
Universal Distribution Functions in Two-Dimensional Localized Systems

A. M. Somoza, M. Ortuño, and J. Prior
Departamento de Fı́sica-CIOyN, Universidad de Murcia, Murcia 30.071, Spain

(Received 1 March 2007; published 11 September 2007)

We find the conductance distribution function of the two-dimensional Anderson model in the strongly
localized limit. The fluctuations of lng grow with lateral size as L1=3 and follow a universal distribution
that depends on the type of leads. For narrow leads, it is the Tracy-Widom distribution, which appears in
the problem of the largest eigenvalue of random matrices from the Gaussian unitary ensemble and in many
other problems like the longest increasing subsequence of a permutation, directed polymers, or poly-
nuclear growth. We also show that for wide leads the conductance follows a related, but different,
distribution.
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The distribution function of the conductance g of dis-
ordered systems is very well understood in the metallic
regime, but poorly understood in the localized phase.
Experimental measurements of coherent transport at low
temperatures are difficult in the strongly localized regime.
However, knowledge of the zero temperature conductance
distribution is of interest to better understand variable
range hopping conductance, the metal-insulator transition
in three dimensions or the crossover between the diffusive
and the localized regime in two dimensions.

In one-dimensional systems, it has been shown that all
the cumulants of lng scale linearly with system size [1].
Thus, the distribution function of lng approaches a
Gaussian form for asymptotically long systems and is fully
characterized by two parameters, the mean hlngi and the
variance �2 � hln2gi � hlngi2. Both parameters are re-
lated to each other, supporting the extension of the single
parameter scaling (SPS) hypothesis [2] to the distribution
function of the conductance [3].

In higher dimensions, it is far more difficult to do
analytical calculations and numerical simulations have
been limited until recently to small sample sizes. In the
strong localization regime, the general belief was that lng
should be normally distributed and the variance would
depend linearly on size both in two-dimensional (2D)
and three-dimensional (3D) systems [4–6]. In contrast,
we found numerically that the variance behaves as [7,8]

 �2 � Ah� lngi� � B; (1)

with the exponent � equal to 2=3 in 2D and 2=5 in 3D
systems. Also, we showed that the skewness of the distri-
bution of lng does not tend to zero in the highly localized
regime [9], demonstrating that the distribution is not
Gaussian (see also Ref. [10]). The constants A and B in
Eq. (1) are model or geometry dependent. The precise
knowledge of the dependence of �2 with h� lngi made
much easier the numerical verification of the SPS hypothe-
sis [7].

Nguyen et al. (NSS) [11] proposed a simplification to
the Anderson model, convenient for numerical purposes.
Their model accounts for quantum interference effects in
the localized regime, where the tunneling amplitude be-
tween two sites is calculated considering only the shortest
or forward-scattering paths. Medina and Kardar [12]
studied in detail the NSS model and computed numerically
the distribution of the logarithm of the tunneling probabil-
ity and found that its variance increases with distance as
r2=3 for 2D systems. They also established an analogy of
the NSS model with directed polymers, where this result is
well-known. The applicability of their results to the con-
ductance of general disordered systems with finite local-
ization lengths was not clear. In the last decade, there have
been important advances in our understanding of the dis-
tribution function of directed polymers and related prob-
lems. For a specific directed polymer model, the dis-
tribution function of the lowest energy state was obtained
exactly [13] in terms of the Tracy-Widom (TW) distribu-
tion, which was originally obtained as the distribution of
the largest eigenvalue of random matrices belonging to the
Gaussian unitary ensemble [14]. The TW distribution also
appears in the fluctuations of the length of the longest
common subsequence in a random permutation [15] and
in the polynuclear growth model [16], which is closely
related to the problem of the height function in the Kardar-
Parisi-Zhang equation [17].

In this Letter we study the distribution function of lng
for disordered 2D systems. First, we prove through a map-
ping to the model solved by Johansson [13] that for a
specific type of disorder it is given by the TW distribution.
Second, we show numerically that the same distribution
also applies to the Anderson model in the strongly local-
ized regime. Third, we demonstrate that boundary condi-
tions change the distribution function.

We focus on the Anderson model on a square sample of
finite size L� L described by the Hamiltonian

 H �
X
i

�ia
y
i ai � t

X
i;j

ayj ai � H:c:; (2)
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where the operator ayi (ai) creates (destroys) an electron at
site i of an square lattice and �i is the energy of this site
chosen at random from a given distribution. The double
sum runs over nearest neighbors. The hopping matrix
element t is taken equal to 1, which set the energy scale,
and the lattice constant equal to 1, setting the length scale.
The unit of conductance is 2e2=h.

One can write the matrix elements of the Green function
between two sites a and b in terms of the locator expansion

 hajGjbi �
X
�

Y
i2�

1

E� �i
; (3)

where the sum runs over all possible paths connecting the
two sites a and b. In general the convergence of this series
is very problematic, but in the strongly localized regime for
distances much larger than the localization length one
expects that the previous sum is dominated by the
forward-scattering paths. Back-scattering paths should be
irrelevant in the renormalization-group sense. Based on
this idea, the NSS model only considers directed paths
between two points in opposite corners of a square lattice
and a site disorder energy with only two possible values,W
and �W, trying to maximize interference effects.

The calculation of the quantum amplitude between two
points in the approximation of forward-scattering paths is
formally similar to the calculation of the partition function
of directed polymers in a random potential

 Z �
X
�

exp
�
��

X
i2�

hi

�
; (4)

where � � 1=kT, hi is a random site energy, and � runs
over all possible configurations of the directed polymer.
Equations (3) and (4) are equivalent provided that we can
identify ��hi with ln�E� �i�. If we require the disorder
energies hi to be real then all the values of E� �i have to
be positive. In this case, we can map the distribution of lng
in our system to the distribution of the free energy in
directed polymers.

Johansson [13] was able to obtain exactly the asymptotic
distribution function of the ground state energy H for a
specific type of disordered polymer. In his model the
random site energies take integer values with probabilities
Pr�hi � k� � �1� p�pk. He showed that the ground state
energy for polymers running between the origin and the
point (x, y) is given by
 

H�x; y� !
2
���������
pxy
p

� p�x� y�

1� p

�
�pxy�1=6

1� p

�
�1� p� �

�����
p
xy

s
�x� y�

�
2=3
�2 (5)

where �2 is a random variable with the TW distribution,
corresponding to the distribution of the largest eigenvalue
of a complex Hermitian random matrix [14]. �2 verifies
Pr��2 < x� � F2�x� � e�g�x� where g00�x� � u2�x�,

g�x� ! 0 as x! 1, and u�x� is the global positive solution
of the Painlevé II equation u00 � 2u3 � xu with u�x� !
Ai�x� as x! 1, Ai�x� being the Airy function.

The mapping of Johansson’s model to the localization
problem corresponds to a distribution of disorder energies
with values �i � � � e��hi with probability Pr�hi � k� �
�1� p�pk for k � 0; 1; 2; . . . , in the limit �! 1. This is a
very specific model, but we expect that their results apply
in a much more general context, as already suggested by
Johansson [13]. In this model, the conductivity is likely to
be dominated by the most favorable forward-scattering
path, and one can question the applicability of the results
to a uniform disorder or even more to the NSS model,
which cannot be mapped to the directed polymers due to
alternating signs of the disorder energies. We note that in
the NSS model all trajectories have the same amplitude and
interference effects between different paths is maximized.
However, our previous results for both the NSS and the
Anderson models showed that the cumulants of lng are
given by

 �j � AjLj=3 � Bj (6)

for j > 1 [8]. The mean, hlngi, also verifies this equation,
but with an extra term 2L=�, where � is the localization
length. The exponents in this equation are the same as
those implied by the distribution in Eq. (5). It is then
interesting to check if the distribution function given by
Eq. (5) also applies to the Anderson and the NSS models.

We have obtained numerically the distribution function
of lng for the Anderson and the NSS models in 2D samples.
For the Anderson model we have calculated the conduc-
tance through Landauer’s formula in terms of the trans-
mission between perfect leads. This is obtained from the
Green function, which can be calculated propagating layer
by layer with the recursive Green function method [18].
We have considered ranges of disorder W equal to 13, 15,
and 25, which correspond to localization lengths of 1.12,
2.4, and 3.2, respectively, and lateral dimensions up to L �
200. The number of different realizations for a given dis-
order and size is larger than 6� 105 in all cases. We have
considered two types of leads connected to our L� L
disordered region: (i) narrow one-dimensional leads at-
tached at the center of opposite edges and (ii) wide leads
with the same section as the samples. In both cases, they
are represented by the same Hamiltonian as the system,
Eq. (2), but without diagonal disorder. We use cyclic
periodic boundary conditions in the direction perpendicu-
lar to the leads.

In Fig. 1 we plot histograms of lng for the Anderson
model as a function of � � �lng� A�=B, where A and B
are chosen in order to have the same mean and variance as
the theoretical distributions. The data are for narrow (solid
symbols) and wide leads (empty symbols) and several sizes
and ranges of the disorder: W � 25 and L � 100 (circles),
W � 15 and L � 150 (squares), andW � 13 and L � 200
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(triangles). Let us concentrate first in the case of narrow
leads, since it is similar to the directed polymer model,
represented by solid symbols in Fig. 1. The solid line on the
left of this figure corresponds to the TW distribution,
whose accumulated distribution is F2. We see a perfect
agreement between our numerical results and the TW
distribution for more than 4 orders of magnitude. A similar
agreement is found for the NSS model (not shown).
Considering the size dependence of the mean and the
variance of lng and the excellent agreement between our
data and the TW distribution, we conclude that in the
strongly localized regime

 lng � �
2L
�
� �

�
L
�

�
1=3
�2; (7)

where � is a constant and �2 a random variable with the
TW distribution.

In the SPS regime � is a constant, independent of the
disorder, the system size or the Fermi energy. We found,
from present results and previous calculations on the be-
havior of the variance, that it is approximately equal to 3.4
for the Anderson model with narrow leads. Equation (7)
must be also valid outside the SPS regime (when the
localization length is very small or when the Fermi energy
lies in the band tails), but with a nonuniversal value of �.
The data set in Fig. 1 for W � 25 correspond to a local-
ization length � � 0:97, of the order of the lattice spacing,
and fit the TW distribution very well. The value of � is 3.5
in this case.

The TW distribution has a mean h�i � �1:77109.
According to Eq. (7), this implies a contribution to hlngi
proportional to L1=3, already observed by us [9] in the
Anderson model with narrow leads. However, we did not
find any such contribution for wide leads, which constitutes

a strong indication that the conductance distribution may
depend on the leads, even in the strongly localized regime.
We can expect a situation similar to polynuclear growth
models [16], where the height distribution was found to
depend on the initial conditions. Our problem with narrow
leads is directly related to the droplet model in Ref. [16],
which starts from an initial preferential point. With wide
leads we have translational invariance and all the initial
(and final) points are equivalent, a problem similar to sta-
tionary growth. In this case, the height fluctuations are
described by the accumulated distribution [16]

 F0�x� � �1� �x� 2f00 � 2g00�g0�e��g�2f�; (8)

where f0�x� � �u�x�, with f�x� ! 0 for x! 1, and g�x�
and u�x� defined as above. This new distribution has mean
equal to zero, as required in our case in order not to have
L1=3 contributions to hlngi. In Fig. 1 we show the histo-
grams of lng for the Anderson model with wide leads
(empty symbols) for several disorders and sizes. The full
line on the right of the figure corresponds to the derivative
of F0�x�. The agreement between the numerical data and
the theoretical distribution is again excellent, showing that
lng satisfies in this case

 lng � �
2L
�
� �

�
L
�

�
1=3
�0; (9)

where � is a constant and �0 a new random variable given
by Pr��< x� � F0�x�. In the SPS regime � 	 2:2.
Equations (7) and (9) constitute our main result.

Our results fully suggest that the Anderson and related
directed path models, in 2D in the strongly localized
regime, will verify an equation of the form (7) or (9) for
any range of parameters, type of disorder, geometry or
boundary conditions. The distribution of the random vari-
able depends on the boundary conditions. Nevertheless,
there are some results which are very robust, like the
exponent of 1=3 in Eq. (7) and (9) characterizing the size
of fluctuations. Its value determines the behavior of the
cumulants, Eq. (6), and, as we will see, of the tails of the
distribution. From Eq. (6), we expect hgni to be a function
of the variable n1=3L, beside the contribution of the mean
proportional to L, in the large L limit

 lnhgni 	 �
2Ln
�
�
X1
j�1

njAjLj=3

j!
: (10)

Since the maximum of hgni is reached in the absence of
interference, and the number of directed paths grows ex-
ponentially with L, the sum in Eq. (10) cannot grow faster
than L. As this sum is a function of nL1=3 we expect a
dominant contribution proportional to n3L for large L, and
so

 lnhgni 	 �
2Ln
�
� �n3L: (11)

FIG. 1 (color online). Histograms of lng versus the scaled
variable � for several sizes and disorders of the Anderson model
with narrow (solid symbols) and wide (empty symbols) leads.
The continuous lines correspond to F02��� and F00���.
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This approximation was already proposed by Medina and
Kardar [12] in the context of the NSS model. The distri-
bution of lng is the inverse Laplace transform of hgni and
from Eq. (10) and the saddle point approximation we
obtain for the high conductance tail of the distribution a
behavior of the type lnP�lng� / z3=2, where z �
�lng� 2L=��=L1=3. Indeed, for the two types of leads
studied � lnF0j�x� � djx3=2=3 for x! 1 with d0 � 2

and d2 � 4. Equation (11) is valid for the high conductance
tail only. The other tail might be more sensitive to bound-
ary conditions, although both distributions F0 and F2

behave as � lnFj�x� � jxj
3=12 for x! �1 [16].

Present results confirm our previous belief that, in the
strongly localized regime, directed path models are in the
same universality class as the Anderson model [8,11,12].
While the NSS model pretended to maximize interference
effects, Johansson’s model only considers the most impor-
tant path. The agreement between both models indicates
that it is percolation and not interference the dominant
effect in this regime. We expect that the main effect of
interference between different paths is a renormalization of
the disorder energies. This information may be relevant to
deal with interacting systems.

The knowledge of the distribution functions, Eqs. (7)
and (9), is of practical interest for the calculation of the
localization length. Equation (7) incorporates contribu-
tions to the mean proportional to L1=3, which can be
relatively important for the typical sizes studied.
Neglecting this term can cause errors of the order of 20%
in the estimate of the localization length.

We have checked that for L=� * 6 the conductance
distribution is fitted by Eqs. (7) and (9) much better than
by a log-normal. For mesoscopic samples close to the
condition L=� 	 6 it should be possible to test experimen-
tally our predictions, since g 	 g0 exp��12� where g0 is
close to 1 in units of 2e2=h. Our results can also be verified
through the behavior of the cumulants of the distribution.
Equations (7) and (9) predict universal values for the
skewness, kurtosis, etc., of the distribution. These limiting
values can be obtained from a measurement of the cumu-
lants in any range of parameter in the localized region,
since Eq. (6) it is fairly well verified even near the cross-
over. Thus, from the tendency of the second and third
cumulants it is possible to derive the asymptotic value
for the skewness: A3=A

3=2
2 � 0:359 (for wide leads).

In 3D systems, the variance is proportional to hlngi2=5

[8], so we expect the conductance to be distributed accord-
ing to lng � 2L=�� �3�L=��

1=5�, being � an unknown
random variable. The arguments given above for the high
conductance tail predict a behavior of the form lnP�lng� /
�lng�5=4, in agreement with preliminary numerical results.

In summary, we have found the distribution functions of
the conductance of the two-dimensional Anderson model
in the strongly localized regime for two types of leads. The
distributions obtained are the TW distribution and a related
one, and they appear in many other problems. Our results,
Eqs. (7) and (9), are fully consistent with the strong version
of the SPS [19] if we take into account that boundary
conditions (leads) are not irrelevant variables, in the
renormalization-group sense, and may change the univer-
sality class.
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