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Abstract In this work we study some extensions and consequences of the fundamen-
tal Brunn-Minkowski inequality, using two different approaches: on one hand we
deal with the so-called Griinbaum inequality, a beautiful consequence of the Brunn-
Minkowski theorem which asserts, roughly speaking, that any hyperplane passing
through the centroid divides any compact convex set into two not too small parts;
on the other hand we study discrete versions of the Brunn-Minkowski inequality for
the lattice point enumerator, this is, the functional counting how many points with
integer coordinates are contained in a bounded set.

1 Introduction

As usual, we write R" to represent the n-dimensional Euclidean space, endowed with
the (Euclidean) inner product (-, -). One of the cornerstones of convex geometry is
the Brunn-Minkowski inequality, which, in its classical form, provides a relation
between the notions of Minkowski addition (of compact sets) and volume:

Theorem 1 Let K, L C R" be non-empty compact sets. Then, for all A € (0, 1),

1/n

vol((1 = )K +AL)"" > (1 = )vol(K)'/™ + avol(L)'/", (1)

with equality for some A € (0, 1), when vol(K)vol(L) > 0, if and only if K and L
are homothetic compact convex sets.

Here vol(-) denotes the n-dimensional Lebesgue measure and + is used for the
Minkowski addition, i.e., A+ B={a+b: a € A, b € B} for any non-empty sets
A, B c R". Moreover, 1A represents the set {1a : a € A}, for A2 > 0.
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Despite its apparent simplicity, the Brunn-Minkowski inequality is one of the
most powerful results in Convex Geometry and beyond: for instance, its equivalent
analytic version (the Prékopa-Leindler inequality, see e.g. [12, Theorem 8.14]) and
the fact that the compactness assumption can be weakened to Lebesgue measur-
ability (see [21]), have allowed it to move to much wider fields. It implies very
important inequalities such as the isoperimetric and Urysohn inequalities (see e.g.
[32, page 382]), and it has been the starting point for new developments like the
L ,-Brunn-Minkowski theory (see e.g. [22, 23]), or a reverse Brunn-Minkowski in-
equality (see e.g. [28]), among many others. It would not be possible to collect here
all references regarding equivalent versions, applications and/or generalizations of
the Brunn-Minkowski inequality. For extensive and beautiful surveys on them we
refer to [2, 7].

The classical Brunn concavity principle (see e.g. [24, Theorem 12.2.1]) is one
of the above mentioned equivalent versions of the Brunn-Minkowski inequality. It
asserts that, for any non-empty compact and convex set K ¢ R" and a hyperplane
H, the cross-sections volume function f : H- — R defined by

f(x) = vol,_1 (K N (x +H))1/(n—1)

is concave; here H* represents the orthogonal complement of H. Moreover, in the
following we will denote by M|H the orthogonal projection of a subset M c R”
onto H.

This result is the key fact in the classical proof of a celebrated theorem by Griinba-
um [ 13]. In order to state it we need further notation: for any compact set K C R” with
non-empty interior, we write g(K) to represent its centroid, i.e., the affine-covariant

point
1

Moreover, given u € s*™1 we write H, := {x e R" : (x,u) = 0} and H, =
{x e R": {x,u) < O} to denote the (vector) hyperplane orthogonal to u and the
corresponding closed halfspace with u as outer normal unit vector. Finally, we will
say that K is a cone in the direction u if K is the convex hull of {x} U (K N (y + Hy)),
for some x,y € R".

Theorem 2 (Griinbaum)

Let K C R" be a compact convex set, with non-empty interior, having its centroid
at the origin. Then

vol(K N H};) >( n )n

vol(K) n+l @

for all u € S"~'. Equality holds, for some u € S"~', if and only if K is a cone in the
direction u.

In the last years Griinbaum’s result has been extended to the case of sections
[6, 29] and projections [34] of compact convex sets, and has been even generalized
to the analytic setting of log-concave functions [27] and p-concave functions for
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p > 0 [29] (we refer the reader to [7] for more information on log-concave and
p-concave functions). Moreover, it has been also extended to the case of compact
sets with a p-concave cross-sections volume function [25], for p > 0.

The original proof of Theorem 2 relies on exploiting the Brunn concavity principle
to compare both the volume of the compact convex set K and of KN H,; with those of
a suitable cone C in the direction u € $"~! and CN H,,, respectively. In this paper we
show, on the one hand, how one can derive Griinbaum’s result as a direct application
of the Brunn-Minkowski theorem (Theorem 1). Furthermore, the characterization of
the equality given in Theorem 2 now will follow from the equality case of Theorem 1.

On the other hand, we devote this work to exploring discrete versions of the
Brunn-Minkowski inequality. Nowadays there is a growing interest for studying
discrete analogues of classical (continuous) results, which can be carried out from
two points of view: either considering finite subsets A, B C Z" of integer points and
measuring with the cardinality | - |, or working with compact sets K, L c R" and
using the so-called lattice point enumerator as measure, this is, G, (K) = |K N Z"|.

Regarding the cardinality, and besides the simple and classical inequality

|A+B| > |A|+|B| -1 3)

for finite A, B C Z", Gardner and Gronchi obtained in [8] a beautiful and powerful
discrete Brunn-Minkowski inequality: they proved that if A, B are finite subsets of
the integer lattice Z", with dimension dim B = n, then
|A+B| = Dl +Dfy |

Here, for any m € N, Dﬁ is a B-initial segment, i.e., the set of the first m points
of Z’>_’0 = {x eZ" :x; > 0} in the so-called “B-order”, which is a particular
order defined on Z ; depending only on the cardinality of B. They also derive some
inequalities that improve previous results obtained by Ruzsa in [30, 31]. For a proper
definition and a deep study of it we refer the reader to [8].

Recently [9, 15, 20], different discrete analogues of the Brunn-Minkowski in-
equality have been obtained for the cardinality, including the case of its classical
form (1): in [15] it is shown that if A, B C Z" are non-empty finite sets, then

I/n > |A|1/n+ |B|1/n,

|A+ B
where A is a suitably defined extension of A not depending on B.
In this paper we will focus on investigating discrete Brunn-Minkowski type in-
equalities for the lattice point enumerator, and will present the more recent advances
in this respect.
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2 Deriving Griinbaum’s inequality as a consequence of the
Brunn-Minkowski theorem

Before showing Theorem 2 we need to introduce some notation. Given a compact
convex set K C R" with non-empty interior, and a vector u € s"=1 we denote by
K,(t)=Kn(tu+H,) and by K, (t) = KN (tu+ H, ), for any ¢ € R. Furthermore,
we observe that if K has centroid at the origin then, using Fubini’s theorem, we get

b
0=/K(x,u)dx=/a vol,—1 (K, (1)) dr, )

where a, b € R are such that K|H;- = [au, bu] (here, as usual, by [x, y] we denote
the segment with endpoints x, y € R™).

Now we are in a position to prove Theorem 2. We will follow here the approach
used in [26] to derive the functional version of Griinbaum’s inequality.

Proof (of Theorem 2) Let u € S"! be fixed and assume that K|H} = [au, bu] for
some a,b € R with a < b. First we observe that since K is a compact convex set
with interior points we have that vol,_; (K, (7)) > 0 for all 7 € (a,b) and so the
condition (4) yields a < 0 < b. In particular we have vol,_; (K, (0)) > 0.

On the one hand, from the convexity of K we get
K, (1=t + A1) D (1 - DK, (1) + 1K, (t2)

for all ¢{,1, € [a,b] and all A € [0, 1]. Then the Brunn-Minkowski inequality (1)

applied to the equation above implies that vol (K, (-))l/ " is a concave function on
[a, b], and further we have vol(K,, (1)) = 0 for all # < a and vol(K,, (1)) = vol(K)
forallr > b.

On the other hand, since voln,l(Ku(')) is continuous in (a, b) (due to the
fact that every concave function is continuous in the interior of its domain and

vol,,_1 (KM ()) 1/(n=1) is s0), from the fundamental theorem of calculus and Fubini’s
theorem we have that

S ol(K; (1) = vohy1 (K, (1) 5)

for all ¢t € (a,b). Thus Vol(Ku‘(~))1/" is concave and differentiable on (a, b), and
then its tangent at ¢ = 0, which is given by the function & : R — R defined by

h(1) = %vol(K; (0)) /" (mt + n)

for
~ vol, (K. (0))

vol(K;; (0)) >0,
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l/n

lies above its graph. Then 0 < vol(K,, (¢)) '" < h(z) for all # € [a, b] and further,

taking into account that / is negative on (—oco, —n/m) and vol(K;, (1)) 1/m is constant
for all t > b, we have

1/n

vol(K; ()" < h(e)  forallr € |2, c0) ©6)

m

Moreover, applying integration by parts (jointly with (5)) and using (4) we get
b b
/ vol(K,, (¢)) dt = b vol(K) — / 1 vol,_1 (Ky (1)) dt = bvol(K). 7

Hence, noticing on one hand that vol(K,, (-)) is strictly increasing on [a, b] and
that vol(K,; (t)) = vol(K) for all > b on the other hand, by (7) and (6) we have

b b
bvol(K) = / vol(K,, (1)) dt = / vol(K,, (1)) dt
a -n/m
1/m b
=/ VOI(KM_(I))dt+/ vol (K, (1)) dt
-n/m 1/m
1/m " 1
< /n/m h(t)" dr + (b - Z) vol(K)
_ vol(K; (0)) (n+ 1)" . (b B l)vouk).
m n m

Therefore -
vol(K N H,,) = vol(K,, (0)) > (m) vol(K),

and so (2) follows. Furthermore, equality holds, for such a fixed vector u € sl if
and only if

vol(K, (1)) = h(1)" (8)
forallf € [a,b], witha =-n/mand b = 1/m.

First, we assume that the above conditions hold (for such u € $"~! fixed). Hence
vol(K;; () /1 i affine on [a, b], which implies, from the equality case of the Brunn-
Minkowski theorem (see Theorem 1), that K, (¢1) and K, (#) are homothetic for
all #,2, € [a, b]. Then, for every ¢ € [a, b], we have K, () = r(t)K, (b) +y; =
r(t)K + y, for some r(¢t) > 0 and some y, € R", from where we further get

Ky (1) = r(t)Ku(b) + y: ©)
for all ¢ € [a, b]. Moreover, for the suitable constants A, B > 0, we have

vol(K)r(1)"" = vol(r(1)K + y;) = vol(K,, (1)) = h(1)" = A(mz +n)"
= B(t-a)",
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where in the last equality we have used that a = —n/m. Thus r(¢t) = C(t — a) for
some C > 0 and since r(b) = 1 we get

r(t) =

t—_(l (10)

b

forallt € [a, b]. Now, for every fixed ¢ € [a, b],if wesetd = (b—t)/(b—a) € [0, 1]
then t = (1 — )b + Aa and so, from the convexity of K, we have

a

b —

t—a t
b-a

b—-a

Ku(0) > ( )Ku(b)+( )Ku(a). an
Since K, (a) = r(a)K,(b) + y4 = ya, taking volumes in (11) and using (9) and (10)
we obtain that

(b + =2 Kt
b-a

B (2:2)1 vol,—1 (K (b)) = Vol (r(1)Ku (b))

= vol,_1 (K. (1)),

—a

vol,—1 (K, (1)) = vol, [([ty —a

and thus (11) holds with equality, for all # € [a, b]. We conclude that K is the convex
hull of K,,(b) and the point K,,(a), that is, K is a cone in the direction u.

Finally, if K is a cone in a direction u € S"~!, then K, (t) = r(t)K,.(b) + y; (cf.
(11)), where r is given by (10) and y, is the point (1 — r(¢))K,(a). So, using the
well-known formula for the volume of a cone, we get

vol(K N H;)  —avol,_1(K,(0)) _( —a )n 12
vol(K)  (b- a)vol,_1 (K (D)) “\b-al
where in the last equality we have used that
n—1 —a \n1
volu_1 (Ku(0)) = (0)"'vol,,_; (Ku(b)) = (m) vol,_1 (Ku(b)).
Now, (4) implies that
b
nb+a
0= [ ¢tr()*'dt=(b-a)——,
[ ta= -0 2220
which is equivalent to nb = —a. Replacing the latter in (12) we conclude that (2)
indeed holds with equality when K is a cone in the direction u#. This finishes the
proof. O

Given a non-negative measurable function with finite positive integral, its centroid
is the point defined by
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g(f) =

1
W o xf(x) dx.

In [26] (see also the references therein) it is shown that one can obtain the functional
analogue of Griinbaum’s inequality (2) by exploiting the functional counterpart of
the Brunn-Minkowski inequality, the so-called Borell-Brascamp-Lieb inequality (see
[3] and [4]). More precisely, given a p-concave function f : R" — R for some
p € [0, oo] with compact support and centroid at the origin, and any hyperplane H,

one has (npe1))
np +1 np+iip
/Hf(x)dXZ(m) /Rnf(x)d% (13)

As usual, if p = 0 or p = oo, the constant appearing in the right-hand side of the
above inequality is the value that is obtained “by continuity”, that is, the limit as
p — 07 or p — oo, respectively. We notice that Griinbaum’s inequality (2) is then
recovered from (13) by taking f the characteristic function of the n-dimensional
compact convex set K with centroid at the origin, which is co-concave.

3 Discrete Brunn-Minkowski type inequalities for the lattice
point enumerator

We note that the known discrete Brunn-Minkowski inequalities for the cardinality
in its classical form involve the Minkowski addition of two finite subsets A, B c Z",
but not its convex combination. Indeed, if one aims to get a discrete analog of (1),
one should observe the following: for any pair of non-empty finite sets A, B ¢ R",
using (3) and the convexity of the function ¢ — ¢" for ¢ > 0, one gets

|(1-)A+2AB| > |(1-2)A|+]4B| -1 =|A| +|B| - 1
= (1 =)|A|+A|B|+ A|A| + (1 = 2)|B| - 1
> (1= )JA]+ AIB| = (1= DIAl"+ 2181")";

this inequality is however meaningless from a geometric point of view, because while
the quantities |A[, | B| on the right-hand side are reduced by the factors 1 — A and A4,
the sets (1 — 2) A and AB on the left-hand side have the same cardinality as A and B,
respectively.

So, one needs to involve a way of “counting points” for which dilations affect, and
a perfect candidate for this is the lattice point enumerator G,, (for compact subsets
of R™). However, and as in the case of the cardinality, one cannot expect to obtain
a discrete Brunn-Minkowski inequality in the classical form for the lattice point
enumerator, namely, the relation

1/n

Gn((1 = DK +AL)"" > (1 = )G, (K)/" + AG, (L)!/"
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is in general not true. In fact, just taking K = {0} and the cube L = [0, m]" with
m € N odd, then it is

o (lesls Y _omtl _m+2
! 2 2

1 1
= =G (K)'/" + -G, (L)"/".
sK+5 5Gn(K)" + 5Gu(L)

So, the question arises what is the “best” way to define a set M, for given compact
sets K, L c R", such that (1 — A)K + AL c M and

Gu(M)'™ > (1= )G, (K)/" + G, (L)'"

holds for all A € (0, 1).
In [20] the authors answered this question by proving that if K,L C R" are
non-empty bounded sets and A € (0, 1), then

n 5 (1= )G (K" + AG, (L)',

Gn((1-D)K+AL+ (-1, 1)")
the inequality being sharp. Furthermore, the cube cannot be reduced in the latter
inequality and it implies the classical Brunn-Minkowski inequality (1) for bounded
convex sets.

The latter inequality was obtained as a direct consequence of a (more gen-
eral) functional discrete inequality: indeed, the authors proved a discrete version of
the Borell-Brascamp-Lieb inequality. Furthermore, they showed that their discrete
Borell-Brascamp-Lieb type inequality implies the classical functional one (under
mild assumptions on the functions there involved), which makes it a powerful result
in the field.

Here we provide a new proof of the above Brunn-Minkowski type inequality for
the lattice point enumerator, using a completely geometrical approach, and we show
that it implies the continuous version in the more general case of Jordan measurable
sets. More precisely, we show the following result.

Theorem 3 Let K, L C R" be non-empty bounded sets and let A € (0, 1). Then

U S (1= )G (K)/" +2G, ()", (14)

Gn((1-)K+AL+ (-1, 1)")
Moreover, it implies the Brunn-Minkowski inequality (1) for bounded Jordan mea-
surable sets.

Before showing this result, we need some additional notation and an auxiliary
property: we will represent by By the n-dimensional Euclidean open unit ball and
we denote by cl M the closure of a set M c R™.

The proof of the theorem relies on the following relations between the volume
and the lattice point enumerator of a non-empty bounded measurable set A ¢ R":

))
))

NI—

G, (A) < vol (A + (—%,
5
vol(4) < Gy (4 + (-4, (15)

=
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The first inequality can be found in [10, (3.3)], whereas the second one is gathered
in [11, p. 877] (see also [1]).

Moreover, if A is further Jordan measurable, it is a well-known fact that, roughly
speaking, the volume and the lattice point enumerator are equivalent when A is large
enough, i.e.,

. Gu(rA)
lim -

r—o0 r

=vol(A) (16)

(see e.g. [12, Formula (3), p.120]). Furthermore, the following property holds:

Lemmal Let A C R" be a non-empty bounded Jordan measurable set and let
M C R" be a non-empty bounded set containing the origin. Then

jim SnCA+M) vol(A). (17)

r—o0 rn

Proof Given m € N, it follows that for any » > 0 large enough one has (1/r)M C
(1/m)Bg and thus

Gn(rA)

A+M A+M
vol(4) = fim SUA)  jiy o GnrA + M) Gnlrd + M)
r—00 r

< limsup

n
r—oo r

i Gn(r(Fm + %BO))’

r—00 rn

< lim
r—o00 ]"n

G”(r(clA+ %BO)) (18)

< lim sup

n
r—oo r

where F,, is some finite subset of ¢l A such that cl A C F},, + (1/m) By (which exists
from the compactness of cl A). Now, since F,,, + (2/m)By is a finite union of open
balls and so it is Jordan measurable, we have, by (16), that

G (r (Fin + %Bo))
lim
r—o0 rh

2 2
= vol(Fm + —Bo) < Vol(clA + —Bo) . (19)
m m

Moreover, since cl A is compact, a standard straightforward computation shows that
= 2
clA = ﬂ clA+=By.
m
m=1

Since the boundary of A has null Lebesgue measure (because A is Jordan measur-
able), the latter identity together with the fact that

= 2 2
vol (ﬂ (clA + ZBO)) = lim vol (clA + ZBO) ,

m=1

which holds because cl A + (2/m) By is a decreasing sequence (see e.g. [5, Proposi-
tion 1.2.5 (b)]), allows us to deduce that

vol(A) = vol(cl A) = lim vol (clA + zB‘n) .
m—oo m
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Therefore, since m was arbitrary in (18) and (19), (17) holds. O

Now we are in a position to prove Theorem 3.

Proof (of Theorem 3) Noticing that M+(—1/2, 1/2)" is open (and thus measurable)
for any non-empty subset M c R", from (1) and (15) we get
n
Gu((1 = DK + AL+ (-1, 1)")"/" > Vol((l “ DK+ AL+ (—%, %) )

1/n

n 1/n n 1/n
> (1—/l)v01(K+(—%,%) ) +/1V01(L+(—%,%) )
> (1= 20)G,(K)"" + AG,,(L)"'/".

In order to conclude the proof, we show that (14) implies (1) when K and L are
non-empty bounded Jordan measurable sets. Then, using (14), (16) and Lemma 1
we get

(1 = )vol(K)'/™ + Avol(L)'/"

1/n I/n
G.(rK . Gu(rL
:(l—ﬂ)(lim (r )) +/l(l1m (r ))
r—o0 rn r—oco rph
. (1 =0G,(rK)Y" + AG,, (rL)'/"
= lim
r—00 r
_ Gu((1=)(rK) + A(rL) + (-1, Hm) "
< lim
r—00 }"
1/n
G,,(r((l—/l)K+/lL))+(—l,1)")
=| lim
r—o0 rn
=vol((1 - )K +aL)"",
as desired. O

Other discrete analogues of the Brunn-Minkowski inequality for the lattice point
enumerator can be found in [14, 19, 20, 33]. We conclude by highlighting the
following nice result obtained by Halikias, Klartag and Slomka in [14]: for non-
empty bounded sets K, L ¢ R" one has

Gn (% + (—1,0]") Gy (% +10, 1)") 2 Gu(K)Gn(L),

which yields the discrete multiplicative Brunn-Minkowski type inequality
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G, (K; Lo 1]”) > /G, (K)Gn(L).

In this line, in [20] it is also shown that

Gy

1/n 1/n
(K+L S G, (K)'/'" + G, (L) 20)

1/n
— [0,1]") > > ;

provided that K, L contain some integer point. More recently, some other discrete
Brunn-Minkowski type inequalities have been considered. We emphasize some ex-
tensions of (14) to the L, setting, both in the case of p > 1 [17] and for p € [0, 1)
[16].
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