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General Relativity, Riemannian Geometry & String Theory

• Ever since Einstein formulated his theory of gravity i.e. GR, by employing the
mathematics of Riemannian geometry, the Riemannian metric, gµν , has been
privileged to be the only geometric and hence gravitational field:

– Diffeomorphism : ∂µ −→ ∇µ = ∂µ + Γµ

– ∇λgµν = 0, Γλ
[µν]

= 0 −→ Γλµν = 1
2 gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν)

– Curvature : [∇µ,∇ν ] −→ Rκλµν −→ R

• On the other hand, string theory puts the metric, gµν , two-form gauge potential, Bµν ,
and scalar dilaton, φ, on an equal footing, as they, so called the massless NS-NS sector,
form a ‘multiplet of T-duality’ (this string theory symmetry mixes them).

• Namely, string theory suggests to view the whole massless NS-NS sector as the
gravitational unity.

– Riemannian geometry is for particle theory.
– String theory requires a novel differential geometry for the NS-NS sector.
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General Relativity, Riemannian Geometry & String Theory

• However, in the conventional treatment of the NS-NS sector, the effective action
describing its dynamics is ‘organized’ in terms of Riemannian geometry,

∫
dDx

√
−|g| e−2φ

(
R + 4 |dφ|2 − 1

12 |dB|2
)
.

– In this conventional description, the Riemannian metric provides the background
geometry, while the dilaton and the B-field are viewed as ‘matter’ living on it.

– Further, the O(D,D) T-duality symmetry mixing the NS-NS sector is not
manifest at all, while it is secretly hidden there.

– There is also much ambiguity to occur, when we try to couple the NS-NS sector,
especially φ and Bµν , to other matters, e.g. the Standard Model.

• Thus, Riemannian geometry fails to provide the unifying geometric description of the
massless NS-NS sector.
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Dark Matter Problem

Galaxy rotation curves : observation Keplerain 1/
√

R fall-off : GR or Newton

• The galaxy rotation curve is a plot of the orbital velocities of visible stars versus their
radial distance from the galactic center.

• While Einstein gravity (GR), with Schwarzschild solution, predicts the Keplerian
(inverse square root) monotonic fall-off of the velocities, observations however show
rather ‘flat’ (∼ 200 km/s) curves after a fairly rapid rise.

• The resolution of the discrepancy may call for ‘dark matter’, or modifications of the
law of gravity, or perhaps both as is the case with Double Field Theory.
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Talk Abstract: Double Field Theory in a nutshell

• Double Field Theory (DFT) formally uses doubled, (D + D)-dimensonal coordinates, to
manifest O(D,D) symmetry and to unify diffeomorphisms and B-field gauge symmetry.

• It looks like a (D + D)-dimensonal theory, but the theory is required to satisfy so-called
‘section condition’ such that it lives on a D-dimensional hyperspace, i.e. ‘section’.

• DFT assumes the whole massless NS-NS sector as the gravitational unity.
– The underlying differential geometry is genuinely ‘stringy’ beyond Riemann.

• DFT is formulated in terms of its own field variables, VAp, V̄Ap̄, d , which are strictly
O(D,D) covariant. The connection to GR can be only established after parametrizing
them by the conventional Riemannian variables, such as gµν , eµa, Bµν , φ.

• Covariant derivatives and curvatures have been constructed, and successfully applied
– to identify the expression, R + 4 |dφ|2 − 1

12 |dB|2, as a ‘scalar curvature’ of DFT;
– to unify IIA and IIB SUGRAs into D = 10 maximally supersymmetric DFT;
– to couple D = 4 DFT to the Standard Model unambiguously.

• Each term in every formula is manifestly covariant for the Fundamental Symmetries:
∗ O(D,D) T-duality
∗ DFT-diffeomorphisms (diffeomorphisms plus B-field gauge symmetry)
∗ A pair of local Lorentz symmetries, Spin(1,D−1)L × Spin(D−1, 1)R
∗ ‘Coordinate gauge symmetry’ (section condition)

# The self-interaction of the NS-NS sector modifies GR at ‘short’ distance (R/MG ), and
may solve the DM problem in ‘uroboros’ manner.

# Superstring theory itself is better formulated in terms of doubled geometry.
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Talk Organization

I. Geometric formulation of DFT & Coupling to the Standard Model

II. Doubled-yet-gauged coordinates

III. ‘Uroboros’ solution to the Dark Matter Problem via DFT

∗ Based on works in collaborations with Imtak Jeon, Kanghoon Lee, Yoonji Suh,
Wonyoung Cho, Jose Fernández-Melgarejo, Soo-Jong Rey, Woohyun Rim,
Yuho Sakatani, Sung Moon Ko, Minwoo Suh, Kang-Sin Choi, Rene Meyér,
Charles Melby-Thompson, Chris Blair, Emanuel Malek, and Xavier Bekaert.
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I. Geometric Formulation

• Stringy differential geometry, beyond Riemann
Imtak Jeon, Kanghoon Lee, JHP 1105.6294

• Stringy Unification of IIA and IIB Supergravities under N= 2 D= 10 Supersymmetric
Double Field Theory Imtak Jeon, Kanghoon Lee, JHP, Yoonji Suh 1210.5078

•Supersymmetric gauged Double Field Theory: Systematic derivation by virtue of Twist
Wonyoung Cho, Jose J. Fernández-Melgarejo, Imtak Jeon, JHP 1505.01301

• Standard Model as a Double Field Theory Kang-Sin Choi, JHP 1506.05277
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• Notation

Index Representation Metric (raising/lowering indices)

A,B, · · · O(D,D) & Diffeomorphism vector JAB =


0 1

1 0


p, q, · · · Spin(1,D−1)L vector ηpq = diag(−+ + · · ·+)

α, β, · · · Spin(1,D−1)L spinor Cαβ , (γp)T = CγpC−1

p̄, q̄, · · · Spin(D−1, 1)R vector η̄p̄q̄ = diag(+−− · · ·−)

ᾱ, β̄, · · · Spin(D−1, 1)R spinor C̄ᾱβ̄ , (γ̄p̄)T = C̄γ̄p̄C̄−1

– Here D denotes the dimenison of the physical spacetime. In this talk, D ≡ 4 or 10.

– The constant O(D,D) metric, JAB , naturally decomposes the doubled coordinates
of DFT into two parts,

xA = (x̃µ, xν) , ∂A = (∂̃µ, ∂ν) ,

where µ, ν are D-diemensional curved indices.
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• Fundamental fields of DFT

VAp , V̄Ap̄ , d : Geometric and hence Gravitational

These represent the massless NS-NS sector in string theory, c.f. R-R sector, Cαᾱ .

– The pair of vielbeins satisfy four defining properties,

VApV A
q = ηpq , V̄Ap̄V̄ A

q̄ = η̄p̄q̄ VApV̄ A
q̄ = 0 , VApVB

p + V̄Ap̄V̄B
p̄ = JAB ,

such that they are the “square-roots" of projectors,

PA
B = VApV Bp , P̄A

B = V̄Ap̄V̄ Bp̄

satisfying

P2 = P , P̄2 = P̄ , PP̄ = 0 , P + P̄ = 1 .

– The dilaton gives rise to the O(D,D) invariant integral measure with weight one,
after exponentiation:

e−2d

Naturally the cosmological constant term in DFT should be given by e−2d ΛDFT

which differs from the conventional one in Riemannian GR, and hence
reformulates the ‘cosmological constant problem’.
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– The pair of vielbeins satisfy four defining properties,

VApV A
q = ηpq , V̄Ap̄V̄ A

q̄ = η̄p̄q̄ VApV̄ A
q̄ = 0 , VApVB

p + V̄Ap̄V̄B
p̄ = JAB ,

such that they are the “square-roots" of projectors,

PA
B = VApV Bp , P̄A

B = V̄Ap̄V̄ Bp̄

satisfying

P2 = P , P̄2 = P̄ , PP̄ = 0 , P + P̄ = 1 .

– The dilaton gives rise to the O(D,D) invariant integral measure with weight one,
after exponentiation:

e−2d

Naturally the cosmological constant term in DFT should be given by e−2d ΛDFT

which differs from the conventional one in Riemannian GR, and hence
reformulates the ‘cosmological constant problem’.

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



• Semi-covariant derivative : Jeon-Lee-JHP 2010, 2011

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An .

The DFT-version of the Christoffel connection has been uniquely determined,

ΓCAB=2(P∂C PP̄)[AB]
+2
(

P̄[A
D P̄B]

E−P[A
DPB]

E
)
∂DPEC− 4

D−1

(
P̄C[AP̄B]

D+PC[APB]
D
)(
∂Dd+(P∂E PP̄)[ED]

)

by demanding the compatibility with the NS-NS sector, ∇APBC = ∇AP̄BC = ∇Ad = 0,
plus some extra ‘torsionless’ conditions.

• Semi-covariant Riemann-like curvature :

SABCD := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD

)
where RABCD denotes the ordinary “field strength” of a connection,

RCDAB=∂AΓBCD−∂BΓACD+ΓAC
E ΓBED−ΓBC

E ΓAED ⇐ dΓ+Γ∧Γ .

Under arbitrary transformation of the connection, it transforms as ‘total derivative’,

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB ,

and further satisfies

SABCD=S[AB][CD]=SCDAB , S[ABC]D=0 , PI
APJ

B P̄K
C P̄L

DSABCD=0 , PI
AP̄J

BPK
C P̄L

DSABCD=0 .
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• Semi-covariant ‘Master’ derivative :

DA := ∂A + ΓA + ΦA + Φ̄A = ∇A + ΦA + Φ̄A .

where the spin connections are determined in terms of the Christoffel-like connection
by requiring the compatibility with the vielbeins,

DAVBp = ∇AVBp + ΦAp
qVBq = 0 , DAV̄Bp̄ = ∇AV̄Bp̄ + Φ̄Ap̄

q̄V̄Bq̄ = 0 .

• Complete covariatizations : 〈 divergences, Laplacians, Dirac operators and curvatures 〉

PC
DP̄A1

B1 · · · P̄An
Bn∇DTB1···Bn =⇒ DpTq̄1q̄2···q̄n ,

P̄C
DPA1

B1 · · ·PAn
Bn∇DTB1···Bn =⇒ Dp̄Tq1q2···qn ,

DpTpq̄1q̄2···q̄n , Dp̄Tp̄q1q2···qn , DpDpTq̄1q̄2···q̄n , Dp̄Dp̄Tq1q2···qn ,

γpDpρ , γ̄p̄Dp̄ρ
′ , Dp̄ρ , Dpρ′ , γpDpψq̄ , γ̄p̄Dp̄ψ

′
q , Dp̄ψ

p̄ , Dpψ′p ,

D±C := γpDpC ± γ(D+1)Dp̄Cγ̄p̄ , (D±)2 = 0 =⇒ F := D+C (RR field strength ) ,

PA
C P̄B

DSCD (Ricci-like ) , (PACPBD − P̄AC P̄BD)SABCD ( scalar ) .

# Combining the curvatures, we also have the ‘conserved’ Einstein-like curvature:

∇AGAB = 0 , GAB := 2(PAC P̄BD − P̄ACPBD)SCD − 1
2JAB(Spq

pq − Sp̄q̄
p̄q̄) .
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• Type II D = 10 Maximally Supersymmetric Double Field Theory : Jeon-Lee-JHP-Suh 2012

LMax = e−2d
[

1
8 (PABPCD − P̄ABP̄CD)SACBD + 1

2Tr(FF̄) + i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q

+i 1
2 ρ̄γ

pDpρ− iψ̄p̄Dp̄ρ− i 1
2 ψ̄

p̄γqDqψp̄ − i 1
2 ρ̄
′γ̄p̄Dp̄ρ

′ + iψ̄′pDpρ′ + i 1
2 ψ̄
′p γ̄q̄Dq̄ψ

′
p

]

– Due to the twofold spin groups, Spin(1, 9)L × Spin(9, 1)R , the theory unifies the
conventional IIA and IIB SUGRAs. Namely the theory is chiral w.r.t. both spin
groups and hence unique. IIA and IIB appear as two distinct types of solutions.

– Maximal 16 + 16 local SUSY (full order construction realizing ‘1.5 formalism’).

– Euler-Lagrange equations include the DFT version of the Einstein equation:

Spq̄︸︷︷︸
curvature

= −Tr(γpF γ̄q̄F̄) + fermions︸ ︷︷ ︸
matters

,
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• Yang-Mills: Jeon-Lee-JHP 2011

– Completely covariant Yang-Mills field strength is given by

PA
M P̄B

NFMN

where FMN is the semi-covariant field strength of a YM potential, VM ,

FMN := ∇MVN −∇NVM − i [VM ,VN ] .

– It is fully covariant w.r.t. all the DFT symmetries plus YM gauge symmetry.

– We can freely impose O(D,D) & YM gauge covariant conditions on the potential:

VMVM = 0 , VM∂M = 0 ,

in order not to double the physical degrees.

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



• Yang-Mills: Jeon-Lee-JHP 2011

– Completely covariant Yang-Mills field strength is given by

PA
M P̄B

NFMN

where FMN is the semi-covariant field strength of a YM potential, VM ,

FMN := ∇MVN −∇NVM − i [VM ,VN ] .

– It is fully covariant w.r.t. all the DFT symmetries plus YM gauge symmetry.

– We can freely impose O(D,D) & YM gauge covariant conditions on the potential:

VMVM = 0 , VM∂M = 0 ,

in order not to double the physical degrees.

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



• Yang-Mills: Jeon-Lee-JHP 2011

– Completely covariant Yang-Mills field strength is given by

PA
M P̄B

NFMN

where FMN is the semi-covariant field strength of a YM potential, VM ,

FMN := ∇MVN −∇NVM − i [VM ,VN ] .

– It is fully covariant w.r.t. all the DFT symmetries plus YM gauge symmetry.

– We can freely impose O(D,D) & YM gauge covariant conditions on the potential:

VMVM = 0 , VM∂M = 0 ,

in order not to double the physical degrees.

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



Coupling to the Standard Model

• D = 4 DFT naturally, or minimally, couples to the Standard Model, in a completely
covariant and unambiguous manner:

– O(4, 4) T-duality
– Twofold local Lorentz symmetry, Spin(1, 3)L × Spin(3, 1)R
– DFT-diffeomorphisms
– SU(3)× SU(2)×U(1) gauge symmetry

LSM−DFT = e−2d


1

16πGN
(PABPCD − P̄ABP̄CD)SACBD

+
∑
A PABP̄CDTr(FACFBD) +

∑
ψ ψ̄γ

aDaψ +
∑
ψ′ ψ̄

′γ̄āDāψ
′

−HAB(DAφ)†DBφ − V (φ) + yd q̄·φ d + yu q̄·φ̃ u + ye l̄ ′·φ e′


which reduces to the ‘standard’ SM on trivial flat background after gauge fixings.

Choi-JHP 2015 [PRL]

• While coupling DFT to SM, one has to decide the spin group for each fermion:
It is a prediction of DFT that the spin group is twofold: Spin(1, 3)L vs. Spin(3, 1)R .

• No experimental evidence of proton decay lead us to ‘conjecture’ that the quarks and
the leptons may belong to the distinct spin groups, which forbids a class of higher
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′

−HAB(DAφ)†DBφ − V (φ) + yd q̄·φ d + yu q̄·φ̃ u + ye l̄ ′·φ e′


which reduces to the ‘standard’ SM on trivial flat background after gauge fixings.

Choi-JHP 2015 [PRL]

• While coupling DFT to SM, one has to decide the spin group for each fermion:
It is a prediction of DFT that the spin group is twofold: Spin(1, 3)L vs. Spin(3, 1)R .

• No experimental evidence of proton decay lead us to ‘conjecture’ that the quarks and
the leptons may belong to the distinct spin groups, which forbids a class of higher
order terms: e.g. a bi-quark vector and a bi-lepton vector cannot be contracted.

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



• In the above constructions of DFTs, there is something I have not yet covered:

– The doubled coordinates, xA, A = 1, 2, · · · ,D + D, and the associated doubled
derivatives, ∂A, need to be ‘halved’.

– It is done in DFT by imposing an O(D,D) covariant constraint, so-called the
‘section condition’,

∂A∂
A anything = 0 .

– Explicitly, for arbitrary functions, Φ, Φ̂, the section condition means

∂A∂
AΦ=0 , ∂A∂

A
(

ΦΦ̂
)

=0 =⇒ ∂AΦ∂AΦ̂=0 .

– With the O(D,D) metric, JAB =

(
0 1

1 0

)
, and the doubled coordinates,

xA = (x̃µ, xν), ∂A = (∂̃µ, ∂ν), we get

∂A∂
A = 2∂µ∂̃µ .

– The section condition can be then conveniently solved by setting ∂̃µ ≡ 0.
The most general solutions are then generated by its O(D,D) rotations.

# DFT lives on a D-dimensional hyperspace, i.e. section.
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DFT backgrounds : Riemannian IIA/IIB vs. non-Riemannian IIC

• W.r.t. ∂
∂x̃µ
≡ 0, the DFT-vielbeins and the DFT-dilaton can be generically solved and

parametrized by a pair of ordinary vierbeins, eµp, ēµp̄ and a B-field:

VMp ≡ 1√
2

 (e−1)p
µ

(B + e)νp

 , V̄Mp̄ ≡ 1√
2

 (ē−1)p̄
µ

(B + ē)νp̄

 , e−2d ≡
√
|g|e−2φ ,

where the two vierbeins must correspond to the same Riemannian metric,

eµpeνqηpq = −ēµ p̄ ēν q̄ η̄p̄q̄ ≡ gµν .

Jeon-Lee-JHP-Suh 2012
– It follows that (e−1ē)p

p̄ is a Lorentz rotation, and hence,

det(e−1ē) = +1 : type IIA vs. det(e−1ē) = −1 : type IIB

– DFT-metric (“generalized metric” a la Siegel, Hull, Zwiebach) reads then

HMN := PAB − P̄AB = VApVB
p − V̄Ap̄V̄B

p̄ ≡

 g−1 −g−1B

Bg−1 g − Bg−1B

 .

• The above is not the most general parametrization: there exists a class of DFT
backgrounds which do not admit any Riemannian interpretation ⇒ type IIC JHP 2016

– Such non-Riemannian brackgrounds lead to chiral or non-relativistic string theory
a la Gomis-Ooguri. Ko-MelbyThompson-Meyer-JHP 2015
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II. Doubled-yet-gauged coordinates

• Comments on double field theory and diffeomorphisms JHP 1304.5946
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• The section condition can be easily shown to be equivalent to a particular type of
translational invariance, in a self-consistent way:

∂A∂
A ≡ 0 ⇐⇒

[
Φ̂(x + ∆) = Φ̂(x) , ∆A = Φ̃∂AΦ

]
where Φ̂, Φ̃, Φ denote arbitrary functions in DFT, such that ∆A = Φ̃∂AΦ generates the
most general form of a ‘derivative-index-valued’ vector, to satisfy ∆A∂A = 0.

• This equivalence suggests that the doubled coordinates in DFT are actually gauged:
the doubled coordinate space is equipped with an ‘equivalence relation’, JHP 2013

xA ∼ xA + ∆A where ∆A∂A = 0 .

which we call ‘Coordinate Gauge Symmetry’.

# For example, w.r.t. ∂
∂x̃µ
≡ 0, we have explicitly (x̃µ , xν) ∼

(
x̃µ + Φ̃∂µΦ , xν

)
.

• Doubled-yet-gauged coordinates

Each equivalence class, or gauge orbit in RD+D ,
represents a single physical point in RD .

The claim is that, spacetime physics can be
better understood in terms of the

doubled-yet-gauged coordinate system.
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• Diffeomorphisms in doubled-yet-gauged spacetime.

– Diffeomorphisms in doubled-yet-gauged spacetime are generated by a generalized
Lie derivative,

L̂VTM1···Mn := VN∂NTM1···Mn +ωT ∂NVNTM1···Mn +
n∑

i=1

(∂MiVN−∂NVMi )TM1···Mi−1
N

Mi+1···Mn

where ωT denotes the weight. Siegel, c.f. Courant

– In particular, the generalized Lie derivative of the O(D,D) invariant metric
vanishes

L̂VJAB = 0 .

– The commutator is closed by C-bracket,[
L̂U , L̂V

]
= L̂[U,V]C , [U ,V]MC := UN∂NVM − VN∂NUM + 1

2V
N∂MUN − 1

2U
N∂MVN

Hull-Zwiebach

# DFT-diffeomorphisms decompose into undoubled Riemannian diffeomorphisms
and B-field gauge symmetry,

VM = (λµ , ξ
ν) =⇒ δBµν = ∂µλν − ∂νλµ , δxµ = ξµ .
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Problems with the usual infinitesimal one-form, dxM

• In the doubled-yet-gauged spacetime, the usual infinitesimal one-form, dxM , is neither
covariant under DFT-diffeomorphisms,

δxM = VM , δ(dxM ) = dxN∂NVM 6= (∂NVM − ∂MVN )dxN ,

nor invariant under coordinate gauge symmetry,

dxM −→ d
(
xM + Φ̃∂M Φ

)
6= dxM .

=⇒ The naive contraction with the DFT-metric, dxMdxNHMN , is not a scalar, and
thus cannot be used to define a ‘proper length’ in DFT.
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Doubled-yet-gauged coordinates & Gauged infinitesimal one-form, DxM

• These problems can be all cured by gauging the infinitesimal one-form,

DxM := dxM −AM .

– The gauge potential should satisfy the same property as the coordinate gauge
symmetry generator (derivative-index-valued vector, ∆M = Φ̃∂M Φ), such that

AM∂M = 0 , AMAM = 0 .

Essentially, half of the components are trivial, for example w.r.t. ∂
∂x̃µ
≡ 0,

AM = Aλ∂M xλ = (Aµ , 0) , DxM = (dx̃µ − Aµ , dxν) .

• With the appropriate transformations of the gauge potential, the coordinate gauge
symmetry invariance and the DFT-diffeomorphism covariance of DxM can be assured:

δC.G. xM = Φ̃∂M Φ , δC.G.AM = d
(

Φ̃∂M Φ
)
, δC.G. (DxM ) = 0 ;

δxM = VM , δAM = −∂MVNAN + ∂MVNdxN , δ(DxM ) = (∂NVM − ∂MVN )DxN .
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Length in the doubled-yet-gauged spacetime

• The proper length is defined through a path integral,

Length := − ln
[ ∫
DA exp

(
−
∫ √

DxM DxNHMN

)]
.

• For the Riemannian DFT-metric, we have

DxM DxNHMN ≡ dxµdxνgµν + (dx̃µ − Aµ + dxρBρµ) (dx̃ν − Aν + dxσBσν) gµν ,

and hence, after integrating out the gauge potential, Aµ, the above O(D,D) covariant
path integral definition of the length reduces to the conventional one,

Length =⇒
∫ √

dxµdxνgµν .

# Apparently, being x̃µ-independent, it measures the distance between two gauge orbits
rather than two points in RD+D , which is of course a desired feature.

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



Length in the doubled-yet-gauged spacetime

• The proper length is defined through a path integral,

Length := − ln
[ ∫
DA exp

(
−
∫ √

DxM DxNHMN

)]
.

• For the Riemannian DFT-metric, we have

DxM DxNHMN ≡ dxµdxνgµν + (dx̃µ − Aµ + dxρBρµ) (dx̃ν − Aν + dxσBσν) gµν ,

and hence, after integrating out the gauge potential, Aµ, the above O(D,D) covariant
path integral definition of the length reduces to the conventional one,

Length =⇒
∫ √

dxµdxνgµν .

# Apparently, being x̃µ-independent, it measures the distance between two gauge orbits
rather than two points in RD+D , which is of course a desired feature.

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



Length in the doubled-yet-gauged spacetime

• The proper length is defined through a path integral,

Length := − ln
[ ∫
DA exp

(
−
∫ √

DxM DxNHMN

)]
.

• For the Riemannian DFT-metric, we have

DxM DxNHMN ≡ dxµdxνgµν + (dx̃µ − Aµ + dxρBρµ) (dx̃ν − Aν + dxσBσν) gµν ,

and hence, after integrating out the gauge potential, Aµ, the above O(D,D) covariant
path integral definition of the length reduces to the conventional one,

Length =⇒
∫ √

dxµdxνgµν .

# Apparently, being x̃µ-independent, it measures the distance between two gauge orbits
rather than two points in RD+D , which is of course a desired feature.

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



Point particle propagating in the doubled-yet-gauged spacetime

• Point particle action on doubled-yet-gauged spacetime coupled to the NS-NS sector:

Sparticle =

∫
dτ
[

e−1 DτX M DτX NHMN (X)− 1
4 m2e

]
,

Ko-JHP-Suh 2016
where e is an einbein and m is the mass of the particle.

• With Riemannian DFT-metric, after integrating out e and AM , the above action
reduces to the conventional one for a relativistic point particle now coupled to the
string frame metric only:

Sparticle ≡
∫

dτ −m
√
−ẊµẊνgµν .

• This implies that the particle follows the geodesic path defined in the string frame.
• This preferred choice of the frame, i.e. String frame over Einstein frame, is due to the

fundamental symmetries of DFT: O(D,D) symmetry , DFT-diffeomorphisms and the
coordinate gauge symmetry

# Newton mechanics can be also formulated in the doubled-yet-gauged Euclidean space,

LNewton = 1
2 m Dt X M Dt X N δMN − V (X) ,

where M,N = 1, 2, · · · , 6 and the potential, V (X), satisfies the section condition.
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String theory itself is better formulated

on doubled-yet-gauged spacetime:

• Covariant action for a string in doubled-yet-gauged spacetime
Kanghoon Lee, JHP 1307.8377

• Green-Schwarz superstring on doubled-yet-gauged spacetime JHP 1609.04265
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String probes the doubled-yet-gauged spacetime

• The doubled-yet-gagued string action is, with Di X M = ∂i X M −AM
i ,

1
4πα′

∫
d2σ Lstring , Lstring = − 1

2

√
−h hij Di X M Dj X NHMN (X)− εij Di X MAjM .

JHP-Lee 2013 (c.f. Hull 2006)

• The action is fully symmetric for an arbitrary curved DFT-metric, HMN (X),
essentially due to the auxiliary coordinate gauge potential, AM

i ,

– worldsheet diffeomorphisms plus Weyl symmetry
– O(D,D) T-duality
– target spacetime DFT-diffeomorphisms
– the coordinate gauge symmetry : X M ∼ X M + Φ̃∂M Φ
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• With the Riemannian DFT-metric, after integrating out AM , the doubled-yet-gauged
string action reduces to the conventional one,

1
4πα′Lstring ≡ 1

2πα′

[
− 1

2

√
−hhij∂i Xµ∂j Xνgµν(X) + 1

2 ε
ij∂i Xµ∂j XνBµν(X) + 1

2 ε
ij∂i X̃µ∂j Xµ

]
,

with the bonus of the topological term introduced by Giveon-Rocek; Hull.

– The EOM of AM
i implies self-duality in the full doubled spacetime,

HM
NDi X N + 1√

−h
εij Dj X M = 0 ,

which relates Xµ and X̃µ.

– The EOM of X M is identified as the Stringy Geodesic Equation:

1√
−h
∂i
(√
−hHLM Di X M)+ ΓLMN (P̄M

ADi X A)(PN
BDi X B) = 0 .

• On the other hand, upon non-Riemannian backbrounds, the doubled-yet-gauged string
action leads to chiral or non-Relativistic string theory a la Gomis-Ooguri.

Lee-JHP 2013, Ko-Melby-Thompson-Meyer-JHP 2015
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Supersymmetric extension

• The doubled-yet-gagued Green-Schwarz superstring action is

Ssuperstring = 1
4πα′

∫
d2σ Lsuperstring ,

Lsuperstring = − 1
2

√
−hhij ΠM

i ΠN
j HMN − εij Di X M (AjM − iΣjM

)
.

JHP 1609.04265

• Here, with a pair of Majorana-Weyl spinors, θα for Spin(1, 9)L and θ′ᾱ for Spin(9, 1)R ,
we set

ΠM
i := Di X M − iΣM

i , ΣM
i := θ̄γM∂iθ + θ̄′γ̄M∂iθ

′ .

• Symmetries:

– worldsheet diffeomorphisms plus Weyl symmetry
– O(D,D) T-duality
– target spacetime DFT-diffeomorphisms
– coordinate gauge symmetry : X M ∼ X M + Φ̃∂M Φ

– twofold Lorentz symmetry, Spin(1, 9)L × Spin(9, 1)R ⇒ Unification of IIA & IIB
– Maximal 16+16 SUSY & kappa symmetries
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we set

ΠM
i := Di X M − iΣM

i , ΣM
i := θ̄γM∂iθ + θ̄′γ̄M∂iθ

′ .

• Symmetries:

– worldsheet diffeomorphisms plus Weyl symmetry
– O(D,D) T-duality
– target spacetime DFT-diffeomorphisms
– coordinate gauge symmetry : X M ∼ X M + Φ̃∂M Φ

– twofold Lorentz symmetry, Spin(1, 9)L × Spin(9, 1)R ⇒ Unification of IIA & IIB
– Maximal 16+16 SUSY & kappa symmetries

JEONG-HYUCK PARK DOUBLED-YET-GAUGED SPACETIME



III. Solution to the Dark Matter Problem

• The rotation curve of a point particle in stringy gravity

Sungmoon Ko, JHP, Minwoo Suh 1606.09307
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• The master derivative, DA, naturally provides the minimal coupling of the Stadard
Model to DFT, or the massless NS-NS sector.

“Symmetry dictates interaction”, C. N. Yang

i) Each SM fermion couples to the massless NS-NS sector as

e−2d ψ̄γADAψ = e−2d ψ̄γA(∂Aψ + 1
4 ΦApqγ

pqψ)

≡ 1√
2

√
−ge−2φ ψ̄γµ

(
∂µψ + 1

4ωµpqγpqψ + 1
24 Hµpqγpqψ − ∂µφψ

)
≡ 1√

2

√
−g χ̄γµ

(
∂µχ+ 1

4ωµpqγpqχ+ 1
24 Hµpqγpqχ

)
c.f. Coimbra-Strickland-Constable-Waldram

where the field redefinition of the fermion, χ ≡ e−φψ, has been performed which
removes the scalar dilaton completely. This result shows that

– the scalar dilaton is transparent or ‘dark’ to the SM fermions;
– (not only F1 but also) the SM fermions can source the H-flux!

ii) On the other hand, each SM gauge boson couples to the massless NS-NS sector as

e−2d Tr
(

PABP̄CDFACFBD

)
≡ − 1

4
√
−ge−2φ Tr

(
gκλgµνFκµFλν

)
– B-field, or ‘axion’ (dual scalar), is dark to the gauge bosons;
– the Standard Model gauge bosons can source the scalar dilaton, φ.
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Spherical symmetry in DFT

• The coupling of DFT to the Standard Model motivated us to look for spherically
symmetric DFT-vacua .

– Such spherically symmetric solutions should admit three Killing vectors in
doubled-yet-gauged spacetime, V A

a , a = 1, 2, 3,

L̂VaHMN = 0 ⇐⇒ (P∇)M (P̄Va)N − (P̄∇)N (PVa)M = 0

L̂Va

(
e−2d)= 0 ⇐⇒ ∇M V M

a = 0

which form an so(3) algebra in terms of the C-bracket,

[Va,Vb]C =
∑

c
εabcVc .

JHP-Rey-Rim-Sakatani 2015
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• The most general spherically symmetric, asymptotically flat DFT-vacuum solution is

e2φ = γ+

(
r−α
r+β

) b√
a2+b2 + γ−

(
r−α
r+β

) −b√
a2+b2 , B(2) = h cosϑ dt ∧ dϕ ,

ds2 = e2φ

[
−
(

r−α
r+β

) a√
a2+b2 dt2 +

(
r−α
r+β

) −a√
a2+b2 (dr2 + (r − α)(r + β)dΩ2)] ,

where a, b, h (h2 ≤ b2) are three free parameters and

α = a
a+b

√
a2 + b2 , β = b

a+b

√
a2 + b2 , γ± = 1

2

(
1±

√
1− h2/b2

)
.

– This is a rederivation of the solution by Burgess-Myers-Quevedo (1994) who
generated the above solution by applying S-duality to the scalar-gravity solution
of Fischer (1948), Janis-Newman-Winicour (1968). It solves the familiar action,∫

d4x
√
−|g| e−2φ

(
R + 4 |dφ|2 − 1

12 |dB|2
)
.

– Equivalently, it solves the EOMs of D = 4 DFT (i.e. pure Stringy Gravity):

(PABPCD − P̄ABP̄CD)SACBD ≡ 0 , PA
C P̄B

DSCD ≡ 0 .

– Thus, within the DFT framework, it should be identified as the DFT-vacuum
solution in analogy with the Schwarzschild solution in Einstein gravity.

# From GR point of view naked singular, but strictly within DFT non-singular!
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• We define the ‘proper’ radius,

R :=
√

gϑϑ(r) =

[
(r − α)(r + β)

(
γ+

(
r−α
r+β

) −a+b√
a2+b2 + γ−

(
r−α
r+β

) −a−b√
a2+b2

)] 1
2

,

which converts the metric into a canonical form where the angular part is ‘properly’
normalized (hence comparable to observations, e.g. galaxy rotation curves):

ds2 = gttdt2 + gRRdR2 + R2dΩ2 .

• After solving the circular geodesic motion of a point particle (with the string frame
metric), the orbital velocity is given by the proper radius times the angular velocity,

Vorbit =

∣∣∣∣R dϕ
dt

∣∣∣∣ =

[
− 1

2 R
dgtt

dR

] 1
2
.
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Physical observables of the spherically symmetric DFT-vacuum

• There are three physical observables, on account of the three free parameters, a, b, h,

M∞G := lim
R→∞

(RV 2
orbit) = 1

2 (a + b
√

1− h2/b2) ,

Rphoton = R(rphoton) , rphoton = a + 1
2

(
a−b
a+b

)√
a2 + b2 ,

QNoether[∂t ] = 1
4

[
a +

(
a−b
a+b

)√
a2 + b2

]
.

– The first defines the asymptotic or Newtonian mass,M∞, from the Keplerian
fall-off of the orbital velocity which eventually takes place at spatial infinity:

gtt → − 1 + 2M∞G
R as R → ∞ .

# Hence, the rotation curve can be non-Keplerian only over a finite range.
Namely, DFT modifies GR at short-distance.

– The second gives the radius of a photon sphere (if positive).

– The last is the conserved Noether charge for the time translational symmetry,
computable from the DFT-generalization of the Wald prescription in GR.
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Various choices of the parameters, a,b,h, (h2 ≤ b2)

• If we set b = h = 0, the solution reduces to the Schwarzschild metric, with the

Keplerian orbital velocity, Vorbit =
√
M∞G

R .

• If a = h = 0, we reproduce the renowned orbital velocity formula by Hernquist,

Rotation curve of Hernquist Model, Vorbit =
√

M∞R
(R+2M∞G)2 .

Remarkably, the orbital velocity is not monotonic; it assumes its maximum value,
1

2
√

2
, about 35% of the speed of light, at R = 2M∞G.

• Generically for b 6= 0, rotation curves feature a maximum and thus non-Keplerian over
a finite range, while becoming asymptotically Keplerian at infinity.

• More interesting limits are the cases of a/b → 0+ or a = 0, with nontrivial H-flux.
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• By tuning the variable, it is possible to make the maximal velocity arbitrarily small
and to simulate observed galaxy rotation curves:

Rotation curves in DFT (dimensionless, nonexhaustive).

– The curves feature a maximum of the orbital velocity after a fairly rapid rise.
It is roughly about 150 km/s c−1 which is comparable to observations.

– Further, if we let R andM∞ assume the radius and the mass of the visible matter
in the Milky Way, i.e. 15 kpc and 2× 1011M�, we have as an order of magnitude,
R/(M∞G) ' 1.5× 106. This number fits the scale of the horizontal axis.

– For sufficiently small R/(M∞G), the gravitational force becomes repulsive.
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Discussion
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• We have attempted to view DFT as the stringy extension of, and hence potentially an
alternative to, Einstein gravity.

– The fundamental symmetries of DFT unambiguously fix the theory itself as well
as the couplings to the Standard Model and to a point-like particle.

• The circular geodesic motion around the most general, spherically symmetric,
asymptotically flat D = 4 DFT-vacuum reveals that

i) its rotation curve features generically a maximum and thus non-Keplerian over a
finite range (short-distance), while becoming asymptotically
Keplerian/Newtonian at infinity (long-distance) as gtt → − 1 + 2M∞G

R .
ii) Furthermore, the gravitational force can be even repulsive very close to the origin

(far-short-distance).

• DFT is, by nature, Stringy Gravity, which is compatible with GR: it still includes GR.

– Yet, the self-interaction of the massless NS-NS sector can ‘modify’ GR.
– From the conventional GR point of view, the scalar dilaton and the B-field may

well be regarded as ‘dark matter’ (c.f. axion) or ‘dark graviy’.

• Deeper understanding of the three free parameters of the DFT-vacuum, perhaps as the
intrinsic properties of matter or an elementary particle, would be desirable.
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• While the proper radius, R, is the dimensionful physical radius,
the normalized radius, R/(M∞G), is the mathematically natural dimensionless
variable which essentially probes the theoretical nature of the gravitational force.

– Intriguingly, R/(M∞G) is thousand times smaller for the Milky Way compared
to the Earth at each surface (of the visible matter): 1.5× 106 versus 1.4× 109.

– Generically, if the mass density is constant, R/(M∞G) becomes smaller as the
physical radius, R, grows.

Cosmic Uroboros:

– The observations of stars and galaxies far
away, or the dark matter and the dark energy
problems, are revealing the short-distance nature
of gravity!

– The repulsive gravitational force at very short-
distance, R/(M∞G) → 0+, may be responsible
for the acceleration of the Universe.

Thank you.
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Talk based on collaborations with Imtak Jeon (8 papers), Kanghoon Lee (8 papers), Yoonji Suh (3 papers),
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Sung Moon Ko, Charles Melby-Thompson, Rene Meyér, Minwoo Suh, Kang-Sin Choi and Xavier Bekaert.
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1210.5078 PLB
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The End
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