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Motivated by anomalously large conductivity anisotropy in layered materials, we propose a simple

model of randomly spaced potential barriers (mimicking stacking faults) with isotropic impurities in

between the barriers. We solve this model both numerically and analytically by utilizing an exact solution

for the conductivity of a one-dimensional disordered system. In the absence of bulk disorder, electron

motion in the out-of-plane direction is localized. Bulk disorder destroys one-dimensional localization. As

a result, the out-of-plane conductivity is finite and scales linearly with the scattering rate by bulk

impurities until planar and bulk disorder become comparable. The ac out-of-plane conductivity is of a

manifestly non-Drude form: the real part starts from finite value at zero frequency and has a maximum at

the frequency corresponding to the scattering rate by potential barriers.
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It is usually the case that cleaner metals are better
conductors. In the semiclassical, phase-incoherent regime
of transport, this happens simply because stronger disorder
means a shorter scattering time; in the phase-coherent
regime, stronger disorder enhances Anderson localization
thereby reducing the conductivity even further. It is also
commonly believed that localization can be destroyed only
by inelastic scattering. In this Letter, we propose and
analyze a simple model with two types of disorder which
defies these notions. We show that an increase in one type
of disorder leads to a destruction of the Anderson-localized
state and, consequently, to an increase in the conductivity
in one direction.

The model consists of planar barriers located at random
spacings to each other and isotropic impurities distributed
randomly in between the barriers (see Fig. 1). This model
is motivated by some well-known but hitherto unexplained
peculiarities of electron transport in layered conductors. In
the band picture, the conductivity in a certain crystallo-
graphic direction scales with the inverse effective mass in
this direction. In many cases, however, the observed ratio
of the in-plane and out-of-plane conductivities exceeds the
(inverse) ratio of the effective masses by several orders of
magnitude. A well-known case of such an anomaly is
graphite, where the conductivity ratio exceeds the mass
ratio by 2–3 orders of magnitude [1], but other materials,
e.g.,NaCo2O4 [2], cuprates [3], etc., also provide examples
of this behavior. Stacking faults, e.g., ’’wrong’’ planes
violating Bernal stacking of graphene sheets in graphite,
have been proposed to be responsible for abnormally large
conductivity anisotropy a long time ago [4]; however, little
attention has been paid to localization of electrons by an
array of faults. Another (and related) motivation is local-
ization of carriers by layer thickness variations in super-
lattices [5].

We consider a system of electrons with separable but

otherwise arbitrary spectrum "ð ~kk; kzÞ ¼ "kð ~kkÞ þ "zðkzÞ,
subject to two types of random potential: the one-
dimensional (1D) potential of the barriers, UðzÞ, and the
3D potential of isotropic impurities, Vð ~rÞ. [The assumption

of separability of "ð ~kk; kzÞ is not necessary but helps to

clarify the physical picture of localization.] In the absence
of bulk disorder, the in-planes and out-of-planes degrees of
freedom separate. Accordingly, the electron wave function
is factorized as �ð ~rk; zÞ ¼ ’ð ~rkÞ�ðzÞ, with �ðzÞ satisfying
an effectively 1D Schrödinger equation ½"zð�i@zÞ þ
UðzÞ��ðzÞ ¼ ½E� "kð ~kkÞ��ðzÞ, where ~kk is the (quasi)mo-

mentum along the planes. All states of such a system are
localized in the z direction by infinitesimally weak disor-
der. Therefore, the dc conductivity across the planes,�zz, is
zero. On the other hand, since barriers do not affect the
electron motion along the planes, the in-plane conductivity,
�k, is infinite. Bulk disorder mixes the in-planes and out-
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FIG. 1 (color online). Left: a system of randomly spaced
parallel potential barriers and randomly distributed isotropic
impurities. Right: expected dependences of the in-plane and
out-of-plane conductivities on bulk disorder.
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of-planes degrees of freedom, so that the separation of
variables is no longer possible. Therefore, 1D localization
in the z direction is destroyed, and �zz increases with bulk
disorder, as long as it remains weaker than the planar one.
When two disorders become comparable, �zz reaches a
maximum and decreases upon a further increase in bulk
disorder in accord with the Drude formula. (A further
increase in bulk disorder will lead eventually to a 3D
Anderson localization [6], but we are not studying this
regime here.) At the same time, �k decreases monotoni-

cally with bulk disorder. A sketch of expected dependences
of �zz and �k on 3D disorder is presented in Fig. 1 (right).

In the rest of the Letter, we confirm this simple picture both
numerically, by calculating�zz in the Anderson model, and
analytically, by exploiting the Berezinskii solution of the
1D problem.

Numerically, we study the Anderson model with
nearest-neighbor hopping (set to unity to fix the energy
scale) for a cubic lattice (of unit spacing)

H ¼ �X
i;j

ayj ai þ
X
i

�ia
y
i ai: (1)

Here, i ¼ ðix; iy; izÞ and �i ¼ �i þ �iz is the on-site en-

ergy. The first term,�i, is the standard (bulk) disorder term
which is chosen independently for each site in the interval
(�WB=2, WB=2) with uniform probability. The second
term, �iz , describing planar disorder, is chosen as�W with

probability p and as W with probability 1� p. For all
results reported in this Letter, p ¼ 1=2. The simulations
are done at the energy equal to 0.1, to avoid the center of
the band. We employ the recursive Green’s function tech-
nique [7] with periodic boundary conditions in the direc-
tions transverse to the z axis. The out-of-plane conductance
Gzz is equal to 2e2T=h, where T is the transmission coef-
ficient between two wide leads. The simulations were
performed for cubic samples of sizes L up to 35 lattice
spacings. The bandwidths of planar disorder W were
chosen as 1, 1.5, 2, 2.5, and 3, which correspond to local-
ization lengths between roughly 2 and 15 lattice spacings,
in the absence of bulk disorder. The bandwidth of bulk
disorderWB ranged in between 0 and 18. We have averaged
lnGzz for 103 samples for each set of parameters [8].
Crystalline anisotropy can be readily accounted for; how-
ever, the conductance is anisotropic due to anisotropy of
disorder even on a cubic lattice.

Figure 2 shows ~Gzz � expfhlnGzzig as a function of bulk
disorder for several values of planar disorder. As expected,

an increase in bulk disorder leads first to an increase in ~Gzz

followed by a subsequent decrease. The position of the
peak depends on planar disorder but is almost independent
of L. We checked that the conductance scales linearly with
L for most of the range of parameters represented in Fig. 2,
so that we are in the diffusive regime. Specifically, the
diffusive regime begins when the conductance becomes
larger than 2e2=h and continues up to the 3D Anderson
transition (not shown in Fig. 2).

Figure 3 shows the collapse of the data for the conduc-

tivity, �zz ¼ ~Gzz=L, on a double-logarithmic plot. Three
sets of curves corresponds to three values of planar disor-
der: W ¼ 1:5 (upper set), W ¼ 2 (middle set), and W ¼
2:5 (lower set). Within each set, the conductivity was
computed for different values of L, as indicated in the
legend. The straight line has a slope equal to two. This
scaling is confirmed by the analytic solution of the model,
described below.
To solve the problem analytically, we adopt the delta-

correlated forms for both types of disorder hUðzÞUð0Þi ¼
�z�ðzÞ and hVð ~rÞVð0Þi ¼ ��ð~rÞ, and assume that bulk

disorder is weaker than the planar one, i.e., 1=� �
2	
3ðEFÞ� � 1=�z ¼ 2	
1ðE; ~kkÞ�z, while planar disor-

der is weak in the sense that EF�z � 1. Here, 
3 is the 3D
density of states, and 
1 is the 1D density of states at fixed

value of ~kk per one spin orientation. In the absence of bulk
disorder, our problem reduces to the 1D case with the

FIG. 2 (color online). Out-of-plane conductance versus the
bandwidth of bulk disorder WB for a range of values of planar
disorder W, as shown in the figure, and L ¼ 30.

FIG. 3 (color online). Out-of-plane conductivity versus the
bandwidth of bulk disorder WB on a double-logarithmic scale
for a range of system sizes, as shown in the figure, and three
values of planar disorder: W ¼ 1:5 (upper set), W ¼ 2 (middle
set), and W ¼ 2:5 (lower set).
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velocity vz ¼ j@"ð ~kk; kzÞ=@kzjkz¼kzFð ~kkÞ, where kzFð ~kkÞ is a
positive root of the equation "ð ~kk; kzÞ ¼ EF, with the scat-

tering time �z being functions of ~kk. The result for the ac

conductivity of a strictly 1D disordered system, surmised
first by Mott [9] and derived rigorously by Berezinskii
[10], reads

�1Dð!Þ ¼ 32e2vz�z
	

½�i�ð3Þ!�z þ 2�2z!
2ln2ð!�zÞ�; (2)

for 0<!�z � 1. (The numerical coefficient in the imagi-
nary part was corrected in Refs. [11,12].) The out-of-
plane conductivity of a 3D sample with V ¼ 0 is ob-

tained from Eq. (2) by summing over ~kk: �zzð!Þ ¼R
d2kk�1Dð!Þ=ð2	Þ2. As expected, �zzð0Þ ¼ 0.
In the presence of both types of disorder, �zz is given by

the Kubo formula

�zzð!Þ ¼ e2

2	

1

A3

X
~kk; ~k

0
k

Z
dz0½hvzGRþð ~kk; z; ~k0jj; z0Þ

� v0
zGA�ð ~k0k; z0; ~kk; zÞip�b; (3)

where GRðAÞ
� ¼ GRðAÞð ~kk; z; ~k0k; z0;EF �!=2Þ is an exact

retarded (advanced) electron Green’s function in the mixed
~kk � z representation for a given disorder realization,A is

the sample area in the lateral direction, and h. . .ib;p de-

notes averaging over bulk and planar disorders, re-
spectively. The diagram for �zz is shown in Fig. 4 on the

left. To leading order in �, the conductivity �ð1Þ
zz aver-

aged over bulk disorder is given by the sum of the two
diagrams in the first row of Fig. 4, where thick solid
lines denote Green’s functions in the absence of bulk

disorder, GRðAÞ
p ðz; z0; ~kk;EÞ, and zigzags denote the cor-

relation function of bulk disorder. There are no vertex
corrections for the case of delta-correlated bulk disorder.
The first (second) diagram in the first row of Fig. 4 is
obtained by replacing the exact Green’s function by

�
R
z1; ~pk G

RðAÞ
p ðz; z1; ~kkÞGRðAÞ

p ðz1; z1; ~pkÞGRðAÞ
p ðz1; z0; ~kkÞ.

Subsequent averaging over planar disorder is simplified

dramatically by noticing that the effective energies E�
"kð ~kkÞ of the Green’s functions depend on a particular

value of ~kk. For short-range bulk disorder, the momentum

~pk of the Green’s function below the zigzag line differs

considerably from the momentum ~kk in the rest of the

diagram. This means that the typical difference of corre-
sponding energies is of order EF, i.e., much greater than
1=�z. In this situation, one can safely neglect correlations
between the Green’s functions with different momenta and
average Gpðz1; z1; ~pk; EÞ over planar disorder indepen-

dently from the rest of the diagram. (The contribution of
the region where pk � kk, and therefore this procedure

does not work, is small and can be neglected.) As a result,
we arrive at the diagrams in the second row of Fig. 4, where
dashed lines denote Green’s functions averaged over planar
disorder. For weak planar disorder (EF�z � 1), these

Green’s function are hGR;A
p ðz; z; ~kk;EÞip ¼ R

dkz½E�
"zðkzÞ � "kð ~kkÞ � i=2�z��1=2	 and the corresponding

self-energy insertion reduces to �RðAÞðz; z0; ~kk;EÞ ¼
	ði=2�Þ�ðz� z0Þ. Expanding GR;A

p over the basis of exact
eigenstates of the 1D problem, we reduce the convolution
of two Green’s functions, sharing the point z1, toR
z1
GR;A

p ðz; z1; ~kk;EÞGR;A
p ðz1; z0; ~kk;EÞ ¼ � @

@EG
R;A
p ðz; z0; ~kk;

EÞ. Consequently, �ð1Þ
zz ð!Þ is obtained from the exact 1D

result via

�ð1Þ
zz ð!Þ ¼ i

�

Z d2kk
ð2	Þ2

@�1Dð!Þ
@!

: (4)

To obtain the dc conductivity, one needs to differentiate

only the imaginary part of Eq. (2). This gives �ð1Þ
zz ð0Þ ¼

2e2
3ðEFÞDzz, where

Dzz ¼ 16�ð3Þ hv
4
zð ~kkÞik
v4
z;max

l2z;max

�
: (5)

Here, we introduced lz;max and vz;max as the maximum

values of lzð ~kkÞ � vz�z and vzð ~kkÞ, attained for ~kk ¼ 0,

and hfð ~kkÞik ¼ ½4	2
3ðEFÞ��1
R
d2kk
1ðEF; ~kkÞfð ~kjjÞ. The

diffusion coefficient Dzz is proportional to the ratio of the
square of the localization length in the 1D system to the
bulk scattering time. Numerically, we have found that
�zzð0Þ scales as the square of the bulk disorder bandwidth.
This is confirmed by our analytic result since �ð1Þ

zz ð0Þ /
1=� / W2

B in the Born approximation.
Equation (5) allows for a simple physical interpretation.

Bulk scattering weakly couples 1D channels of localized

electrons with different ~kk. Each scattering event results in

a random displacement of order lz in the z direction, which
leads to diffusion with the coefficient Dzz 
 l2z=�. Notice
that bulk disorder acts very similarly to the electron-
phonon (e-ph) interaction in a strictly 1D system, where
�1Dð0Þ / 1=�e-ph [11]. The difference between the two
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FIG. 4 (color online). Diagrams for the out-of-plane conduc-
tivity to leading order in bulk disorder. Thin lines represent exact
Green’s functions in the presence of both types of disorder; thick
solid lines, Green’s functions in the presence of planar disorder
only; dashed lines, Green’s functions averaged over planar
disorder; zigzag, correlator of bulk disorder; solid and dashed
brackets, averaging over bulk and planar disorder, respectively.
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cases is that �1Dð0Þ scales with 1=�e-ph only at tempera-

tures higher than the single-level spacing within the local-
ization length, i.e, for T�z � 1, while at lower
temperatures �1D is of the hopping form. The condition
T�z � 1 allows one to neglect correlations between the
Green’s functions in the self-energy insertions and in the
rest of the diagram. In our case, these correlations can be
always neglected for short-range bulk disorder; i.e., in
contrast with phonon-activated transport, there is no ‘‘hop-
ping’’ regime for disorder-activated transport.

Coming back to the issue of anomalously large conduc-
tivity anisotropy, it is easy to show that the in-plane con-
ductivity is given by the usual Drude formula
�� ¼ 2e2
3ðEFÞhv�vik�. The conductivity ratio can

be then estimated as �k=�zz 
 ðhv2
kik=hv2

zikÞð�=�z;maxÞ2.
As an example, we consider the case of graphite with
�k=�zz ¼ 104 at low temperatures. A realistic band struc-

ture model of graphite [1] gives hv2
ki=hv2

zi 
 140; thus

�z=�
 0:12. Taking � ¼ 4� 10�12 s from Ref. [13] and

estimating hv2
zi1=2 
 2� 106 cm=s, we obtain for the

mean free path due to planar disorder (stalking faults) lz 

120 �A. This means that stalking faults are separated by
about a hundred perfect planes, which is quite a realistic
assumption.

Summing up higher-order diagrams with self-energy
insertions due to bulk disorder amounts to replacing the

exact Green’s functions in Eq. (3) by GRðAÞðz; z0; ~kk;E�
!=2� i

2�Þ, which can be viewed as functions of a complex

frequency. One can verify that all intermediate steps in
Refs. [10,12] are valid for complex ! as well. Therefore,
the general result for the conductivity of our model is
obtained from the Berezinskii’s solution as

�zzð!Þ ¼
Z d2kk

ð2	Þ2 �
1D

�
!þ i

�

�
: (6)

To lowest order in �z=�, Eq. (6) reduces back to Eq. (4).
Within the logarithmic accuracy, we obtain

Re�zzð!Þ ¼ 32e2
3

�
l2z
�

�
�ð3Þ þ �z

2�
ð!2�2 � 1ÞL

��
k
;

Im�zzð!Þ ¼ �32e2
3!�

�
l2z
�

�
�ð3Þ � �z

�
L
��

k
;

(7)

where L � ln2ð!2�2z þ �2z=�
2Þ. These formulas are valid

for an arbitrary value of !� but only for !�z � 1 and
�z=� � 1. From Eq. (7), we see that Re�zzð!Þ is almost

constant for ! � !cr � 1=ð�z;max�Þ1=2 and increases with

! in a Mott way, as !2ln2!, for ! � !cr. At higher
frequencies, ! � 1=�z, �zzð!Þ can be found perturba-
tively in 1=�z: the leading order result is simply a Drude
formula �zzð!Þ / 1=!2�z � i=!. Therefore, both
Re�zzð!Þ and �Im�zzð!Þ have maxima at !
 1=�z.
The prediction of a non-Drude ! dependence of the con-
ductivity is amenable to a direct experimental verification.

Finally, we notice that the predictions of our model are
equally well applicable to a 2D case, e.g., for line barriers
crossing the plane. Such a system can be realized in a 2D
electron gas with an array of randomly spaced stripelike
gates.
In conclusion, we have shown that a system with two

types of disorder—randomly spaced planar barriers and
bulk impurities—exhibits quite unusual transport proper-
ties. In the absence of bulk disorder, it behaves as a 1D
insulator in the out-of-plane direction and as an ideal metal
in the in-plane direction. Bulk disorder renders both con-
ductivities finite; however,�zz increases with bulk disorder
until two disorders become comparable. For weak bulk
disorder, the ratio of the conductivities may exceed the
ratio of the effective masses by orders of magnitude. The ac
out-of-plane conductivity has a manifestly non-Drude fre-
quency dependence with a maximum at intermediate
frequencies.
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A. Schofield, S. Tongay, and I. Yurkevich for stimulating
discussions. D. L.M. acknowledges the financial support
from RTRATriangle de la Physique and hospitality of the
Laboratoire de Physique des Solides, Université Paris-Sud.
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