatile
and they normally change depending on the main actors behind them [3]. That is to say, botnets belonging
to the same family are instantiated and managed by different operators, with varying objectives. In other
words, botnets are offered as cloud-based malware-as-a-service [12]. Although this is a well-known security issue
[13], accordingly to Spamhaus [5], ISPs are not following the best practices for customer verification enabling
cybercriminals to automatic sign-up fraudulent accounts (61% of the observed C&C servers in 2018). For
example, Cloudflare has been identified as the most abused ISP for hosting C&C servers [5].

Finally, and as previously mentioned, evasive techniques are widely used by botnets, especially DGA-based
ones, to avoid detection. It has been estimated that the average dwell time, i.e., the number of days an attacker
is present on a victim network from first evidence of compromise to detection, is to be measured in months
[3, 7]. Furthermore, the fact that most botnets present C&C servers in multiple countries (njRAT, DarkComet
and NanoCore malwares have them in over 80 countries) further demonstrate the limitation of sinkholing and,
in general, reaction techniques.

In general, endpoint countermeasures (such as blacklisting) have already been proved ineffective [14]. There-
fore, the cybersecurity community is actively researching and designing machine learning (ML)-based solutions
to overcome this limitation. To be more precise, there are two potential areas of application of ML-powered
products, namely the detection of actively queried AGDs and the dynamic reaction against either the malware
spreading and/or the infected machine communications. This research focuses on this first area of application,
that is the detection of AGDs in the wild using ML techniques. Our claim is that it is mandatory to shift
the detection of this peculiar class of botnets from the attack phase (i.e., when the infected machines are ac-
tively engaging in malicious activities) to the early stages, in which the botnets and the C&C servers are being
instantiated and configured.

The research inhere proposed leverages this idea, eventually aiming to enable cybersecurity operators to
perform preemptive analysis of services to flag suspicious associated domain names. However, the very first step
required in order to deploy a ML-powered solution to achieve this objective is to obtain trustworthy and reliable
data to be used as a training set. As we sill demonstrate in the related work Section 2, this still represents a
major challenge. In fact, as reported by [10] among others, the shortcoming of mature, ML-ready and publicly
available datasets dedicated to DGA-based detection represent nowadays a critical setback.

Our proposal is to ease and eventually standardise the future researches on this subject by providing firstly
a mature dataset (which will be publicly released as publicly available dataset [15], code repository [16] and
documentation [17]); secondly, a complete state-of-the-art in terms of potential third-party data source (Sec-
tion 2); and, thirdly, an exploratory analysis to guide future practitioner toward the open challenges in terms
of machine learning applications, which also have been previously discussed by the authors [10].

To this extent, our endeavour is to propose the research community, but also the registrars, the ISPs and the
cybersecurity vendors, to focus on creating innovative ML solutions for identifying DGA-based botnet threats.

Therefore, the main contributions of this research are twofold:

i) firstly, the in-depth state-of-the-art analysis regarding publicly available datasets that might provide the
solid ground for ML-powered detection frameworks; and,

ii) secondly, the public release of a full-fledged, privacy-aware and ML-ready dataset, called UMUDGA, featuring
samples from 50 malware variants for a total of 30+ million domain names.

Additionally, to support the findings and further extend the state-of-the-art, this article includes another two
minor contributions, which may prove useful to future researchers, namely

iii) the exploratory analysis that serves both as data descriptor and as data breakdown and interpretation;
and, finally,

iv) the discussion sprang from the analysis that flows into a collection of suggested guidelines that should be
followed to achieve the required scientific rigorousness.

The structure of this article is the following. Section 2 introduces the comparison metrics and the current
state-of-the-art in terms of publicly available datasets, while Section 3 presents the architecture, the methodology
and in general, the characteristics of the proposed UMUDGA dataset. In addition, Section 4 reports a brief analysis
of the data, and as a consequence, Section 4.3 pinpoints the main challenges identified and the guideline for
future works. At last, Section 5 summarises-up and concludes the article.

2. Related Works

Building a formal and strict comparison of the existent related works in terms of malware datasets that
includes DGA-based botnets is a non-trivial research task. Moreover, the innate scope differences between them
further aggravate the shortcoming of shared and acknowledged comparison techniques.

2

Table 1: Comparison of datasets embodying DGA-based botnets

Name Year
Characteristics

SYNT GNRL RPST BLNC EXTS VRFB PROR MLRD LABL
(2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.9)

PCAP Based
ISCX IDS [18] 2012 3 7 ≈ ≈ 3 3 3 7 3

CTU [19] 2014 ≈ 3 7 7 ≈ 7 3 ≈ ≈
CONTAGIO [20] 2015 7 7 7 7 7 7 7 7 3

CyberData1 [21, 22] 2015 7 ≈ 3 7 7 7 3 7 7

ISOT HTTP [23] 2017 3 7 ≈ 7 ≈ ≈ ≈ 7 3

CTU Extended [19] 2018 ≈ 3 7 7 ≈ 7 3 ≈ ≈
Network Flows Based

ISOT [24] 2013 3 7 ≈ 7 ≈ ≈ ≈ 3 3

UNB Botnet [25] 2014 3 7 7 7 ≈ ≈ 3 3 3

PUF [26] 2018 7 7 ≈ 7 7 7 3 3 3

FQDNs Based
SuperCowPowers [27] 2013 3 7 ≈ ≈ 3 3 3 ≈ ≈
Andrewaeva [28] 2014 3 7 7 7 7 7 3 ≈ 3

Pchaigno [29] 2015 3 7 ≈ ≈ 3 3 3 ≈ 3

BaderJ [11, 30] 2015 3 3 ≈ ≈ 3 3 3 ≈ 3

AmritaDGA [31] 2018 3 ≈ 3 3 ≈ 7 3 ≈ ≈
Features Based

NSL-KDD [32] 2009 3 7 7 3 7 7 3 3 3

UCSD URL [33] 2009 7 ≈ ≈ 7 7 7 3 3 ≈
UMUDGA [15] 2019 3 3 3 3 3 3 3 3 3

Legend: 3 Yes – 7 No – ≈ Partially

Characteristics abbreviations, as defined in Section 2:
Synthetic (SYNT), General (GNRL), Representative (RPST), Balanced (BLNC), Extensible (EXTS), Verifiable (VRFB),

Privacy-Orientation (PROR), Machine Learning Ready (MLRD), Labelled (LABL)

Nevertheless, in the past decade there are several notable researches that achieved to provide great support
to the cybersecurity community that study innovative solutions for tackling network threats. The scope of this
survey is to analyse them as ML data sources. As will become clear in the following sections, nearly half of
the existing datasets are ready “out-of-the-box” to be used in ML-powered solutions. Besides the clear issues
in terms of generality and representativeness, important weaknesses will be highlighted in terms of stating
whenever a data source is verifiable, reproducible and extensible. To be more precise, we have collected 9
fundamental characteristics that a ML dataset should achieve according to both our view and the researches
available in literature. In the following paragraphs, we will discuss these characteristics and highlight how the
publicly available datasets struggle to excel in all of them. The outlines of such comparison can be found in
Table 1. In the table, the last line is dedicated to summarise the achievements of our proposed dataset, UMUDGA,
which properties will be discussed in Section 3.

Finally, a review of literature approaches in terms of ML solutions for tackling DGA-based botnets is available
at [10].

The first and foremost is the property that establishes whether the dataset is composed of real data or it is
an artificial artefact. We thus introduce the first property 2.1.

Definition 2.1: Synthetic (SYNT). The dataset is artificially created either by generating the samples or by
mixing multiple sources.

Firstly, the SYNT does not represent a binary “good versus bad” feature. Instead, both values are important
and legitimate required depending of the application scope and purpose. That is to say that on the one hand,
a 7 value represents a dataset that makes use of data that has been organically captured from real networks
and real infected machines [20, 21, 22, 34, 35]; on the other hand, a 3 value represents a synthetic dataset, that
can be generated (with different degrees of randomness). The former requires to complete the considerable task
of having the data labelled for training purposes, while the latter, if accurately and unbiased generated, might
potentially represent a more reliable source of new labelled data.

3

It is important to notice that synthetic does not implies unrealistic data, however, it is possible that the
generation process introduces dependencies that ML algorithms can detect [25]. That is to say that the action of
mixing two different data sources does not imply better performances. To provide some examples, the following
scenarios are considered synthetic: i) the injection of previously captured malware traces in any traffic data;
and ii) the generation of malware data by executing the malware in a controlled environment.

As previously mentioned, and as summarised in Table 1, the dataset strictly composed by real data collected
from real network are rare (CONTAGIO [20], CyberData1 [21, 22], PUF [26] and UCSD URL [33]). Most
authors prefer to inject malware data into background traffic, generate it in controlled environment, or mixing
the captures from different sources (ISCX IDS [18], CTU [19], ISOT HTTP [23], ISOT [24], UNB Botnet [25]
and NSL-KDD [32]). A noticeable trend is identifiable with respect to the FQDNs-based datasets, in which the
data consists of AGDs lists collected from multiple sources like security vendors or bulletins, often including
also an implementation of the DGA (SuperCowPowers [27], Andrewaeva [28], Pchaigno [29], BaderJ [11, 30]
and AmritaDGA [31]).

Secondly, in parallel with Property 2.1, there are the General GNRL, Representative RPST and Balanced
BLNC characteristics, that reflect the realism of the dataset. Although a dataset cannot be at the same time
synthetic and real, it surely can be both synthetic and realistic. In fact, by including a wide range of malware
families (Property 2.2, GNRL) [18, 19, 25, 34, 35], each one represented by a sizeable (Property 2.3, RPST)
[18, 25, 26, 34, 35] amount of samples, comparable to the other classes (Property 2.4, BLNC) [36], might result
in a realistic representation of a real environment. Thus, the following definitions hold:

Definition 2.2: General (GNRL). The dataset covers a wide range of malware families rather than being
composed by a few specific examples. To be more precise, the volume of the data is enough to accurately
represent a real-world scenario.

Definition 2.3: Representative (RPST). The dataset includes, for every category, enough instances to accu-
rately reflect the characteristics of the larger population.

Definition 2.4: Balanced (BLNC). The dataset has a comparable number of samples for each category, i.e., the
number of instances belonging to a class should not outnumber any other class.

One could say that a dataset including several instances of a specific malware execution is representative
of the variant (Property 2.3, RPST), but not general (Property 2.2, GNRL) nor balanced (Property 2.4, BLNC).
Moreover, a dataset that features multiple instances of several malware variants might be general (Property 2.2,
GNRL) with respect of the network threats, representative of the malware families examined (Property 2.3,
RPST), but not balanced with respect to legitimate or background traffic (Property 2.4, BLNC). As previously
mentioned, these three characteristics are quite difficult to find altogether in a dataset, in fact, most of the
PCAP-based repositories are not general (Property 2.2, GNRL) nor representative (Property 2.3, RPST), let alone
balanced (Property 2.4, BLNC). Nevertheless, a few exceptions shine, even if only in a single category, namely the
completeness of CTU [19] and BaderJ [11, 30], in terms of number of malware families (Property 2.2, GNRL) and
the amount of samples in each class represented by CyberData1 [21, 22] and AmritaDGA [31] (Property 2.3,
RPST). To the best of our knowledge, there is no dataset (apart from AmritaDGA [31] and NSL-KDD [32]) that
presents clearly balanced data samples.

Thirdly, to ensure the reusability and the consistency of the results derived from the dataset, two properties
are defined aiming to: i) measure whether the research community can extend and eventually enhance the data
(Property 2.5, EXTS) [34]; and ii) verify the data, when the whole replication process is not doable (Property 2.6,
VRFB) [34].

Definition 2.5: Extensible (EXTS). The dataset is publicly available and well documented to enable the
research community to extend or combine it with other data sources aiming to improve its reusability.

Definition 2.6: Verifiable (VRFB). The data included in the dataset provide enough means to permit the
research community to prove the consistency, the accuracy and the genuineness of the data, ideally resulting in
a fully reproducible dataset.

Datasets composed by PCAP files have medium-to-low extensibility due to the fact that mixing it with
other traffic sources might not result in a effective dataset. Moreover, dataset obtained by eavesdropping a
real network is to be considered not verifiable and not replicable, because of the strong dependence from the
context and the environmental conditions. However, a capture that is obtained from a controlled environment,
i.e., a testbed, is to be considered verifiable and potentially replicable, depending on the generation process.
Finally, the simultaneous replay of multiple well-known traffic captures is to be considered both verifiable and
replicable. Not surprisingly, both properties are generally satisfied by the FQDNs-based category, while the
other datasets generally achieve partial success at best. Notably, the ISCX IDS [18] is the only dataset in its
category to achieve both properties.

Fourthly, as previously stated by [10, 19], a dataset should be made publicly available without doubts or
concerns about harming users’ privacy. Property 2.7, PROR, has been defined to target this aspect.

4

Table 2: Dataset comparison in terms of number of FQDNs available for analysis and number of classes (including the legitimate
one, when available).

Name Year Legit AGD Unique Valid Classes

ISOT [24] 2013 30,699 32,952 63,651 31,297 5
SuperCowPowers [27] 2013 1,000,000 2,670 1,002,670 986,081 2
Andrewaeva [28] 2014 1,000,000 694,173 1,694,173 1,694,167 9
CTU [19] 2014 73,020 153,999 227,019 62,620 8
UNB Botnet [25] 2014 46,440 15,734 62,183 46,474 17
CONTAGIO [20] 2015 0 8,612 3,637 3,620 110
ISOT HTTP [23] 2017 3,114 105 3,219 1,298 9
AmritaDGA [31] 2018 2,498,076 1,072,418 3,570,494 3,405,238 21

UMUDGA [15] 2019 1,000,000 30,799,449 31,799,449 30,799,449 51

Definition 2.7: Privacy-Orientation (PROR). The dataset has been designed to not include any privacy-
harming content nor is required for the research community to harm the users’ privacy in order to deploy or
include the data in their experiments.

Any form of network traces that also includes the payload (e.g., PCAP files) is natively including personal
data that potentially harm the users’ privacy. Although the network flows format dictates to strip the payload
of the packets in order to aggregate them, the IP addresses are still considered to certain extent as personal
information. As expected, almost all dataset composed by network flows, AGDs lists or features do not contain
personal information or user-specific data (UNB Botnet [25], PUF [26], SuperCowPowers [27], Andrewaeva [28],
Pchaigno [29], BaderJ [11, 30], AmritaDGA [31], NSL-KDD [32] and UCSD URL [33]). It is also interesting to
note that, generally, the PCAP-based solutions presents some sort of data anonymisation even when they are
not built as privacy-oriented solutions (ISCX IDS [18], CyberData1 [21, 22], ISOT HTTP [23] and CTU (both
original and Extended) [19]).

Finally, one of the scopes of this research is to explore the state-of-the-art oriented toward ML applications.
To achieve this, two properties are defined to measure how easy it is to use “as-is” (Property 2.8, MLRD) (as
suggested by [26]) and to indicate whether the dataset is labelled or not (Property 2.9, LABL) [18, 19, 26, 34,
35, 36].

Definition 2.8: Machine Learning Ready (MLRD). The dataset is composed by carefully curated samples.
There are no missing values nor unwanted characters. Moreover, the data format is consistent across all the
samples and it is suitable for usage with the leading tools.

Definition 2.9: Labelled (LABL). Each sample is carefully characterised with one or more class attributes,
eventually providing a variable granularity of the labels.

For example, a dataset composed by network flows is directly suitable of being directly plugged into ML
solutions, provided that the target platform can support string and date features. By nature, both network flows
based solutions (ISOT [24], UNB Botnet [25] and PUF [26]) and feature based (NSL-KDD [32] and UCSD URL
[33]) ones are natively pluggable in ML algorithms, while FQDNs lists (SuperCowPowers [27], Andrewaeva [28],
Pchaigno [29], BaderJ [11, 30] and AmritaDGA [31]) are directly usable only by a subset of them (e.g., deep
learning or text processing). With regards to the labels, only CyberData1 [21, 22] does not present any form of
class separation. In order to provide an overall view, and as previously mentioned, in Table 1 it is possible to
find the relevant datasets compared according to the aforementioned properties.

It is worth mentioning, that although not pinpointed in this section, our proposed dataset, UMUDGA, meets
all the properties here described. A detailed discussion of such achievements is offered in Section 3,

Finally, for a few selected datasets (either for their importance or their properties) we realised also a quan-
titative analysis in terms of number of legitimate and malicious domain names and number of classes. Table 2
reports these findings. The validation column is obtained by processing each FQDN with Google Guava library,
and specifically its InternetDomainName class’s method which checks if the domain name is syntactically valid
using lenient validation [37].

To be more precise, we excluded the remaining datasets for being obsolete (NSL-KDD [32] and UCSD URL
[33]), not labelled (CyberData1 [21, 22]) or labels not aligned with the scope of this article (ISCX IDS [18]
labels attacks, not malwares) and finally, for not being yet publicly released (PUF [26]). With regards of the
CTU [19] and the CTU Extended [19], we have considered them as a single dataset, extracting the data from
both. Pchaigno [29] and BaderJ [11, 30] are datasets of DGAs, thus the quantitative comparison based on the
number and properties of the FQDNs is not applicable. To be more precise, and as reported both in Section 3
and [17], the generators used in our dataset, UMUDGA, are using both [29] and [30] as source, among others.

5

UMUDGAISOT SuperCow
Powers

Andrewaeva CTU UNB
Botnet

CONTAGIO ISOT
HTTP

AmritaDGA

0

5

10

15

20

25

30
Nu
mb
er
 o
f
FQ
DN
s
(m
il
li
on
s)

Datasets

Legit
AGD
Unique
Valid

Legend

Figure 1: Datasets metrics, as reported in Table 2.

Nu
mb

er
 o

f
FQ

DN
s

ISOT CTU UMUDGA
(10k Tier)

0

5,000

10,000

15,000

20,000

25,000

SuperCow
Powers

UNB
Botnet

CONTAGIO ISOT
HTTP

(a) Datasets with less than 30 thousands FQDNs per class.

100,000
Nu

mb
er

 o
f

FQ
DN

s

AmritaDGA Andrewaewa UMUDGA
(100k Tier)

40,000

50,000

60,000

70,000

80,000

90,000

(b) Datasets with more than 30 thousands FQDNs per
class.

Figure 2: Boxplots representing the number of FQDNs per class. The ideal dataset present a small interquartile range (i.e., more
balanced) and a high median (i.e., more samples per class).

The numbers reported in Table 2, have been graphically highlighted also in Figure 1 (in terms of total number
of samples) and in Figure 2 (in terms of number of samples per class). In particular, Figure 2a and Figure 2b
presents the different datasets with a suitable scale. In the figures, the ideal dataset presents a small interquartile
range (all the classes have roughly the same amount of samples, i.e., it satisfies Property 2.4, BLNC) and a high
median (the average number of samples per class is elevated, thus potentially achieving Property 2.3, RPST). In
both figures, outliers are not represented and our proposed UMUDGA has been included with the appropriate Tier
(i.e., the size of each class sample set, as will be described in Section 3).

In Table 2, the first two columns, namely the legit and the AGD columns, represent the amount of FQDNs
obtained from the lists or PCAP files, and thus do not include those databases that do not include domain
names [21, 22, 29, 30, 32, 33] and those that are not publicly available [26]. The legit column reports the number
of FQDNs considered legitimate while the AGD one reports the number of malicious domains, using wireshark
[38] to extract the dns.qry.name field for PCAP-based datasets. The two lists are then combined, sorted and
all duplicates are removed, results are reported in the unique column. Moreover, the fourth column (valid) is
obtained by processing each FQDN with Google Guava library, and specifically its InternetDomainName class’s
method which checks if the domain name is syntactically valid using lenient validation [37].

Finally, the datasets have been analysed according to their overlaps in terms of FQDNs and Table 3 identifies
the amount of collisions registered within each dataset. To be more precise, the overlap is defined as the
percentage of the dataset that is shared with the others, i.e., giving any two lists of FQDNs, namely A and B,
the percentage of collision is calculated as follows:

overlap(A,B) = 100 · |A ∩B|
|A|

(1)

6

Table 3: Comparison of datasets in terms of overlapping percentages

Dataset Year
Percentage of overlap with

[24] [27] [28] [19] [25] [20] [23] [31] UMUDGA Alexa

ISOT [24] 2013 N.A. 12% 13% 16% 100% 1% — 19% 10% 10%
SuperCowPowers [27] 2013 — N.A. 44% 1% — — — 41% 22% 22%
Andrewaeva [28] 2014 — 25% N.A. — — — — 38% 24% 18%
CTU [19] 2014 8% 10% 10% N.A. 22% 1% — 17% 8% 8%
UNB Botnet [25] 2014 67% 9% 10% 29% N.A. 2% — 20% 7% 7%
CONTAGIO [20] 2016 12% 9% 9% 21% 24% N.A. 2% 34% 12% 7%
ISOT HTTP [23] 2017 3% 15% 16% 7% 12% 7% N.A. 81% 16% 16%
AmritaDGA [31] 2018 — 12% 19% — — — — N.A. 16% 12%

UMUDGA [15] 2019 — 1% 1% — — — — 2% N.A. 3%

With Alexa we indicate the top one million domains [39], 2018 update.
With “—” we indicate that the overlap is either non-existent or smaller than 0.1%.

It is important to notice that the function is not symmetric, that is to say, a permutation of the input variables
changes the result value, i.e., overlap(A,B) 6= overlap(B,A). Table 3 does not report values smaller than 0.1%.

As shown in Table 2, and to the best of our knowledge, this is the first attempt to provide a comprehensive
and representative dataset to be used for tackling DGA-based botnets. In using our proposed dataset, one of
the main advantages that the research community might acquire relies upon the formal definition [17] of the
features and the verifiable feature set obtained as result [15].

3. UMUDGA: University of Murcia Domain Generation Algorithm Dataset

One of the main outcome of this article is the public release of a ML-ready and privacy-aware dataset of
AGDs. As previously reported in Table 1, our solution matches all the defined properties. To be more precise,
as as reported in Section 3 and its subsections, the UMUDGA dataset meets those properties as follows:

• Property 2.1, Synthetic (SYNT) — The dataset is generated by executing malware DGAs and collecting
the resulting data, thus achieving the requested SYNT property.

• Property 2.2, General (GNRL) — The dataset includes 38 malware families (Table 4), presenting more than
30 million FQDNs distributed over 50 malware variants besides the legitimate class (Table 2). To the best
of our knowledge, this covers the vast majority of publicly known DGA-based malwares.

• Property 2.3, Representative (RPST) — As summarised in Table 4, all variants include at least 10,000
FQDNs (i.e., first Tier in Table 4), having most of them 1 million valid and unique FQDNs (i.e., highest
Tier in Table 4).

• Property 2.4, Balanced (BLNC) — As summarised in Table 4, the data are sorted in tiers of different sizes.
Within each tier, all the malware variants are fully balanced.

• Property 2.5, Extensible (EXTS) — The code for generating the AGDs is available on Mendeley Data [15].

• Property 2.6, Verifiable (VRFB) — All the data sources are publicly available online. Moreover, the data
repository itself reports the formal mathematical definition for each feature presented.

• Property 2.7, Privacy-Orientation (PROR) — The dataset is composed only by context-free features, which
are natively anonymous and privacy-oriented. They, in fact, do not require any contextual information
from the users or the network state [10].

• Property 2.8, Machine Learning Ready (MLRD) — The data have been preprocessed to assure the absence
of missing or corrupted data. The repository provides the data in both raw TXT FQDNs lists, CSV and
ARFF formats [15].

• Property 2.9, Labelled (LABL) — The data are available as collection of malware variants data sources,
natively tagged with the correct label.

As previously stated [10], the public release of a ML-ready dataset represents an innovative response to a
well-known challenge in the cybersecurity field, however, future researches are still required to extend it to both
context-free and context-aware features.

The following Section 3.1 presents the architecture of the data processing and collecting framework, while
Section 3.2 will describe the methodology used for designing and building the dataset.

7

FEATURE EXTRACTION MODULE

NLP
PROCESSOR

STORAGE
/dga/lists

AGDDOMAIN LIST
GENERATION

MALWARE DGA

STORAGE
/dga/arff

DOMAIN
INSPECTOR

nGRAM
PROCESSOR

LANGUAGE
DATA

English
Profile

FQDNs

Domain
nGrams

Features

Features

AGD

Figure 3: Architecture for the dataset generation showing both the required inputs (the malware DGAs and the English Language
Data) and the provided outputs (the AGD lists and the AGD features sets).

3.1. The UMUDGA Architecture
The generation framework flow consists in executing malware DGAs to collect the AGDs and then process

them to obtain the relevant features. Figure 3 illustrates the data flow.
To be more precise, and as explained in detail in Section 3.2, the raw FQDNs are obtained by executing

in a controlled environment the malwares’ DGAs, which in turn are both saved as raw lists and processed to
become ML-ready data. The AGDs are firstly processed by the Domain Inspector procedure, entry point
for the Feature Extraction Module, which takes care of validating each domain name and extract relative
nGrams. The validation is carried out with both the Google Guava InternetDomainName class [37] and the
Apache Commons Validator library [40]. The former performs syntax validation while the latter evaluates the
domain names according to the standards RFC 1034 [41, Section 3] and RFC 1123 [42, Section 2.1]. A detailed
explanation of the technical validation is offered in a companion article that provides the dataset description
[15].

Firstly, the domains are analysed by a Natural Language Processing (NLP) procedure that extracts 15
common features such as the length of the domain, its vowel ratio, among others; while, secondly, the nGrams
are analysed by the corresponding procedure to extract 31 features for each nGram size (with n = 1, 2, 3),
e.g., entropy, frequencies. As previously mentioned, the features, among other technical aspects of the dataset,
are described in [15].

The nGram Processor primarily compares the nGrams distribution with the corresponding distribution of
the English language, provided by the Leipzig Corpora [43].

The following methodology Section (3.2) discuss in detail the content of each module and procedure.

3.2. Methodology for building the UMUDGA dataset
This section aims to illustrate the procedures, the assumptions and the tools used to collect, filter, and

generally prepare the data. The process is twofold, i.e., the data are firstly collected in form of raw FQDNs
lists (see Section 3.2.1); secondly, the domains lists are processed and the resulting features files are saved in
the dataset (see Section 3.2.2).

3.2.1. Generation and collection of FQDNs
Malware lists such as [44, 45, 46, 47] are quite common and used on daily basis by multiple firewalls

and anti-malware providers. However, the provided data are rarely identified with the malware family or
variant, thus they are more often labelled as generic threats. As a consequence, the approach that we took for
building this dataset is slightly different. That is to say, instead of collecting lists of AGDs from multiple online
sources like those, we have been looking for the study and the actual implementation of the malwares’ DGAs.
Therefore, our data are exclusively generated by executing DGAs implementations in a controlled environment
(achieving the Property 2.1, SYNT). The source code has been adapted from three of the main providers of DGAs
implementations [28, 29, 30] and will be released in a public repository (thus achieving Property 2.5, EXTS).

Each algorithm’s random function is initialised with a fixed seed and when required, this random module
is also used to derive both dates and other arguments. For example, whenever a DGA requires a new date to
calculate the corresponding AGDs, the support infrastructure provides a random datetime string derived from
the initialisation seed (Property 2.6, VRFB).

The generated AGDs are guaranteed to be unique within the class, however, this property is not forced across
the dataset when considered as a whole. To be more precise, there are 551 collisions shared among 10 malware
variants (e.g., Pizd shares 441 AGDs with first version of SuppoBox). However, as highlighted by [11] and proved

8

Table 4: DGA families

Tier Families collected

10,000 CCleaner, Kraken*, Murofet*, Pizd†, Pykspa, SuppoBox*,†, Vawtrak*

50,000 Vawtrak*, Gozi*,†

100,000 Pykspa-noise, QakBot, Ramnit, Tempedreve, Gozi*,†

500,000 Banjori, Murofet*

1,000,000
Alureon, Bedep, ChinAd, CoreBot, CryptoLocker, DirCrypt, Dyre, Fobber*, Kraken*,
Locky, Matsnu†, Necurs, Nymaim, PadCrypt, Proslikefan, Pushdo, Qadars, Ramdo,
Ranbyus*, Rovnix†, Shiotob, Simda, Sisron, Symmi, Tinba, Vawtrak*, Zeus-NewGoz.

† Wordlist-based family.
* Multiple variants

Table 5: List of features generated by the NLP Processor for each FQDN.

Code Description
L-x String length of x domain level
N Number of domain levels
LC-C Longest consecutive consonance sequence
LC-D Longest consecutive number sequence
LC-V Longest consecutive vowel sequence
R-CON-x Ratio of consonants characters
R-LET-x Ratio of letter characters
R-NUM-x Ratio of numerical characters
R-SYM-x Ratio of symbolical characters
R-VOW-x Ratio of vowel characters
where x ∈ {FQDN, 2LD, OLD} denotes the domain levels.

by our analysis (551 over 30.8 million total domains), collisions are quite rare among different malware families,
and negligible when considering also the legitimate category. Therefore, removing eventual collisions does not
produce a statistically significant change in the malware family distribution, while substantially increasing the
quality of the data for ML usage. To be as complete as possible, the full list of colliding FQDNs is available in
the repository [15].

Each DGA is executed until it stops generating new domain names or it reaches 1 million AGDs (Property 2.3,
RPST). Resulting FQDNs are then truncated to the highest completed tier, i.e., 10k, 50k, 100k, 500k, 1M. Table 4
reports the list of the families sorted according to their highest tier, e.g., at least one variant of Kraken consists
of only 10k AGDs. To the best of our knowledge, these 50 variants are covering the vast majority of known
DGA-powered malwares (Property 2.2, GNRL).

To complete the dataset, the last set of FQDNs is obtained by joining the Alexa [39] and the Majestic
Million [48] domain lists. From the two lists, a million unique domains are extracted and allegedly considered as
legitimate. However, two main problems aroused when validating those domain names, in fact a total amount
of 178 FQDNs fail to pass the validation procedure. To be more precise:

• 38 of them use one of the new generic top level domains (gTLDs) which are still not included in the
list of accepted gTLDs as per the last update of the validation library (Apache Commons Validator [40]
– v1.6, 04/02/2017). Namely, .africa (delegated on 14/02/2017), .charity (04/06/2018), .hotels
(03/04/2017), .inc (16/07/2018) and .sport (08/01/2018).

• 140 domains are technically invalid because of the presence of at least one underscore character (“_”):
the validation library checks the domains against the RFC 1123 [42], which limits host names to letters,
digits and hyphen. The policy for the underscore character has been clarified later with the RFC 2181
[49, Section 11].

3.2.2. Preprocessing and feature extraction
To begin with the inner mechanisms of such module, as illustrated in Figure 3, it is imperative to restate

what firstly proposed by Zago et al. [10], i.e., the generated features belong to the Context-Free family. That
is to say, the features are related only to a FQDN and are independent of contextual information.

Firstly, the FQDNs lists obtained in the previous steps are analysed and syntactically validated against RFC
1034 [41, Section 3] and RFC 1123 [42, Section 2.1] by the Feature Extraction Module reported in Figure 3.

9

Table 6: List of features generated by the nGram Processor for each nGram set.

Code Description Code Description
nG-DIST Number of distinct nGrams nG-REP Number of repeated nGrams
nG-25P 25th percentile of frequencies nG-E Entropy
nG-50P 50th percentile of frequencies nG-COV Covariance1
nG-75P 75th percentile of frequencies nG-KEN Kendall’s Correlation1
nG-MEAN Mean of frequencies nG-PEA Pearson’s Correlation1
nG-QMEAN Quadratic Mean of frequencies nG-SPE Spearman’s Correlation1
nG-SUMSQ Squared sum of frequencies nG-TSUMSQ Squared sum of target language frequencies1
nG-VAR Variance of frequencies nG-TVAR Variance of target language frequencies1
nG-PVAR Population VAR of frequencies nG-TPVAR Population VAR of target language frequencies1
nG-STD Standard deviation of frequencies nG-TSTD Standard deviation of target language frequencies1
nG-PSTD Population STD of frequencies nG-TPSTD Population STD of target language frequencies1
nG-SKE Skewness of frequencies nG-TSKE Skewness of target language frequencies1
nG-KUR Kurtosis of frequencies nG-TKUR Kurtosis of target language frequencies1
nG-PRO Pronounceability score1 nG-TSUM Sum of target language frequencies1
nG-NORM Normality score nG-DST-KL Kullback-Leiber divergence1
nG-DST-CA Canberra Distance1 nG-DST-JI Jaccard Index measure1
nG-DST-CH Chebyshev Distance1 nG-DST-EU Euclidean Distance1
nG-DST-EM Earth Movers Distance1 nG-DST-MA Manhattan Distance1

where 1 is about the English language, and nG indicates the size of the nGram collection used for the group of
features.

All the invalid domain names are replaced with other unique samples obtained by the corresponding DGA. The
dataset documentation provides the required mathematical formalism for each implemented feature [17].

With regards to Figure 3, the first process is the NLP Processor, which analyses each domain name as
string, with little to none knowledge about its structure as FQDN or its language. The NLP Processor extracts
22 features from the domain name, which are listed and described in Table 5. To improve the readability,
Table 5 presents a list of meta features, that indicates that a specific mathematical formula has been applied
to multiple targets. That is to say, we indicate with x the domain level used as argument for calculating the
feature, having x equals to either “FQDN” (that stands for Fully Qualified Domain Name), “2LD” (that stands for
Second Level Domain) and “OLD” (that stands for Other Level Domain, which comprehends any domain level
below the second).

The second process, namely the nGram Processor, is the one that analyses the domain name as a collection
of tokens, called nGrams. Firstly, each FQDN is divided into chunks of size n and then compared to the
reference ones belonging to the English language. These last collections are obtained by preproccessing the
Leipzig Corpora [43] which includes 1 million words from Wikipedia (2016 update). There are a total of 29
features extracted from such analysis; Table 6 presents them. Despite having these features listed once in
Table 6, the dataset includes them applied to 1Grams, 2Grams and 3Grams for a total of 87 features. That is
to say, the 29 features are mathematically defined independently from the chosen length (n) of the chunks used
for the analysis and thus can be applied to any nGram size.

As a side note, some of these features applied to 2Grams and 3Grams are (almost) constant and thus
(practically) irrelevant. They are nevertheless included in the dataset for completeness. Figure 4 presents one
of such features, namely the specific case of the 75th percentile of the nGrams distributions. For example,
Feature 1G-75P (Figure 4a) have been proven sufficiently informative for ML applications, despite having its
counterparts zeroed-out. In fact, by considering the nature of the feature itself, it does not surprise that both
the 2G-75P (for 2Grams, showed in Figure 4b) and the 3G-75P (for 3Grams, showed in Figure 4c) present a very
skewed distributions, where only a few of them have actually a value. Both of them are nevertheless included
for symmetry and completeness.

Due to space concerns, the full list of features, with their distributions and descriptions is not included here.
Nonetheless, it is publicly available at [16].

Finally, a survey in terms of where these features originated and when have been used in literature to power
ML-based solutions can be found at [10].

4. UMUDGA Dataset Analysis

Generally speaking, a first exploratory analysis of the data is suggested and often required before applying
more sophisticated ML algorithms. This section aims to provide a brief characterisation of the malware variants

10

(a) Boxplots for the Feature 1G-75P for the 1Grams distributions.

(b) Boxplots for the Feature 2G-75P for the 2Grams distributions.

(c) Boxplots for the Feature 3G-75P for the 3Grams distributions.

Figure 4: Boxplots comparisons for the Feature nG-75P that indicates the 75th percentile of the nGrams distributions. (See
Table 6).

11

and their properties by presenting and discussing the results of a first and naïve analysis. The analysis carried
out in the section below is performed over the first tier of malwares, as depicted in Table 4.

Among the features described in Section 3, few of them present signs that indicate their low quality with
regards to the data analysed.

Firstly, there are features in which nearly all the values are identical, to be more precise the percentiles of
frequencies, their mean and median for n = 1, 2, 3 are statistically indistinguishable. Moreover, the different
ratios are mostly alike when considering the second level domain (2LD) and the other level domain (OLD)
parts. Lastly, the number of repeated nGrams and their covariance with respect to the n = 3 size are also
practically identical. Lastly, there are multiple features that are highly correlated, thus considering the ones
with a correlation index lower than 0.9.

On the one hand, when considering the structure of the AGDs, i.e., most of them are composed only by two
domain levels, it is not surprise that the NLP features like the ratios or the lengths are correlated to each other,
specifically when looking at the ones calculated over the FQDN and the 2LD.

However, giving the nGram analysis in combination with the shortness of the domain names, it is not
unexpected that the features that are most sensible to zeros have been discarded. For example, the number
of distinct nGrams, their variance, standard deviation, skewness, etc., presents high correlation grades with
each other. Also the Manhattan distance, calculated as the sum of the absolute deviation, tends to be highly
correlated with other distances included in the data.

In order to further explore the data we designed two ML classification tasks. These experiments were
conducted on a virtual server with 18 cores running at 2.30GHz and 50 GB of DDR3 RAM at 1600 MHz.
Experiments were run using Orange3 [50]. Six classifiers were applied and cross-validated using a stratified
10-fold approach, using the following configuration and ML techniques:

• AdaBoost (AB) — Using 50 trees as base estimators, with SAMME.R classificator (updates base esti-
mator’s weight with probability estimates) and linear regression loss function.

• Neural Network (NN) — Single hidden layer with 100 nodes activated with the Rectified Linear unit
(ReLu) function, weight optimised with the stochastic gradient-based optimiser (Adam), α = 0.0010 and
200 max iterations.

• Random Forest (RF) — Using 10 trees, considering up to five attributes at each split and without
splitting subsets smaller than five.

• Support Vector Machines (SVM) — Configured with C = 1.00, ε = 0.10 and using the RBF Kernel.

• Decision Tree (DT) — Two minimum instances in leaves, do not split trees smaller than five, having a
max depth of 100. Exiting condition when the majority reaches 95%.

• k-Nearest Neighbours (kNN) — Five neighbours using the Euclidean metric and a uniform weight.

In the following sections, unless otherwise stated, the experiments were conducted using all the variants
belonging to the Tier 10,000, i.e., a balanced dataset with 10,000 samples for each class.

The two classification tasks are defined as follows:

Experiment 1: Binary. The Binary task is designed to answer the ML question of separating legitimate
FQDNs from malicious AGDs, considering all malware families as a single category.

Experiment 2: Multiclass. The Multiclass task is designed to classify not only the legitimate FQDN, but
also sort malware samples according to their variants.

Figure 5 and Figure 6 report both the results in terms of classifiers performances and the Receiver Operating
Characteristic (ROC) curves for the Binary (Exp. 1) and the Multiclass (Exp. 2) experiments, respectively. It
is worth mentioning that the ROC curves are generated considering the legitimate (legit) class as target, thus
showing the support in correctly predicting this class on average with respect to the 10 folds analysed. Figure 5a
and Figure 6a have been simplified by firstly interpolating the values and then by smoothing the curve to reduce
the number of points (accepting a loss of 5% precision).

From the two images, it is possible to notice that the results are somewhat different from the high-grade
extremely precise results obtained in literature over subsets of the same classes [10]. One could argue that
the data are different, which is somewhat correct; data sources are different, and rarely publicly shared for
subsequent analysis (i.e., Property 2.6, VRFB). We assume that the data obtained from the generators, as
described in Section 3, for a specific malware variant are taken from the same space, thus having similar
characteristics. It can also be stated that the features used are not the same, nor calculated in the same way.
This assertion surely holds. However, as showed in our early research [10], most literature works made usage
of context-free features, which have been collected, analysed and re-implemented as presented in Section 3.

12

0.0 1.00.2 0.4 0.6 0.8

FP Rate (1-Specificity)

0.0

0.4

0.8

0.2

0.6

1.0
TP

 R
at

e
(S

en
si

ti
vi

ty
)

RF
NN

kNN

SVM

AB

DT

(a) Average ROC curves

Method Acc. Prec. Rec. AUC F1

AB 0.981 0.982 0.981 0.770 0.981
NN 0.989 0.988 0.989 0.973 0.988
RF 0.989 0.988 0.989 0.914 0.989
SVM 0.403 0.403 0.965 0.403 0.556
DT 0.980 0.961 0.980 0.500 0.971
kNN 0.986 0.984 0.986 0.781 0.983

(b) Classifiers performances

Figure 5: Results for the Binary experiment (Exp. 1)

0.0 1.00.2 0.4 0.6 0.8

FP Rate (1-Specificity)

0.0

0.4

0.8

0.2

0.6

1.0

TP
 R

at
e

(S
en

si
ti

vi
ty

)

RF
NN

kNN

SVM

AB

DT

(a) Average ROC curves for the legitimate class

Method Acc. Prec. Rec. AUC F1

AB 0.665 0.666 0.665 0.829 0.666
NN 0.772 0.775 0.772 0.993 0.769
RF 0.710 0.706 0.710 0.974 0.704
SVM 0.420 0.432 0.420 0.945 0.385
DT 0.672 0.671 0.672 0.850 0.672
kNN 0.312 0.297 0.312 0.765 0.297

(b) Classifiers performances

Figure 6: Results for the Multiclass experiment (Exp. 2)

Moreover, the features selected in the literature are rarely mathematically defined, let alone implemented and
made publicly available (i.e., Property 2.5, EXTS). Once again, without having a structural formalism of the
performed data processing that led to those results, comparing them is somewhat difficult.

As expected, the Binary experiment (Exp. 1) performs much better than the Multiclass one (Exp. 2). And,
to further explore these average results, a sample of a class-specific analysis is proposed in Section 4.1 and
Section 4.2.

Figure 7 presents the confusion matrix for the Random Forest classifier in the Multiclass experiment as an
heatmap chart. In the figure, the darker the colour, the better is the classifier precision. From the picture,
it appears clear that although the classifier achieves excellent results in most of the classes, some clusters of
classes appears to be difficult to separate, ultimately causing the degraded overall performances presented in
Figure 6b. In Figure 7, actual percentages are omitted for clarity, the complete report is available at [15].

To further explore these classes clusters, we picked two clusters of variants, namely the one formed by
Alureon and Fobber (2nd version) and the one composed by Bedep, DirCrypt and Ramnit. The results of
these analysis are presented in Section 4.1 and Section 4.2 respectively. The experiments have been performed
with amount compatible with the highest tier available for each malware variant. As indicated in both section,
a potential solution for this issue might be represented by the double detection process implemented by [51].
To be more precise, by considering the elements of the cluster as a single unique entity, it is possible to flag
as “suspicious” a DNS query made by some user (i.e., the first, high-level detector). A dedicated analyser
(i.e., the second, fine-granularity detector) might then take care of performing a more precise, accurate and
time consuming analysis of the identified user.

To further explore the potential researches that might spring from the usage of this dataset, it is worth
mentioning the challenges related to ML identification of DGA-based botnets. For example, it is unclear
whether is possible to define a common signature for AGDs as a group (Exp. 1) or if from a sample analysis is
possible to incontrovertibly identify the malware family or even the precise variant (Exp. 2). Further researches
are also required in terms of algorithms application to explore the data, for example, literature suggests that
both deep learning and clustering solutions might prove useful in identifying known and unknown malwares,
respectively.

13

al
ur

eo
n

ba
nj

or
i

be
de

p
cc

le
an

er
ch

in
ad

co
re

bo
t

cr
yp

to
lo

ck
er

di
rc

ry
pt

dy
re

fo
bb

er
_v

1
fo

bb
er

_v
2

go
zi

_g
pl

go
zi

_l
ut

he
r

go
zi

_n
as

a
go

zi
_r

fc
43

43
kr

ak
en

_v
1

kr
ak

en
_v

2
le

gi
t

lo
ck

y
ma

ts
nu

mu
ro

fe
t_

v1
mu

ro
fe

t_
v2

mu
ro

fe
t_

v3
ne

cu
rs

ny
ma

im
pa

dc
ry

pt
pi

zd
pr

os
li

ke
fa

n
pu

sh
do

py
ks

pa
py

ks
pa

_n
oi

se
qa

da
rs

qa
kb

ot
ra

md
o

ra
mn

it
ra

nb
yu

s_
v1

ra
nb

yu
s_

v2
ro

vn
ix

sh
io

to
b

si
md

a
si

sr
on

su
pp

ob
ox

_1
su

pp
ob

ox
_2

su
pp

ob
ox

_3
sy

mm
i

te
mp

ed
re

ve
ti

nb
a

va
wt

ra
k_

v1
va

wt
ra

k_
v2

va
wt

ra
k_

v3
ze

us
-n

ew
go

z

Predicted Class

alureon
banjori

bedep
ccleaner

chinad
corebot

cryptolocker
dircrypt

dyre
fobber_v1
fobber_v2
gozi_gpl

gozi_luther
gozi_nasa

gozi_rfc4343
kraken_v1
kraken_v2

legit
locky

matsnu
murofet_v1
murofet_v2
murofet_v3

necurs
nymaim

padcrypt
pizd

proslikefan
pushdo
pykspa

pykspa_noise
qadars
qakbot
ramdo

ramnit
ranbyus_v1
ranbyus_v2

rovnix
shiotob

simda
sisron

suppobox_1
suppobox_2
suppobox_3

symmi
tempedreve

tinba
vawtrak_v1
vawtrak_v2
vawtrak_v3

zeus-newgoz

Ac
tu

al
 C

la
ss

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
Pr

op
or

ti
on

 o
f
Ac

tu
al

Pr
op
or

ti
on

 o
f
Ac

tu
al

Figure 7: Confusion Matrix for the Multiclass experiment (Exp. 2, Random Forest)

14

0.0 1.00.2 0.4 0.6 0.8

FP Rate (1-Specificity)

0.0

0.4

0.8

0.2

0.6

1.0
TP

 R
at

e
(S

en
si

ti
vi

ty
)

RF
NN

kNN

SVM

AB

DT

(a) ROC curve

Method Acc. Prec. Rec. AUC F1

AB 0.504 0.504 0.504 0.504 0.504
NN 0.494 0.494 0.494 0.493 0.494
RF 0.503 0.503 0.503 0.505 0.503
SVM 0.501 0.501 0.501 0.499 0.500
DT 0.500 0.500 0.500 0.500 0.500
kNN 0.502 0.501 0.501 0.502 0.501

(b) Classifiers performances

A B

C

D

E

F

G

H

I

J

K

L
M

N
O

P

Q

R

S

T

U

V

W

X

Y
Z

Uniform Alureon Fobber v2 Legitimate

(c) Distributions comparison

Distribution Expected
Observed Uniform Alureon Fobber v2

Alureon 1.000 – 0.979
Fobber v2 0.983 0.979 –

(d) Pearson chi-squared test (χ2)

Figure 8: Comparative analysis of Fobber (2nd variant) and Alureon

4.1. Fobber (2nd version) versus Alureon
The first cluster of errors belongs to Fobber (2nd version) and Alureon. Both variants DGAs are publicly

available at [15]. The first step is to execute a specific ML experiment oriented toward those two classes, which
results are reported in Figure 8a (ROC curve) and Figure 8b (classifiers performances). From these, it is clear
that the feature set chosen, in combination with the data and the algorithms configurations do not permit to
separate the two classes.

To further explore the two classes, we have printed their 1Gram distributions in Figure 8c together with
the English distribution and a uniform one. As suggested by [52], we performed a Pearson’s ChiSquare Test to
compare them, and the results are reported in Figure 8d. The test does not reject the hypothesis that the two
variants belong to the same uniform distribution. Follows that both malware variants have achieved to generate
AGDs within a uniform distribution, and thus impossible to distinguish with the current feature set.

Further analysis including, but not limited to, context-aware features might result in an effective way to
distinguish the two classes. For example, a double cycle detection as proposed by [51] might be applied in such
case. That is to say, both Fobber (2nd version) and Alureon can be considered as a single class, and then
deeply analysed with a specific component once a detection event occurs. In fact, as shown in both Figure 9a
and Figure 9b, almost all classifiers achieve extremely high performances while oriented toward distinguishing
legitimate domain names from these two joined classes.

4.2. Bedep versus DirCrypt versus Ramnit
The second cluster of classification errors belongs to three classes, namely Bedep, DirCrypt and Ramnit.

However, as shown in Figure 10, it appears that this group is driven by the identical distributions of DirCrypt
and Ramnit, which are then very likely, but not identical to Bedep.

15

0.0 1.00.2 0.4 0.6 0.8

FP Rate (1-Specificity)

0.0

0.4

0.8

0.2

0.6

1.0
TP

 R
at

e
(S

en
si

ti
vi

ty
)

RF
NN

kNN

SVM

AB

DT

(a) ROC curve for the legit class while compared to
Fobber (2nd version) and Alureon

Method Acc. Prec. Rec. AUC F1

AB 0.986 0.979 0.978 0.984 0.979
NN 0.990 0.986 0.983 0.999 0.985
RF 0.989 0.986 0.983 0.998 0.984
SVM 0.701 0.736 0.669 0.855 0.701
DT 0.979 0.981 0.977 0.987 0.979
kNN 0.958 0.991 0.927 0.985 0.958

(b) Classifiers performances for the legit class while com-
pared to Fobber (2nd version) and Alureon

Figure 9: Comparative analysis of Fobber (2nd variant) and Alureon as a single class against the Legit one.

The classifiers output for the three malware variants can be found in Figure 10b, and together with the
ROC curve analysis (Figure 10a) prove that, within this data, the ML algorithms only take educated guesses
over the class, without being capable of actually memorising the class characteristics.

The Pearson’s ChiSquare test, presented in Figure 11b, suggests another subgroup formed by DirCrypt and
Ramnit. To analyse and eventually confirm this hypothesis, we conducted a Binary experiment over those two
classes, proving that also in this case it is not possible to separate the two classes (Figure 10c and Figure 10d).

However, in Figure 11a it is possible to notice that both DirCrypt and Ramnit differ from the uniform
distribution in a few cases. To be more precise, our implementation of Ramnit DGA does not ever produce
the letter “z” in any domain. This leads to a missing value in the distribution value, which can be mapped as
zero. Having one zero in the distribution causes the ChiSquare test to fail for not being defined at zero. This
condition, together with the fact that we do not have a specific feature for each character (including “z” and “c”,
as highlighted in Figure 11a) permits to not consider the character during this test. The results are available
in Figure 11b and, as expected, both three variants achieve to be uniform (or almost uniform).

As suggested in Section 3, a double cycle detection [51] might take advantage of other class-specific charac-
teristics to perform a deeper analysis. For instance, Figure 12 reports the classifier results and the ROC curve
for the six classifiers defined earlier in Section 4. It is clear that most classifiers can achieve extremely good
performances, and thus can act as a filter before a more deep and accurate analysis is performed.

4.3. Discussion
As previously mentioned in Section 4, only a few clusters have been analysed and reported here. The same

analysis however has been carried out for all classification errors. To be more precise, we decided to aggregate
the classes that have at least 20% of misclassification between each other. For example, Fobber (2nd version)
and Alureon share around 50%.

Following what previously suggested throughout this section, an approach like the one defined in [51] might
be appropriate to develop a full-fledged detection solution for tackling DGA-based botnets. To validate this
hint, Experiment 2 have been executed on a tweaked dataset that considers clusters of classes as classification
target instead of malware variants. Figure 13 summarises the results for this scenario and to be more precise,
Figure 13b reports the classifiers performances while Figure 13a presents a comparison between the previously
shown Multiclass experiment’s classifiers’ F1 scores (Figure 6b) and the ones obtained by the classifiers in this
scenario.

As depicted in Figure 13a there is a general improvement across all the classifiers, which is also clearly visible
in the related confusion matrix available in Figure 14.

Once a FQDN is flagged as suspicious, for example by classifying it as in the new aggregated class Alu-Fobv2
(which comprehends both Fobber (2nd version) and Alureon, further analysis can be deployed to perform
deep inspection that might allow to pinpoint the exact malware variant, thus enabling the deployment of
appropriate countermeasures.

Future researches are, however, required to establish whether an improved context-free set of features may
be able to distinguish between the clusters of classes or if a deeper analysis based on context-aware features is
required. Nevertheless, this result, along with the one reported in Figure 5, validates the concept of having a
first, high-level filter for detecting AGDs, followed by a malware-specific intrusive inspection technique.

One could argue that this approach, does not rely on studying and developing a ML approach suitable for
solving the previously detailed Multiclass experiment (Exp. 2). That would be correct to claim if the target
of this article would have included the proposal for a ML-powered detection framework. Nevertheless, in this
context, where the proposal is a dataset to enable such analysis and comparison, the above mentioned claim

16

0.0 1.00.2 0.4 0.6 0.8

FP Rate (1-Specificity)

0.0

0.4

0.8

0.2

0.6

1.0

TP
 R

at
e

(S
en

si
ti

vi
ty

)

RF
NN

kNN

SVM

AB

DT

(a) ROC curve for Bedep vs DirCrypt vs Ramnit

Method Acc. Prec. Rec. AUC F1

AB 0.525 0.533 0.525 0.644 0.528
NN 0.518 0.525 0.518 0.735 0.521
RF 0.497 0.499 0.497 0.722 0.499
SVM 0.400 0.389 0.400 0.615 0.389
DT 0.522 0.519 0.522 0.656 0.519
kNN 0.425 0.410 0.425 0.605 0.410

(b) Classifiers performances for Bedep vs DirCrypt vs
Ramnit

0.0 1.00.2 0.4 0.6 0.8

FP Rate (1-Specificity)

0.0

0.4

0.8

0.2

0.6

1.0

TP
 R

at
e

(S
en

si
ti

vi
ty

)

RF
NN

kNN

SVM

AB

DT

(c) ROC curve for DirCrypt vs Ramnit

Method Acc. Prec. Rec. AUC F1

AB 0.525 0.525 0.525 0.549 0.525
NN 0.552 0.553 0.552 0.548 0.552
RF 0.515 0.515 0.515 0.478 0.514
SVM 0.555 0.555 0.555 0.576 0.555
DT 0.557 0.558 0.557 0.572 0.557
kNN 0.542 0.543 0.542 0.542 0.542

(d) Classifiers performances for DirCrypt vs Ramnit

Figure 10: Comparative analysis of Bedep, DirCrypt and Ramnit — Part 1

A B

C

D

E

F

G

H

I

J

K

L
M

N
O

P

Q

R

S

T

U

V

W

X

Y
Z

Uniform RamnitDircryptLegitimate Bedep

(a) Distributions comparison

Distribution Expected
Observed Uniform Bedep DirCrypt Ramnit1

Bedep 1.000 – 0.000 0.000
DirCrypt 0.972 0.993 – 1.000
Ramnit1 0.929 0.991 1.000 –

(b) Pearson chi-squared test (χ2), where 1 indicates that
the tests have been conducted excluding the character “z”

Figure 11: Comparative analysis of Bedep, DirCrypt and Ramnit — Part 2

17

0.0 1.00.2 0.4 0.6 0.8

FP Rate (1-Specificity)

0.0

0.4

0.8

0.2

0.6

1.0

TP
 R

at
e

(S
en

si
ti

vi
ty

)

RF
NN

kNN

SVM

AB

DT

(a) ROC curve for the legit class while compared to
Bedep, DirCrypt and Ramnit

Method Acc. Prec. Rec. AUC F1

AB 0.968 0.938 0.932 0.956 0.935
NN 0.980 0.956 0.965 0.998 0.961
RF 0.977 0.944 0.964 0.994 0.954
SVM 0.838 0.834 0.438 0.973 0.575
DT 0.970 0.933 0.947 0.965 0.940
kNN 0.946 0.887 0.898 0.974 0.892

(b) Classifiers performances for the legit class while com-
pared to Bedep, DirCrypt and Ramnit

Figure 12: Comparative analysis of Bedep, DirCrypt and Ramnit versus the legitimate class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AB DT kNNNN RF SVM

F1
 S

co
re

Classifiers

All classes New aggregated classes

(a) F1 Score comparison between the results proposed in
Figure 6b and the ones proposed in Figure 13b.

Method Acc. Prec. Rec. AUC F1

AB 0.739 0.741 0.739 0.866 0.740
NN 0.847 0.845 0.847 0.995 0.840
RF 0.794 0.788 0.794 0.979 0.788
SVM 0.445 0.456 0.445 0.945 0.456
DT 0.751 0.750 0.751 0.886 0.750
kNN 0.382 0.358 0.382 0.792 0.358

(b) Classifiers performances

Figure 13: Results for the Multiclass experiment (Exp. 2) after remapping the classes as described in Section 4.3.

18

Al
uF

ob
v2

Be
d-

Di
r-

Ra
mn

Pi
k-

Tm
pd

r
Pi

k-
Tm

pd
r_

no
is

e
Pi

z-
Su

pv
1

ba
nj

or
i

cc
le

an
er

ch
in

ad
co

re
bo

t
cr

yp
to

lo
ck

er
dy

re
fo

bb
er

_v
1

go
zi

kr
ak

en
_v

1
kr

ak
en

_v
2

le
gi

t
lo

ck
y

ma
ts

nu
mu

ro
fe

t_
v1

mu
ro

fe
t_

v2
mu

ro
fe

t_
v3

ne
cu

rs
ny

ma
im

pa
dc

ry
pt

pr
os

li
ke

fa
n

pu
sh

do
qa

da
rs

qa
kb

ot
ra

md
o

ra
nb

yu
s_

v1
ra

nb
yu

s_
v2

ro
vn

ix
sh

io
to

b
si

md
a

si
sr

on
su

pp
ob

ox
_1

su
pp

ob
ox

_2
su

pp
ob

ox
_3

sy
mm

i
ti

nb
a

va
wt

ra
k_

v1
va

wt
ra

k_
v2

3
ze

us
-n

ew
go

z

Predicted Class

AluFobv2
Bed-Dir-Ramn

Pik-Tmpdr
Pik-Tmpdr_noise

Piz-Supv1
banjori
ccleaner

chinad
corebot

cryptolocker
dyre

fobber_v1
gozi

kraken_v1
kraken_v2

legit
locky
matsnu

murofet_v1
murofet_v2
murofet_v3

necurs
nymaim

padcrypt
proslikefan

pushdo
qadars
qakbot
ramdo

ranbyus_v1
ranbyus_v2

rovnix
shiotob

simda
sisron

suppobox_1
suppobox_2
suppobox_3

symmi
tinba

vawtrak_v1
vawtrak_v23
zeus-newgoz

Ac
tu

al
 C

la
ss

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
Pr

op
or

ti
on

 o
f
Ac

tu
al

Figure 14: Confusion Matrix for the Multiclass experiment (Exp. 2, Random Forest) with tweaked data as described in Section 4.3.

19

does not hold. Once again, one of the main contributions of this article is to propose a publicly available dataset
that can be used to research, study and deploy new comparable ML-based solutions that do not require harming
the users’ privacy.

As pinpointed previously by the authors [10], the task of detecting DGA-based botnets without privacy
breaches remains an open challenge, especially with the approach of encrypted DNS [53]. Even if some recent
studies suggest that Deep Learning (DL) techniques might provide some advantages [54, 55, 56], however, a
comparison between these solutions is far to be achievable due to the lack of structured and publicly accessible
data.

As previously suggested, with UMUDGA we aim to provide data to overcome the lack of ML-ready and publicly
available datasets. However, we acknowledge that our proposal of a context-free dataset is just one side of the
problem [10] and the study of the state-of-the-art in terms of context-aware features might result in potential
game-changing applications. Despite the unquestionable benefits that supplying fresh data to the scientific
community produces, there are several areas at which potential future researchers might look. To cite one, ML
techniques have been only used to scratch the surface of the problem [10] and further analysis might lead to
innovative products.

Finally, we once again would like to remark that, generally, literature solutions are not replicable, let alone
deployable in a real world environment [10]. To reach such remarkable objective, future works must:

1. publish the data, a necessary condition to enable the reproducibility of the experiments but also to enable
third party future researches to not start from scratch;

2. precisely discuss about initial configurations and subsequent optimisation of applied techniques, including
ML algorithms;

3. identify the architecture, the workflow, the environment, the experiments configurations and, in general,
provide all the information required to independently redeploy the scenarios and verify the results; and,
finally

4. compare the obtained results with the state-of-the-art techniques using reproducible means based, at least,
on comparable, if not identical, data sources.

5. Conclusions

Recent technical reports suggest an increasing interest in ML solutions for cybersecurity, and, although
their are sold as all-comprehensive panacea, their applications are non-specialist at best. Literature researches
show a plethora of shady solutions that claim to achieve almost perfect performances without providing enough
means to validate, let alone reproduce, the results. The first and foremost key issue regarding this problem is
attributable to the data sources, which are not properly organised or carefully reviewed. In fact, most of the
publicly available datasets suffer from important shortcomings that prevents to achieve the required rigorousness,
reproducibility and credibility of the research. To the best of our knowledge, Section 2, summarised in Table 1,
highlights the well-known properties of the current state-of-the-art in terms of data sources, providing a clear
categorisation that may prove useful to future researchers.

As a consequence, we propose our dataset, the University of Murcia Domain Generation Algorithm Dataset
(UMUDGA) available at Mendeley Data [15], that ultimately achieves all these established properties alongside
with a formal and rigorous mathematical data definition [17].

At the same time, it holds that several challenges are yet to be solved. Further researches are, in fact,
required to address the problem of DGA-based botnets. Unlike the related works analysed in Section 2, UMUDGA
aims to address the first of the shortcomings of comparable ML results, i.e., the data source.

Finally, the exploratory analysis shows that data manipulation can easily lead to significant improvements in
the performances of any ML solutions, and thus should be strictly documented and justified. Moreover, scientists
and future researches should transparently adhere to an experiment protocol that follows predetermined and
well-established guidelines, which, to the best of our knowledge, nowadays do not exist. Our proposed guidelines
aim to serve as catalyst for creating a standard protocol for ML solutions in network cybersecurity.

Declaration of interest

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

20

Acknowledgement

This work has been supported by a predoctoral and a postdoctoral INCIBE (Spanish National Cyberse-
curity Institute) grants within the “Ayudas para la Excelencia de los Equipos de Investigación Avanzada en
Ciberseguridad” (“Grants for the Excellence of Advanced Cybersecurity Research Teams”) Program, with codes
INCIBEI-2015-27353 and INCIBEI-2015-27352, respectively.

References

[1] B. O’Gorman, C. Wueest, D. O’Brien, G. Cleary, H. Lau, J.-P. Power, M. Corpin, O. Cox, P. Wood, S. Wallace, Internet
security threat report, Tech. rep., Symantec Corporation (2019).
URL https://www.symantec.com/security-center/threat-report

[2] A. Kujawa, W. Zamora, J. Umawing, J. Segura, W. Tsing, P. Arntz, C. Boyd, 2019 state of malware, Tech. rep., Malwarebytes
LABS (2019).
URL https://resources.malwarebytes.com/resource/2019-state-malware-malwarebytes-labs-report/

[3] A. Eremin, What are botnets downloading? Statistics for the past year on files downloaded by botnets, Tech. rep., Kaspersky
Labs (2018).
URL https://securelist.com/what-are-botnets-downloading/87658/

[4] A. Brandt, B. Cove, C. Yu, C. Wisniewski, G. Szappanos, J. Chandraiah, J. Zhang, J. Levy, P. Kohli, P. MacKenzie, R. Cohen,
R. Yu, S. Shevchenko, T. Easton, Sophoslabs 2019 treath report, Tech. rep., SOPHOS Ltd (2018).
URL https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-2019-threat-report.pdf

[5] Spamhaus Project, Spamhaus botnet threat report 2019, Tech. rep., Spamhaus Project (2019).
URL https://www.spamhaustech.com/botnet-threat-report-2019/

[6] Spamhaus Project, Spamhaus botnet threat update: Q1-2019, Tech. rep., Spamhaus Project (2019).
URL https://www.spamhaus.org/news/article/784/spamhaus-botnet-threat-update-q1-2019

[7] Fireeye Mandiant Services, M-Trends 2019 special report, Tech. rep., FireEye, Inc. (2019).
URL https://www.fireeye.com/current-threats/annual-threat-report.html

[8] N. Etaher, G. R. S. Weir, M. Alazab, From ZeuS to Zitmo: trends in banking malware, in: 2015 IEEE Trust-
com/BigDataSE/ISPA, 2015, pp. 1386–1391. doi:10.1109/Trustcom.2015.535.

[9] G. Vormayr, T. Zseby, J. Fabini, Botnet communication patterns, IEEE Communications Surveys & Tutorials 19 (4) (2017)
2768–2796. doi:10.1109/COMST.2017.2749442.

[10] M. Zago, M. Gil Pérez, G. Martínez Pérez, Scalable detection of botnets based on DGA: efficient feature discovery process in
machine learning techniques, Soft Computing, In Press doi:10.1007/s00500-018-03703-8.

[11] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, E. Gerhards-Padilla, A comprehensive measurement study of domain generating
malware, in: 25th USENIX Conference on Security Symposium, 2016, pp. 263–278.
URL http://dl.acm.org/citation.cfm?id=3241094.3241115

[12] C. G. J. Putman, Abhishta, L. J. M. Nieuwenhuis, Business model of a botnet, in: 26th Euromicro International Conference
on Parallel, Distributed and Network-based Processing, 2018, pp. 441–445. doi:10.1109/PDP2018.2018.00077.

[13] B. Hammi, S. Zeadally, R. Khatoun, An empirical investigation of botnet as a service for cyberattacks, Transactions on
Emerging Telecommunications Technologies 30 (3) (2019) 1–11. doi:10.1002/ett.3537.

[14] M. Kührer, C. Rossow, T. Holz, Paint it black: evaluating the effectiveness of malware blacklists, in: Research in Attacks,
Intrusions and Defenses, 2014, pp. 1–21. doi:10.1007/978-3-319-11379-1_1.

[15] M. Zago, M. Gil Pérez, G. Martínez Pérez, UMUDGA - University of Murcia Domain Generation Algorithm Dataset, Mendeley
Data (2020). doi:10.17632/y8ph45msv8.

[16] M. Zago, M. Gil Pérez, G. Martínez Pérez, UMUDGA - University of Murcia Domain Generation Algorithm Dataset (2020).
doi:10.5281/zenodo.3618221.
URL https://github.com/Cyberdefence-Lab-Murcia/UMUDGA

[17] M. Zago, M. Gil Pérez, G. Martínez Pérez, UMUDGA: A dataset for profiling algorithmically generated domain names in
botnet detection, Data in Brief doi:10.1016/j.dib.2020.105400.

[18] A. Shiravi, H. Shiravi, M. Tavallaee, A. A. Ghorbani, Toward developing a systematic approach to generate benchmark datasets
for intrusion detection, Computers & Security 31 (3) (2012) 357–374. doi:10.1016/j.cose.2011.12.012.

[19] S. García, M. Grill, J. Stiborek, A. Zunino, An empirical comparison of botnet detection methods, Computers & Security 45
(2014) 100–123. doi:10.1016/j.cose.2014.05.011.

[20] M. Parkour, Contagio Malware Dump - Collection of Pcap files from malware analysis (2015).
URL http://contagiodump.blogspot.com/2013/04/collection-of-pcap-files-from-malware.html

[21] A. D. Kent, Cybersecurity data sources for dynamic network research, in: Dynamic Networks in Cybersecurity, Imperial
College Press, 2015, pp. 27–65. doi:10.1142/9781786340757_0002.

[22] A. D. Kent, Comprehensive, multi-source cyber-security events, Los Alamos National Laboratory (2015). doi:10.17021/
1179829.

[23] A. Alenazi, I. Traore, K. Ganame, I. Woungang, Holistic model for HTTP botnet detection based on DNS traffic analysis, in:
1st International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments, 2017,
pp. 1–18. doi:10.1007/978-3-319-69155-8_1.

[24] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani, D. Garant, Botnet detection based on traffic behavior analysis
and flow intervals, Computers & Security 39 (2013) 2–16. doi:10.1016/j.cose.2013.04.007.

[25] E. B. Beigi, H. H. Jazi, N. Stakhanova, A. A. Ghorbani, Towards effective feature selection in machine learning-based botnet
detection approaches, in: 2014 IEEE Conference on Communications and Network Security, 2014, pp. 247–255. doi:10.1109/
CNS.2014.6997492.

[26] R. Sharma, R. K. Singla, A. Guleria, A new labelled flow-based DNS dataset for anomaly detection: PUF dataset, Procedia
Computer Science 132 (2018) 1458–1466. doi:10.1016/J.PROCS.2018.05.079.

[27] B. Wylie, SuperCowPowers - data hacking (2013).
URL https://github.com/SuperCowPowers/data_hacking/tree/master/dga_detection

[28] A. Abakumov, Andrewaeva/DGA (2014).
URL https://github.com/andrewaeva/DGA

[29] P. Chaignon, Pchaigno/DGA_Collection (2015).
URL https://github.com/pchaigno/dga-collection

21

https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
https://resources.malwarebytes.com/resource/2019-state-malware-malwarebytes-labs-report/
https://resources.malwarebytes.com/resource/2019-state-malware-malwarebytes-labs-report/
https://securelist.com/what-are-botnets-downloading/87658/
https://securelist.com/what-are-botnets-downloading/87658/
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-2019-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-2019-threat-report.pdf
https://www.spamhaustech.com/botnet-threat-report-2019/
https://www.spamhaustech.com/botnet-threat-report-2019/
https://www.spamhaus.org/news/article/784/spamhaus-botnet-threat-update-q1-2019
https://www.spamhaus.org/news/article/784/spamhaus-botnet-threat-update-q1-2019
https://www.fireeye.com/current-threats/annual-threat-report.html
https://www.fireeye.com/current-threats/annual-threat-report.html
http://dx.doi.org/10.1109/Trustcom.2015.535
http://dx.doi.org/10.1109/COMST.2017.2749442
http://dx.doi.org/10.1007/s00500-018-03703-8
http://dl.acm.org/citation.cfm?id=3241094.3241115
http://dl.acm.org/citation.cfm?id=3241094.3241115
http://dl.acm.org/citation.cfm?id=3241094.3241115
http://dx.doi.org/10.1109/PDP2018.2018.00077
http://dx.doi.org/10.1002/ett.3537
http://dx.doi.org/10.1007/978-3-319-11379-1_1
http://dx.doi.org/10.17632/y8ph45msv8
https://github.com/Cyberdefence-Lab-Murcia/UMUDGA
http://dx.doi.org/10.5281/zenodo.3618221
https://github.com/Cyberdefence-Lab-Murcia/UMUDGA
http://dx.doi.org/10.1016/j.dib.2020.105400
http://dx.doi.org/10.1016/j.cose.2011.12.012
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://contagiodump.blogspot.com/2013/04/collection-of-pcap-files-from-malware.html
http://contagiodump.blogspot.com/2013/04/collection-of-pcap-files-from-malware.html
http://dx.doi.org/10.1142/9781786340757_0002
http://dx.doi.org/10.17021/1179829
http://dx.doi.org/10.17021/1179829
http://dx.doi.org/10.1007/978-3-319-69155-8_1
http://dx.doi.org/10.1016/j.cose.2013.04.007
http://dx.doi.org/10.1109/CNS.2014.6997492
http://dx.doi.org/10.1109/CNS.2014.6997492
http://dx.doi.org/10.1016/J.PROCS.2018.05.079
https://github.com/SuperCowPowers/data_hacking/tree/master/dga_detection
https://github.com/SuperCowPowers/data_hacking/tree/master/dga_detection
https://github.com/andrewaeva/DGA
https://github.com/andrewaeva/DGA
https://github.com/pchaigno/dga-collection
https://github.com/pchaigno/dga-collection

[30] J. Bader, BaderJ - Domain generation algorithm.
URL https://github.com/baderj/domain_generation_algorithms

[31] R. Vinayakumar, K. P. Soman, P. Poornachandran, Detecting malicious domain names using deep learning approaches at
scale, Journal of Intelligent & Fuzzy Systems 34 (3) (2018) 1355–1367. doi:10.3233/JIFS-169431.

[32] M. Tavallaee, E. Bagheri, W. Lu, A. A. Ghorbani, A detailed analysis of the KDD CUP 99 data set, in: 2009 IEEE Symposium
on Computational Intelligence for Security and Defense Applications, 2009, pp. 1–6. doi:10.1109/CISDA.2009.5356528.

[33] J. Ma, L. K. Saul, S. Savage, G. M. Voelker, Identifying suspicious URLs: an application of large-scale online learning, in:
26th Annual International Conference on Machine Learning, 2009, pp. 681–688. doi:10.1145/1553374.1553462.

[34] M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita, Towards generating real-life datasets for network intrusion detection, I. J.
Network Security 17 (2015) 683–701. doi:10.6633/IJNS.201511.17(6).05.

[35] N. Moustafa, Designing an online and reliable statistical anomaly detection framework for dealing with large high-speed
network traffic, Ph.D. thesis, The University of New South Wales (2017).

[36] D. Berman, A. Buczak, J. Chavis, C. Corbett, A survey of deep learning methods for cyber security, Information 10 (4) (2019)
1–35. doi:10.3390/info10040122.

[37] The Guava Authors, Google Guava - InternetDomainName class (2009).
URL https://github.com/google/guava/wiki/InternetDomainNameExplained

[38] Gerald Combs, Wireshark (1998).
URL https://www.wireshark.org/

[39] Alexa Internet Inc., Alexa Top Domains.
URL https://www.alexa.com/topsites

[40] The Apache Software Foundation, Apache Commons Validator (Feb 2017).
URL https://commons.apache.org/proper/commons-validator/

[41] P. Mockapetris, Domain names - concepts and facilities, STD 13, RFC Editor (November 1987). doi:10.17487/RFC1034.
[42] R. Braden, Requirements for internet hosts - application and support, STD 3, RFC Editor (October 1989). doi:10.17487/

RFC1123.
[43] D. Goldhahn, T. Eckart, U. Quasthoff, Building large monolingual dictionaries at the leipzig corpora collection: from 100

to 200 languages, in: 8th International Conference on Language Resources and Evaluation, European Languages Resources
Association (ELRA), 2012, pp. 759–765.

[44] Netlab 360, DGA families.
URL http://data.netlab.360.com/dga/

[45] Malware domain list (2009).
URL https://www.malwaredomainlist.com/mdl.php

[46] OSINT, OSINT DGA list.
URL http://osint.bambenekconsulting.com/feeds/

[47] Risk Analytics, DNS-BH - Malware domain blocklist (2007).
URL http://www.malwaredomains.com

[48] Majestic-12 Ltd, The Majestic Million.
URL https://majestic.com/reports/majestic-million

[49] R. Elz, R. Bush, Clarifications to the DNS specification, RFC 2181, RFC Editor (July 1997). doi:10.17487/RFC2181.
[50] J. Demšar, T. Curk, A. Erjavec, Č. Gorup, T. Hočevar, M. Milutinovič, M. Možina, M. Polajnar, M. Toplak, A. Starič,

M. Štajdohar, L. Umek, L. Žagar, J. Žbontar, M. Žitnik, B. Zupan, Orange: data mining toolbox in python, Journal of
Machine Learning Research 14 (2013) 2349–2353.
URL http://jmlr.org/papers/v14/demsar13a.html

[51] M. Gil Pérez, A. Huertas Celdrán, F. Ippoliti, P. G. Giardina, G. Bernini, R. M. Alaez, E. Chirivella-Perez, F. J. García
Clemente, G. Martínez Pérez, E. Kraja, G. Carrozzo, J. M. Alcaraz Calero, Q. Wang, Dynamic reconfiguration in 5G mobile
networks to proactively detect and mitigate botnets, IEEE Internet Computing 21 (5) (2017) 28–36. doi:10.1109/MIC.2017.
3481345.

[52] D. E. Knuth, The art of computer programming: seminumerical algorithms, 3rd Edition, Vol. 2, Addison-Wesley Longman
Publishing Co., Inc., 1997. doi:10.1137/1012065.

[53] C. Patsakis, F. Casino, V. Katos, Encrypted and covert DNS queries for botnets: Challenges and countermeasures, Computers
& Security 88 (2020) 101614. doi:https://doi.org/10.1016/j.cose.2019.101614.

[54] Y. Qiao, B. Zhang, W. Zhang, A. K. Sangaiah, H. Wu, DGA Domain Name Classification Method Based on Long Short-Term
Memory with Attention Mechanism, Applied Sciences 9 (20) (2019) 4205. doi:10.3390/app9204205.

[55] R. Vinayakumar, K. P. Soman, P. Poornachandran, S. Akarsh, M. Elhoseny, Improved DGA Domain Names Detection and
Categorization Using Deep Learning Architectures with Classical Machine Learning Algorithms, Springer International Pub-
lishing, 2019, Ch. 8, pp. 161–192. doi:10.1007/978-3-030-16837-7_8.

[56] Y. Liang, X. Yan, Using Deep Learning to Detect Malicious URLs, in: 2019 IEEE International Conference on Energy Internet
(ICEI), 2019, pp. 487–492. doi:10.1109/ICEI.2019.00092.

22

https://github.com/baderj/domain_generation_algorithms
https://github.com/baderj/domain_generation_algorithms
http://dx.doi.org/10.3233/JIFS-169431
http://dx.doi.org/10.1109/CISDA.2009.5356528
http://dx.doi.org/10.1145/1553374.1553462
http://dx.doi.org/10.6633/IJNS.201511.17(6).05
http://dx.doi.org/10.3390/info10040122
https://github.com/google/guava/wiki/InternetDomainNameExplained
https://github.com/google/guava/wiki/InternetDomainNameExplained
https://www.wireshark.org/
https://www.wireshark.org/
https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://commons.apache.org/proper/commons-validator/
https://commons.apache.org/proper/commons-validator/
http://dx.doi.org/10.17487/RFC1034
http://dx.doi.org/10.17487/RFC1123
http://dx.doi.org/10.17487/RFC1123
http://data.netlab.360.com/dga/
http://data.netlab.360.com/dga/
https://www.malwaredomainlist.com/mdl.php
https://www.malwaredomainlist.com/mdl.php
http://osint.bambenekconsulting.com/feeds/
http://osint.bambenekconsulting.com/feeds/
http://www.malwaredomains.com
http://www.malwaredomains.com
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
http://dx.doi.org/10.17487/RFC2181
http://jmlr.org/papers/v14/demsar13a.html
http://jmlr.org/papers/v14/demsar13a.html
http://dx.doi.org/10.1109/MIC.2017.3481345
http://dx.doi.org/10.1109/MIC.2017.3481345
http://dx.doi.org/10.1137/1012065
http://dx.doi.org/https://doi.org/10.1016/j.cose.2019.101614
http://dx.doi.org/10.3390/app9204205
http://dx.doi.org/10.1007/978-3-030-16837-7_8
http://dx.doi.org/10.1109/ICEI.2019.00092

	Introduction
	Related Works
	UMUDGA: University of Murcia Domain Generation Algorithm Dataset
	The UMUDGA Architecture
	Methodology for building the UMUDGA dataset
	Generation and collection of FQDNs
	Preprocessing and feature extraction

	UMUDGA Dataset Analysis
	Fobber (2nd version) versus Alureon
	Bedep versus DirCrypt versus Ramnit
	Discussion

	Conclusions

