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1 Cosmological Constant Problem

Dark Clouds hanging over the two well-established theories

Quantum Field Theory ⇐⇒ Einstein Gravity Theory

We know the recently observed Dark Energy Λ0, which looks like a small

Cosmological Constant (CC):

Present observed CC 10−29gr/cm3 ∼ 10−47GeV4 ≡ Λ0 (1)

We do not mind this tiny CC, which will be explained after our CC problem

is solved. However, we use it as the scale unit Λ0 of our discussion.
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Essential point: multiple mass scales are involved!

There are several dynamical symmetry breakings and they are necessarily

accompanied by vacuum condensation energy:

In particular, we are confident from the success of the Standard Model of

the existence of at least two symmetry breakings:

Higgs Condensation ∼ ( 200GeV )4 ∼ 109GeV4 ∼ 1056Λ0

QCD Chiral Condensation ⟨q̄q⟩4/3 ∼ ( 200MeV )4 ∼ 10−3GeV4 ∼ 1044Λ0

Nevertheless, these seem not contributing to the Cosmological Constant!

It is a Super fine tuning problem:

c : initially prepared CC (> 0)

c− 1056Λ0 : should cancell, but leaving 1 part per 1012; i.e., ∼ 1044Λ0

c− 1056Λ0 − 1044Λ0 : should cancell, but leaving 1 part per 1044; i.e., ∼ Λ0

c− 1056Λ0 − 1044Λ0 ∼ Λ0 : present Dark Energy
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Note that the vacuum energy is almost totally cancelled at each stage of

spontaneous breaking as far as the the relevant energy scale order.

2 Vacuum Energy ≃ vacuum condensation energy
Vacuum Energy in QFT: ∑

k,s

1

2
ℏωk −

∑
k,s

ℏEk (2)

Vacuum Condensation Energy:

V (ϕc) : potential (3)

They are separately stored in our (or my, at least) memory, but actually,

almost the same object, as we see now.

Consider the chiral quark condensation in QCD. For simplicity, consider

NJL model as a parallel model for the realistic QCD:

LNJL = q̄iγµ∂µq +
G

4

[
(q̄q)2 + (q̄iγ5q)

2
]

→ q̄(iγµ∂µ − σ − iγ5π)q −
1

G
(σ2 + π2)
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The effective potential V (σ, π) is a function of σ2+π2 and can be computed

at the π = 0 section V (σ) = V (σ, π = 0):

V (σ) =
1

G
σ2 −

∫
d4p

i(2π)4
ln det(/p− σ)

But the second term is nothing but the vacuum energy

−
∫

d4k

i(2π)4
ln det(/k − σ) = −

∑
k,s

ℏ
√
k2 + σ2 + (σ-independent const)

implying that

⟨q̄q⟩ condensation energy ≃ Dirac sea vacuum energy (4)

Moreover, in a Shwinger-Dyson approach to realistic QCD, the quark mass

is calculated as a function Σ(p) possessing the support only <∼ ΛQCD, and

the condensation energy is computed finite.
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3 Does Vacuum Energy really work as Cosmologi-

cal Constant?

As far as Einstein Gravity is correct, it does：
For the usual symmetry breaking,

potential V (ϕ) → S ≃
∫

d4x
√
−g (−V (ϕ))

→ S ≃
∫

d4x
√
−g ( −c ) (⟨V (ϕ)⟩ = V (ϕc) = c)

Also in the dynamical symmetry breaking case, the potential V (ϕ), and

hence the vacuum energy, is dynamically generated, so that it works as the

cosmological constant.
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Let us show this more explicitly, taking the previous NJL model: In the

presence of gravity in that model, we have the kinetic term for the quark

field: ∫
d4x e(x) q̄(x) (iea

µ(x)γa∂µ − σ(x)) q(x)

Needs eµ
a the same gravity field as our macroscopic one!

with which we have the vacuum bubble dia-

grams. Sum of them give an effective action

Γ[e] = −i ln Det [e(x) (iea
µ(x)γa∂µ − σ(x))]

The lowest order term in the derivative ex-

pansion in the background gravity field eaµ(x)

and σ(x), (i.e., the no derivative term in

eaµ(x) and σ(x)), can be calculated by treating eaµ(x) and σ(x) as if they
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are x-independent constant:

Leff(x) =

∫
d4k

i(2π)4
ln det [e(x) (ea

µ(x)γakµ − σ(x))] (6)

Perform change of variable

kµ → pa = ea
µkµ, or, kµ = eµ

apa (7)

Then the Jacobian yields∣∣∣∣∂(k)∂(p)

∣∣∣∣ = det(eµ
a) = e → d4k =

∣∣∣∣∂(k)∂(p)

∣∣∣∣ d4p = e d4p (8)

so that

Leff(x) = e× (−V (σ)) , V (σ) = −
∫

d4p

i(2π)4
ln det(/p− σ)

That is, the dynamical potential V (σ) previously obtained actually couples

to the gravity e =
√
−g as CC term!
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4 Quantum Gravity is irrelevant
CC problem is to be considered in Einstein Gravity theory.

Einstein gravity is a unique Low Energy Effective Theory (9)

Just like Chiral Lagrangian

L = fπ tr
(
∂µU

†∂µU
)

U = exp(iπ/fπ), π = πa(x)T a

is a unique Effective Theory in the low energy region E <∼ fπ, i.e., in the

lowest (second) order in the derivative. We know that the fundamental the-

ory describing the strong interaction is QCD. But, whatever the dynamical

theory is beyond E > fπ, the sysytem is described by the the Nambu-

Goldstone (NG) bosons π based on the coset SU(3)L × SU(3)R/SU(3)V ,

and the dynamics is uniquely described by this non-linear sigam model. The

non-linearly realized chiral symmetry uniquely determines the dynamics of

the NG bosons, self-coupling and coupling to other matters in the low en-

ergy regime. Moreover, even the quantum correction in this system can be

computed by this Lagrangian in the sense of Weinberg.
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In exactly the same manner, the general coordinate (GC) invariance uniquely

determine the Lagrangian in the lowest (second) order in the derivative; that

is, it is the Einstein-Hilbert action. In this analogy, it is worth noticing

Graviton is a NG tensor boson corresponding to GL(4) → SO(3,1)

Nakanishi-Ojima (1979)

So the Einstein-Hilbert action is exactly analogous to the chiral Lagrangian,

and MPl is the counterpart of the pion decay constant fπ:

Seff =

∫
d4x

√
−g
{
M 4

Plc0 +M 2
PlR + c2R

2 + c3RµνR
µν + · · ·

}
gµν = ηµν + hµν/MPl

The CC term (with no derivatives) is consistent with GC invariance and its

natural scale is O(M 4
Pl).

Below the Planck energy scale MPl, the dynamics is uniquely described

by the E-H action plus interaction terms with matter fields. The quantum

gravity is quite irrelevant to any problem in much lower energy region than

Planck sacale, E ≪ MPl, in particular, to the CC problem associated with

the spontaneous breaking of Electro-weak symmetry and chiral symmetry.
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5 Running Cosmological constant: Is Gravity field

the same in microscopic 1fm and in macro 1m?

Once Prof. Maskawa said to me that

the gravity field at microscopic scale

should be different from our macroscopic one.

But I think that they are the same. Indeed, In the case of electro-magnetic

interaction, the same vector potential is working from macroscopic scale 1m

to the atomic scale or even to nucleus scale 1 fm. So the gravity field will

also be the same from 1m to 1fm.

However, here, I only mention to the following fact:

The coupling constant may run with energy scale. In the Wilsonian renor-

malization scheme, the cosmological constant, in particular, runs quartically

in energy scale, since it diverges quartically. So the effective CC may dras-

tically be different scale by scale. The CC observed in cosmology is the one

at super-low energy! We should investigate the RGE towards IR direction.
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6 Conformal (Scale) Invariance may solve the prob-

lem

Our world is almost scale invariant: that is, the standard model Lagrangian

is scale invariant except for the Higgs mass term!

If the Higgs mass term comes from the spontaneous breaking of scale in-

variance at higher energy scale physics, the total system may really be scale

invariant.

Suppose that the (effective) potential V of the total system looks like

V = V0(Φ) + V1(Φ, φ) + V3(φ, ϕ)

↓ ↓ + ↓
M ≫ µ ≫ m

(10)

and it is scale invariant. Then, it satisfies the scale invariance relation:∑
i

ϕi ∂

∂ϕi
V (ϕ) = 4V (ϕ), (11)

so that the vacuum energy vanishes at any stationary point
⟨
ϕi
⟩
= ϕi

0:

V (ϕ0) = 0. (12)
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Important point is that this holds at every stages of spontaneous symmetry

breaking.

In the above potential V , we can retain only V0(Φ) when discussing the

physics at scale M , since φ and ϕ are expected to get VEVs of order µ or

lower. Then the scale invariance guarantees V0(Φ0) = 0.

If we discuss the next stage spontaneous breaking at energy scale µ, we

should take V0(Φ) + V1(Φ, φ), and can conclude V0(Φ
′
0) + V1(Φ

′
0, φ0) = 0

(with Φ′
0 − Φ0 = O(µ)).

Similarly, at scale m, we have the potential V0(Φ) + V1(Φ, φ) + V3(φ, ϕ),

and can coclude V0(Φ
′′
0) + V1(Φ

′′
0, φ

′
0) + V3(φ

′
0, ϕ0) = 0.

However, we have neglected the scale invariance anomaly in quantum field

theory. Actually, if we take account of the renormalization point µ, we have

the RGE (
µ
∂

∂µ
+
∑
a

βa(g)
∂

∂ga
+
∑
i

γi(g)ϕi
∂

∂ϕi

)
V (ϕ) = 0 (13)
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and the dimension counting identity(
µ
∂

∂µ
+
∑
i

ϕi
∂

∂ϕi

)
V (ϕ) = 4V (ϕ) (14)

From these we obtain(∑
i

(1− γi(g))ϕi
∂

∂ϕi
−
∑
a

βa(g)
∂

∂ga

)
V (ϕ) = 4V (ϕ) (15)

This is the correct equation in place of the above naive one:∑
i

ϕi
∂

∂ϕi
V (ϕ) = 4V (ϕ) (16)

The anomalous dimension γi(g) is not the problem.

βa(g) terms are problematic:

−→ V (ϕ0) = −1

4

∑
a

βa(g)
∂

∂ga
V (ϕ0) (17)

So, an obvious possibility is that all the coupling constants go to the Infrared

Fixed Points: βa(gIF) = 0.




