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Abstract In this work we study some extensions and consequences of the fundamen-
tal Brunn-Minkowski inequality, using two different approaches: on one hand we
deal with the so-called Grünbaum inequality, a beautiful consequence of the Brunn-
Minkowski theorem which asserts, roughly speaking, that any hyperplane passing
through the centroid divides any compact convex set into two not too small parts;
on the other hand we study discrete versions of the Brunn-Minkowski inequality for
the lattice point enumerator, this is, the functional counting how many points with
integer coordinates are contained in a bounded set.

1 Introduction

As usual, we writeR𝑛 to represent the 𝑛-dimensional Euclidean space, endowed with
the (Euclidean) inner product ⟨·, ·⟩. One of the cornerstones of convex geometry is
the Brunn-Minkowski inequality, which, in its classical form, provides a relation
between the notions of Minkowski addition (of compact sets) and volume:

Theorem 1 Let 𝐾, 𝐿 ⊂ R𝑛 be non-empty compact sets. Then, for all 𝜆 ∈ (0, 1),

vol
(
(1 − 𝜆)𝐾 + 𝜆𝐿

)1/𝑛 ≥ (1 − 𝜆)vol(𝐾)1/𝑛 + 𝜆vol(𝐿)1/𝑛, (1)

with equality for some 𝜆 ∈ (0, 1), when vol(𝐾)vol(𝐿) > 0, if and only if 𝐾 and 𝐿
are homothetic compact convex sets.

Here vol(·) denotes the 𝑛-dimensional Lebesgue measure and + is used for the
Minkowski addition, i.e., 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} for any non-empty sets
𝐴, 𝐵 ⊂ R𝑛. Moreover, 𝜆𝐴 represents the set {𝜆𝑎 : 𝑎 ∈ 𝐴}, for 𝜆 ≥ 0.
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Despite its apparent simplicity, the Brunn-Minkowski inequality is one of the
most powerful results in Convex Geometry and beyond: for instance, its equivalent
analytic version (the Prékopa-Leindler inequality, see e.g. [12, Theorem 8.14]) and
the fact that the compactness assumption can be weakened to Lebesgue measur-
ability (see [21]), have allowed it to move to much wider fields. It implies very
important inequalities such as the isoperimetric and Urysohn inequalities (see e.g.
[32, page 382]), and it has been the starting point for new developments like the
𝐿𝑝-Brunn-Minkowski theory (see e.g. [22, 23]), or a reverse Brunn-Minkowski in-
equality (see e.g. [28]), among many others. It would not be possible to collect here
all references regarding equivalent versions, applications and/or generalizations of
the Brunn-Minkowski inequality. For extensive and beautiful surveys on them we
refer to [2, 7].

The classical Brunn concavity principle (see e.g. [24, Theorem 12.2.1]) is one
of the above mentioned equivalent versions of the Brunn-Minkowski inequality. It
asserts that, for any non-empty compact and convex set 𝐾 ⊂ R𝑛 and a hyperplane
𝐻, the cross-sections volume function 𝑓 : 𝐻⊥ −→ R≥0 defined by

𝑓 (𝑥) = vol𝑛−1
(
𝐾 ∩ (𝑥 + 𝐻)

)1/(𝑛−1)

is concave; here 𝐻⊥ represents the orthogonal complement of 𝐻. Moreover, in the
following we will denote by 𝑀 |𝐻 the orthogonal projection of a subset 𝑀 ⊂ R𝑛
onto 𝐻.

This result is the key fact in the classical proof of a celebrated theorem by Grünba-
um [13]. In order to state it we need further notation: for any compact set𝐾 ⊂ R𝑛 with
non-empty interior, we write g(𝐾) to represent its centroid, i.e., the affine-covariant
point

g(𝐾) :=
1

vol(𝐾)

∫
𝐾

𝑥 d𝑥.

Moreover, given 𝑢 ∈ S𝑛−1, we write 𝐻𝑢 :=
{
𝑥 ∈ R𝑛 : ⟨𝑥, 𝑢⟩ = 0

}
and 𝐻−

𝑢 :={
𝑥 ∈ R𝑛 : ⟨𝑥, 𝑢⟩ ≤ 0

}
to denote the (vector) hyperplane orthogonal to 𝑢 and the

corresponding closed halfspace with 𝑢 as outer normal unit vector. Finally, we will
say that 𝐾 is a cone in the direction 𝑢 if 𝐾 is the convex hull of {𝑥} ∪

(
𝐾 ∩ (𝑦 +𝐻𝑢)

)
,

for some 𝑥, 𝑦 ∈ R𝑛.

Theorem 2 (Grünbaum)
Let 𝐾 ⊂ R𝑛 be a compact convex set, with non-empty interior, having its centroid

at the origin. Then
vol(𝐾 ∩ 𝐻−

𝑢 )
vol(𝐾) ≥

( 𝑛

𝑛 + 1

)𝑛
(2)

for all 𝑢 ∈ S𝑛−1. Equality holds, for some 𝑢 ∈ S𝑛−1, if and only if 𝐾 is a cone in the
direction 𝑢.

In the last years Grünbaum’s result has been extended to the case of sections
[6, 29] and projections [34] of compact convex sets, and has been even generalized
to the analytic setting of log-concave functions [27] and 𝑝-concave functions for
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𝑝 > 0 [29] (we refer the reader to [7] for more information on log-concave and
𝑝-concave functions). Moreover, it has been also extended to the case of compact
sets with a 𝑝-concave cross-sections volume function [25], for 𝑝 ≥ 0.

The original proof of Theorem 2 relies on exploiting the Brunn concavity principle
to compare both the volume of the compact convex set 𝐾 and of 𝐾∩𝐻−

𝑢 with those of
a suitable cone𝐶 in the direction 𝑢 ∈ S𝑛−1 and𝐶∩𝐻−

𝑢 , respectively. In this paper we
show, on the one hand, how one can derive Grünbaum’s result as a direct application
of the Brunn-Minkowski theorem (Theorem 1). Furthermore, the characterization of
the equality given in Theorem 2 now will follow from the equality case of Theorem 1.

On the other hand, we devote this work to exploring discrete versions of the
Brunn-Minkowski inequality. Nowadays there is a growing interest for studying
discrete analogues of classical (continuous) results, which can be carried out from
two points of view: either considering finite subsets 𝐴, 𝐵 ⊂ Z𝑛 of integer points and
measuring with the cardinality | · |, or working with compact sets 𝐾, 𝐿 ⊂ R𝑛 and
using the so-called lattice point enumerator as measure, this is, G𝑛 (𝐾) = |𝐾 ∩ Z𝑛 |.

Regarding the cardinality, and besides the simple and classical inequality

|𝐴 + 𝐵 | ≥ |𝐴| + |𝐵 | − 1 (3)

for finite 𝐴, 𝐵 ⊂ Z𝑛, Gardner and Gronchi obtained in [8] a beautiful and powerful
discrete Brunn-Minkowski inequality: they proved that if 𝐴, 𝐵 are finite subsets of
the integer lattice Z𝑛, with dimension dim 𝐵 = 𝑛, then

|𝐴 + 𝐵 | ≥
��𝐷𝐵|𝐴| + 𝐷𝐵|𝐵 | ��.

Here, for any 𝑚 ∈ N, 𝐷𝐵𝑚 is a 𝐵-initial segment, i.e., the set of the first 𝑚 points
of Z𝑛≥0 =

{
𝑥 ∈ Z𝑛 : 𝑥𝑖 ≥ 0

}
in the so-called “𝐵-order”, which is a particular

order defined on Z𝑛≥0 depending only on the cardinality of 𝐵. They also derive some
inequalities that improve previous results obtained by Ruzsa in [30, 31]. For a proper
definition and a deep study of it we refer the reader to [8].

Recently [9, 15, 20], different discrete analogues of the Brunn-Minkowski in-
equality have been obtained for the cardinality, including the case of its classical
form (1): in [15] it is shown that if 𝐴, 𝐵 ⊂ Z𝑛 are non-empty finite sets, then��𝐴̄ + 𝐵

��1/𝑛 ≥ |𝐴|1/𝑛 + |𝐵 |1/𝑛,

where 𝐴̄ is a suitably defined extension of 𝐴 not depending on 𝐵.
In this paper we will focus on investigating discrete Brunn-Minkowski type in-

equalities for the lattice point enumerator, and will present the more recent advances
in this respect.
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2 Deriving Grünbaum’s inequality as a consequence of the
Brunn-Minkowski theorem

Before showing Theorem 2 we need to introduce some notation. Given a compact
convex set 𝐾 ⊂ R𝑛 with non-empty interior, and a vector 𝑢 ∈ S𝑛−1, we denote by
𝐾𝑢 (𝑡) = 𝐾 ∩ (𝑡𝑢 + 𝐻𝑢) and by 𝐾−

𝑢 (𝑡) = 𝐾 ∩ (𝑡𝑢 + 𝐻−
𝑢 ), for any 𝑡 ∈ R. Furthermore,

we observe that if 𝐾 has centroid at the origin then, using Fubini’s theorem, we get

0 =

∫
𝐾

⟨𝑥, 𝑢⟩ d𝑥 =
∫ 𝑏

𝑎

𝑡vol𝑛−1
(
𝐾𝑢 (𝑡)

)
d𝑡, (4)

where 𝑎, 𝑏 ∈ R are such that 𝐾 |𝐻⊥
𝑢 = [𝑎𝑢, 𝑏𝑢] (here, as usual, by [𝑥, 𝑦] we denote

the segment with endpoints 𝑥, 𝑦 ∈ R𝑛).
Now we are in a position to prove Theorem 2. We will follow here the approach

used in [26] to derive the functional version of Grünbaum’s inequality.

Proof (of Theorem 2) Let 𝑢 ∈ S𝑛−1 be fixed and assume that 𝐾 |𝐻⊥
𝑢 = [𝑎𝑢, 𝑏𝑢] for

some 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏. First we observe that since 𝐾 is a compact convex set
with interior points we have that vol𝑛−1

(
𝐾𝑢 (𝑡)

)
> 0 for all 𝑡 ∈ (𝑎, 𝑏) and so the

condition (4) yields 𝑎 < 0 < 𝑏. In particular we have vol𝑛−1
(
𝐾𝑢 (0)

)
> 0.

On the one hand, from the convexity of 𝐾 we get

𝐾−
𝑢

(
(1 − 𝜆)𝑡1 + 𝜆𝑡2

)
⊃ (1 − 𝜆)𝐾−

𝑢 (𝑡1) + 𝜆𝐾−
𝑢 (𝑡2)

for all 𝑡1, 𝑡2 ∈ [𝑎, 𝑏] and all 𝜆 ∈ [0, 1]. Then the Brunn-Minkowski inequality (1)
applied to the equation above implies that vol

(
𝐾−
𝑢 (·)

)1/𝑛 is a concave function on
[𝑎, 𝑏], and further we have vol

(
𝐾−
𝑢 (𝑡)

)
= 0 for all 𝑡 ≤ 𝑎 and vol

(
𝐾−
𝑢 (𝑡)

)
= vol(𝐾)

for all 𝑡 ≥ 𝑏.
On the other hand, since vol𝑛−1

(
𝐾𝑢 (·)

)
is continuous in (𝑎, 𝑏) (due to the

fact that every concave function is continuous in the interior of its domain and
vol𝑛−1

(
𝐾𝑢 (·)

)1/(𝑛−1) is so), from the fundamental theorem of calculus and Fubini’s
theorem we have that

d
d𝑡

vol
(
𝐾−
𝑢 (𝑡)

)
= vol𝑛−1

(
𝐾𝑢 (𝑡)

)
(5)

for all 𝑡 ∈ (𝑎, 𝑏). Thus vol
(
𝐾−
𝑢 (·)

)1/𝑛 is concave and differentiable on (𝑎, 𝑏), and
then its tangent at 𝑡 = 0, which is given by the function ℎ : R −→ R defined by

ℎ(𝑡) = 1
𝑛

vol
(
𝐾−
𝑢 (0)

)1/𝑛 (𝑚𝑡 + 𝑛)

for

𝑚 =
vol𝑛−1

(
𝐾𝑢 (0)

)
vol

(
𝐾−
𝑢 (0)

) > 0,
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lies above its graph. Then 0 ≤ vol
(
𝐾−
𝑢 (𝑡)

)1/𝑛 ≤ ℎ(𝑡) for all 𝑡 ∈ [𝑎, 𝑏] and further,
taking into account that ℎ is negative on (−∞,−𝑛/𝑚) and vol

(
𝐾−
𝑢 (𝑡)

)1/𝑛 is constant
for all 𝑡 ≥ 𝑏, we have

vol
(
𝐾−
𝑢 (𝑡)

)1/𝑛 ≤ ℎ(𝑡) for all 𝑡 ∈
[
− 𝑛
𝑚
,∞

)
. (6)

Moreover, applying integration by parts (jointly with (5)) and using (4) we get∫ 𝑏

𝑎

vol
(
𝐾−
𝑢 (𝑡)

)
d𝑡 = 𝑏 vol(𝐾) −

∫ 𝑏

𝑎

𝑡 vol𝑛−1
(
𝐾𝑢 (𝑡)

)
d𝑡 = 𝑏 vol(𝐾). (7)

Hence, noticing on one hand that vol
(
𝐾−
𝑢 (·)

)
is strictly increasing on [𝑎, 𝑏] and

that vol
(
𝐾−
𝑢 (𝑡)

)
= vol(𝐾) for all 𝑡 ≥ 𝑏 on the other hand, by (7) and (6) we have

𝑏 vol(𝐾) =
∫ 𝑏

𝑎

vol
(
𝐾−
𝑢 (𝑡)

)
d𝑡 =

∫ 𝑏

−𝑛/𝑚
vol

(
𝐾−
𝑢 (𝑡)

)
d𝑡

=

∫ 1/𝑚

−𝑛/𝑚
vol

(
𝐾−
𝑢 (𝑡)

)
d𝑡 +

∫ 𝑏

1/𝑚
vol

(
𝐾−
𝑢 (𝑡)

)
d𝑡

≤
∫ 1/𝑚

−𝑛/𝑚
ℎ(𝑡)𝑛 d𝑡 +

(
𝑏 − 1

𝑚

)
vol(𝐾)

=
vol

(
𝐾−
𝑢 (0)

)
𝑚

(
𝑛 + 1
𝑛

)𝑛
+

(
𝑏 − 1

𝑚

)
vol(𝐾).

Therefore
vol

(
𝐾 ∩ 𝐻−

𝑢

)
= vol

(
𝐾−
𝑢 (0)

)
≥

( 𝑛

𝑛 + 1

)𝑛
vol(𝐾),

and so (2) follows. Furthermore, equality holds, for such a fixed vector 𝑢 ∈ S𝑛−1, if
and only if

vol
(
𝐾−
𝑢 (𝑡)

)
= ℎ(𝑡)𝑛 (8)

for all 𝑡 ∈ [𝑎, 𝑏], with 𝑎 = −𝑛/𝑚 and 𝑏 = 1/𝑚.
First, we assume that the above conditions hold (for such 𝑢 ∈ S𝑛−1 fixed). Hence

vol
(
𝐾−
𝑢 (·)

)1/𝑛 is affine on [𝑎, 𝑏], which implies, from the equality case of the Brunn-
Minkowski theorem (see Theorem 1), that 𝐾−

𝑢 (𝑡1) and 𝐾−
𝑢 (𝑡2) are homothetic for

all 𝑡1, 𝑡2 ∈ [𝑎, 𝑏]. Then, for every 𝑡 ∈ [𝑎, 𝑏], we have 𝐾−
𝑢 (𝑡) = 𝑟 (𝑡)𝐾−

𝑢 (𝑏) + 𝑦𝑡 =
𝑟 (𝑡)𝐾 + 𝑦𝑡 for some 𝑟 (𝑡) ≥ 0 and some 𝑦𝑡 ∈ R𝑛, from where we further get

𝐾𝑢 (𝑡) = 𝑟 (𝑡)𝐾𝑢 (𝑏) + 𝑦𝑡 (9)

for all 𝑡 ∈ [𝑎, 𝑏]. Moreover, for the suitable constants 𝐴, 𝐵 > 0, we have

vol(𝐾)𝑟 (𝑡)𝑛 = vol
(
𝑟 (𝑡)𝐾 + 𝑦𝑡

)
= vol

(
𝐾−
𝑢 (𝑡)

)
= ℎ(𝑡)𝑛 = 𝐴(𝑚𝑡 + 𝑛)𝑛

= 𝐵(𝑡 − 𝑎)𝑛,
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where in the last equality we have used that 𝑎 = −𝑛/𝑚. Thus 𝑟 (𝑡) = 𝐶 (𝑡 − 𝑎) for
some 𝐶 > 0 and since 𝑟 (𝑏) = 1 we get

𝑟 (𝑡) = 𝑡 − 𝑎
𝑏 − 𝑎 (10)

for all 𝑡 ∈ [𝑎, 𝑏]. Now, for every fixed 𝑡 ∈ [𝑎, 𝑏], if we set 𝜆 = (𝑏−𝑡)/(𝑏−𝑎) ∈ [0, 1]
then 𝑡 = (1 − 𝜆)𝑏 + 𝜆𝑎 and so, from the convexity of 𝐾 , we have

𝐾𝑢 (𝑡) ⊃
( 𝑡 − 𝑎
𝑏 − 𝑎

)
𝐾𝑢 (𝑏) +

(
𝑏 − 𝑡
𝑏 − 𝑎

)
𝐾𝑢 (𝑎). (11)

Since 𝐾𝑢 (𝑎) = 𝑟 (𝑎)𝐾𝑢 (𝑏) + 𝑦𝑎 = 𝑦𝑎, taking volumes in (11) and using (9) and (10)
we obtain that

vol𝑛−1
(
𝐾𝑢 (𝑡)

)
≥ vol𝑛−1

[( 𝑡 − 𝑎
𝑏 − 𝑎

)
𝐾𝑢 (𝑏) +

(
𝑏 − 𝑡
𝑏 − 𝑎

)
𝐾𝑢 (𝑎)

]
=

( 𝑡 − 𝑎
𝑏 − 𝑎

)𝑛−1
vol𝑛−1

(
𝐾𝑢 (𝑏)

)
= vol𝑛−1

(
𝑟 (𝑡)𝐾𝑢 (𝑏)

)
= vol𝑛−1

(
𝐾𝑢 (𝑡)

)
,

and thus (11) holds with equality, for all 𝑡 ∈ [𝑎, 𝑏]. We conclude that 𝐾 is the convex
hull of 𝐾𝑢 (𝑏) and the point 𝐾𝑢 (𝑎), that is, 𝐾 is a cone in the direction 𝑢.

Finally, if 𝐾 is a cone in a direction 𝑢 ∈ S𝑛−1, then 𝐾𝑢 (𝑡) = 𝑟 (𝑡)𝐾𝑢 (𝑏) + 𝑦𝑡 (cf.
(11)), where 𝑟 is given by (10) and 𝑦𝑡 is the point (1 − 𝑟 (𝑡))𝐾𝑢 (𝑎). So, using the
well-known formula for the volume of a cone, we get

vol(𝐾 ∩ 𝐻−
𝑢 )

vol(𝐾) =
−𝑎vol𝑛−1

(
𝐾𝑢 (0)

)
(𝑏 − 𝑎)vol𝑛−1

(
𝐾𝑢 (𝑏)

) =

( −𝑎
𝑏 − 𝑎

)𝑛
, (12)

where in the last equality we have used that

vol𝑛−1
(
𝐾𝑢 (0)

)
= 𝑟 (0)𝑛−1vol𝑛−1

(
𝐾𝑢 (𝑏)

)
=

( −𝑎
𝑏 − 𝑎

)𝑛−1
vol𝑛−1

(
𝐾𝑢 (𝑏)

)
.

Now, (4) implies that

0 =

∫ 𝑏

𝑎

𝑡 𝑟 (𝑡)𝑛−1 d𝑡 = (𝑏 − 𝑎) 𝑛𝑏 + 𝑎
𝑛(𝑛 + 1) ,

which is equivalent to 𝑛𝑏 = −𝑎. Replacing the latter in (12) we conclude that (2)
indeed holds with equality when 𝐾 is a cone in the direction 𝑢. This finishes the
proof. □

Given a non-negative measurable function with finite positive integral, its centroid
is the point defined by
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g( 𝑓 ) :=
1∫

R𝑛
𝑓 (𝑥) d𝑥

∫
R𝑛
𝑥 𝑓 (𝑥) d𝑥.

In [26] (see also the references therein) it is shown that one can obtain the functional
analogue of Grünbaum’s inequality (2) by exploiting the functional counterpart of
the Brunn-Minkowski inequality, the so-called Borell-Brascamp-Lieb inequality (see
[3] and [4]). More precisely, given a 𝑝-concave function 𝑓 : R𝑛 −→ R≥0 for some
𝑝 ∈ [0,∞] with compact support and centroid at the origin, and any hyperplane 𝐻,
one has ∫

𝐻−
𝑓 (𝑥) d𝑥 ≥

(
𝑛𝑝 + 1

(𝑛 + 1)𝑝 + 1

) (𝑛𝑝+1)/𝑝 ∫
R𝑛
𝑓 (𝑥) d𝑥. (13)

As usual, if 𝑝 = 0 or 𝑝 = ∞, the constant appearing in the right-hand side of the
above inequality is the value that is obtained “by continuity”, that is, the limit as
𝑝 → 0+ or 𝑝 → ∞, respectively. We notice that Grünbaum’s inequality (2) is then
recovered from (13) by taking 𝑓 the characteristic function of the 𝑛-dimensional
compact convex set 𝐾 with centroid at the origin, which is ∞-concave.

3 Discrete Brunn-Minkowski type inequalities for the lattice
point enumerator

We note that the known discrete Brunn-Minkowski inequalities for the cardinality
in its classical form involve the Minkowski addition of two finite subsets 𝐴, 𝐵 ⊂ Z𝑛,
but not its convex combination. Indeed, if one aims to get a discrete analog of (1),
one should observe the following: for any pair of non-empty finite sets 𝐴, 𝐵 ⊂ R𝑛,
using (3) and the convexity of the function 𝑡 ↦→ 𝑡𝑛 for 𝑡 ≥ 0, one gets��(1 − 𝜆)𝐴 + 𝜆𝐵

�� ≥ ��(1 − 𝜆)𝐴
�� + |𝜆𝐵| − 1 = |𝐴| + |𝐵 | − 1

= (1 − 𝜆) |𝐴| + 𝜆 |𝐵 | + 𝜆 |𝐴| + (1 − 𝜆) |𝐵 | − 1

≥ (1 − 𝜆) |𝐴| + 𝜆 |𝐵 | ≥
(
(1 − 𝜆) |𝐴|1/𝑛 + 𝜆 |𝐵 |1/𝑛

)𝑛
;

this inequality is however meaningless from a geometric point of view, because while
the quantities |𝐴|, |𝐵 | on the right-hand side are reduced by the factors 1 − 𝜆 and 𝜆,
the sets (1− 𝜆)𝐴 and 𝜆𝐵 on the left-hand side have the same cardinality as 𝐴 and 𝐵,
respectively.

So, one needs to involve a way of “counting points” for which dilations affect, and
a perfect candidate for this is the lattice point enumerator G𝑛 (for compact subsets
of R𝑛). However, and as in the case of the cardinality, one cannot expect to obtain
a discrete Brunn-Minkowski inequality in the classical form for the lattice point
enumerator, namely, the relation

G𝑛
(
(1 − 𝜆)𝐾 + 𝜆𝐿

)1/𝑛 ≥ (1 − 𝜆)G𝑛 (𝐾)1/𝑛 + 𝜆G𝑛 (𝐿)1/𝑛
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is in general not true. In fact, just taking 𝐾 = {0} and the cube 𝐿 = [0, 𝑚]𝑛 with
𝑚 ∈ N odd, then it is

G𝑛
(

1
2
𝐾 + 1

2
𝐿

)1/𝑛
=
𝑚 + 1

2
<
𝑚 + 2

2
=

1
2

G𝑛 (𝐾)1/𝑛 + 1
2

G𝑛 (𝐿)1/𝑛.

So, the question arises what is the “best” way to define a set 𝑀 , for given compact
sets 𝐾, 𝐿 ⊂ R𝑛, such that (1 − 𝜆)𝐾 + 𝜆𝐿 ⊂ 𝑀 and

G𝑛 (𝑀)1/𝑛 ≥ (1 − 𝜆)G𝑛 (𝐾)1/𝑛 + 𝜆G𝑛 (𝐿)1/𝑛

holds for all 𝜆 ∈ (0, 1).
In [20] the authors answered this question by proving that if 𝐾, 𝐿 ⊂ R𝑛 are

non-empty bounded sets and 𝜆 ∈ (0, 1), then

G𝑛
(
(1 − 𝜆)𝐾 + 𝜆𝐿 + (−1, 1)𝑛

)1/𝑛 ≥ (1 − 𝜆)G𝑛 (𝐾)1/𝑛 + 𝜆G𝑛 (𝐿)1/𝑛,

the inequality being sharp. Furthermore, the cube cannot be reduced in the latter
inequality and it implies the classical Brunn-Minkowski inequality (1) for bounded
convex sets.

The latter inequality was obtained as a direct consequence of a (more gen-
eral) functional discrete inequality: indeed, the authors proved a discrete version of
the Borell-Brascamp-Lieb inequality. Furthermore, they showed that their discrete
Borell-Brascamp-Lieb type inequality implies the classical functional one (under
mild assumptions on the functions there involved), which makes it a powerful result
in the field.

Here we provide a new proof of the above Brunn-Minkowski type inequality for
the lattice point enumerator, using a completely geometrical approach, and we show
that it implies the continuous version in the more general case of Jordan measurable
sets. More precisely, we show the following result.

Theorem 3 Let 𝐾, 𝐿 ⊂ R𝑛 be non-empty bounded sets and let 𝜆 ∈ (0, 1). Then

G𝑛
(
(1 − 𝜆)𝐾 + 𝜆𝐿 + (−1, 1)𝑛

)1/𝑛 ≥ (1 − 𝜆)G𝑛 (𝐾)1/𝑛 + 𝜆G𝑛 (𝐿)1/𝑛. (14)

Moreover, it implies the Brunn-Minkowski inequality (1) for bounded Jordan mea-
surable sets.

Before showing this result, we need some additional notation and an auxiliary
property: we will represent by 𝐵0 the 𝑛-dimensional Euclidean open unit ball and
we denote by cl𝑀 the closure of a set 𝑀 ⊂ R𝑛.

The proof of the theorem relies on the following relations between the volume
and the lattice point enumerator of a non-empty bounded measurable set 𝐴 ⊂ R𝑛:

G𝑛 (𝐴) ≤ vol
(
𝐴 +

(
− 1

2 ,
1
2

)𝑛)
,

vol(𝐴) ≤ G𝑛
(
𝐴 +

(
− 1

2 ,
1
2

)𝑛)
.

(15)
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The first inequality can be found in [10, (3.3)], whereas the second one is gathered
in [11, p. 877] (see also [1]).

Moreover, if 𝐴 is further Jordan measurable, it is a well-known fact that, roughly
speaking, the volume and the lattice point enumerator are equivalent when 𝐴 is large
enough, i.e.,

lim
𝑟→∞

G𝑛 (𝑟𝐴)
𝑟𝑛

= vol(𝐴) (16)

(see e.g. [12, Formula (3), p.120]). Furthermore, the following property holds:
Lemma 1 Let 𝐴 ⊂ R𝑛 be a non-empty bounded Jordan measurable set and let
𝑀 ⊂ R𝑛 be a non-empty bounded set containing the origin. Then

lim
𝑟→∞

G𝑛 (𝑟𝐴 + 𝑀)
𝑟𝑛

= vol(𝐴). (17)

Proof Given 𝑚 ∈ N, it follows that for any 𝑟 > 0 large enough one has (1/𝑟)𝑀 ⊂
(1/𝑚)𝐵0 and thus

vol(𝐴)= lim
𝑟→∞

G𝑛 (𝑟𝐴)
𝑟𝑛

≤ lim inf
𝑟→∞

G𝑛 (𝑟𝐴 + 𝑀)
𝑟𝑛

≤ lim sup
𝑟→∞

G𝑛 (𝑟𝐴 + 𝑀)
𝑟𝑛

≤ lim sup
𝑟→∞

G𝑛
(
𝑟
(
cl 𝐴 + 1

𝑚
𝐵0

) )
𝑟𝑛

≤ lim
𝑟→∞

G𝑛
(
𝑟
(
𝐹𝑚 + 2

𝑚
𝐵0

) )
𝑟𝑛

,

(18)

where 𝐹𝑚 is some finite subset of cl 𝐴 such that cl 𝐴 ⊂ 𝐹𝑚 + (1/𝑚)𝐵0 (which exists
from the compactness of cl 𝐴). Now, since 𝐹𝑚 + (2/𝑚)𝐵0 is a finite union of open
balls and so it is Jordan measurable, we have, by (16), that

lim
𝑟→∞

G𝑛
(
𝑟
(
𝐹𝑚 + 2

𝑚
𝐵0

) )
𝑟𝑛

= vol
(
𝐹𝑚 + 2

𝑚
𝐵0

)
≤ vol

(
cl 𝐴 + 2

𝑚
𝐵0

)
. (19)

Moreover, since cl 𝐴 is compact, a standard straightforward computation shows that

cl 𝐴 =

∞⋂
𝑚=1

(
cl 𝐴 + 2

𝑚
𝐵0

)
.

Since the boundary of 𝐴 has null Lebesgue measure (because 𝐴 is Jordan measur-
able), the latter identity together with the fact that

vol

( ∞⋂
𝑚=1

(
cl 𝐴 + 2

𝑚
𝐵0

))
= lim
𝑚→∞

vol
(
cl 𝐴 + 2

𝑚
𝐵0

)
,

which holds because cl 𝐴 + (2/𝑚)𝐵0 is a decreasing sequence (see e.g. [5, Proposi-
tion 1.2.5 (b)]), allows us to deduce that

vol(𝐴) = vol(cl 𝐴) = lim
𝑚→∞

vol
(
cl 𝐴 + 2

𝑚
𝐵𝑛

)
.
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Therefore, since 𝑚 was arbitrary in (18) and (19), (17) holds. □

Now we are in a position to prove Theorem 3.

Proof (of Theorem 3) Noticing that𝑀+(−1/2, 1/2)𝑛 is open (and thus measurable)
for any non-empty subset 𝑀 ⊂ R𝑛, from (1) and (15) we get

G𝑛
(
(1 − 𝜆)𝐾 + 𝜆𝐿 + (−1, 1)𝑛

)1/𝑛 ≥ vol
(
(1 − 𝜆)𝐾 + 𝜆𝐿 +

(
− 1

2 ,
1
2

)𝑛)1/𝑛

= vol
(
(1 − 𝜆)

[
𝐾 +

(
− 1

2 ,
1
2

)𝑛]
+ 𝜆

[
𝐿 +

(
− 1

2 ,
1
2

)𝑛] )1/𝑛

≥ (1 − 𝜆)vol
(
𝐾 +

(
− 1

2 ,
1
2

)𝑛)1/𝑛
+ 𝜆vol

(
𝐿 +

(
− 1

2 ,
1
2

)𝑛)1/𝑛

≥ (1 − 𝜆)G𝑛 (𝐾)1/𝑛 + 𝜆G𝑛 (𝐿)1/𝑛.

In order to conclude the proof, we show that (14) implies (1) when 𝐾 and 𝐿 are
non-empty bounded Jordan measurable sets. Then, using (14), (16) and Lemma 1
we get

(1 − 𝜆)vol(𝐾)1/𝑛 + 𝜆vol(𝐿)1/𝑛

= (1 − 𝜆)
(

lim
𝑟→∞

G𝑛 (𝑟𝐾)
𝑟𝑛

)1/𝑛
+ 𝜆

(
lim
𝑟→∞

G𝑛 (𝑟𝐿)
𝑟𝑛

)1/𝑛

= lim
𝑟→∞

(1 − 𝜆)G𝑛 (𝑟𝐾)1/𝑛 + 𝜆G𝑛 (𝑟𝐿)1/𝑛

𝑟

≤ lim
𝑟→∞

G𝑛
(
(1 − 𝜆) (𝑟𝐾) + 𝜆(𝑟𝐿) + (−1, 1)𝑛

)1/𝑛

𝑟

=
©­­« lim
𝑟→∞

G𝑛
(
𝑟
(
(1 − 𝜆)𝐾 + 𝜆𝐿)

)
+ (−1, 1)𝑛

)
𝑟𝑛

ª®®¬
1/𝑛

= vol
(
(1 − 𝜆)𝐾 + 𝜆𝐿

)1/𝑛
,

as desired. □

Other discrete analogues of the Brunn-Minkowski inequality for the lattice point
enumerator can be found in [14, 19, 20, 33]. We conclude by highlighting the
following nice result obtained by Halikias, Klartag and Slomka in [14]: for non-
empty bounded sets 𝐾, 𝐿 ⊂ R𝑛 one has

G𝑛
(
𝐾 + 𝐿

2
+ (−1, 0]𝑛

)
G𝑛

(
𝐾 + 𝐿

2
+ [0, 1)𝑛

)
≥ G𝑛 (𝐾)G𝑛 (𝐿),

which yields the discrete multiplicative Brunn-Minkowski type inequality
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G𝑛
(
𝐾 + 𝐿

2
+ [0, 1]𝑛

)
≥

√︁
G𝑛 (𝐾)G𝑛 (𝐿).

In this line, in [20] it is also shown that

G𝑛
(
𝐾 + 𝐿

2
+ [0, 1]𝑛

)1/𝑛
≥ G𝑛 (𝐾)1/𝑛 + G𝑛 (𝐿)1/𝑛

2
, (20)

provided that 𝐾, 𝐿 contain some integer point. More recently, some other discrete
Brunn-Minkowski type inequalities have been considered. We emphasize some ex-
tensions of (14) to the 𝐿𝑝 setting, both in the case of 𝑝 ≥ 1 [17] and for 𝑝 ∈ [0, 1)
[16].
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