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ABSTRACT

Wind energy is susceptible to global climate change because it could alter the wind patterns. Then, improvement of our
knowledge of wind field variability is crucial to optimize the use of wind resources in a given region.

Here, we quantify the effects of climate change on the surface wind speed field over the Iberian Peninsula and Balearic
Islands using an ensemble of four regional climate models driven by a global climate model.

Regions of the Iberian Peninsula with coherent temporal variability in wind speed in each of the models are identified
and analysed using cluster analysis. These regions are continuous in each model and exhibit a high degree of overlap across
the models. The models forced by the European Reanalysis Interim (ERA-Interim) reanalysis are validated against the
European Climate Assessment and Dataset wind. We find that regional models are able to simulate with reasonable skill
the spatial distribution of wind speed at 10m in the Iberian Peninsula, identifying areas with common wind variability.

Under the Special Report on Emissions Scenarios (SRES) A1B climate change scenario, the wind speed in the identified
regions for 2031–2050 is up to 5% less than during the 1980–1999 control period for all models. The models also agree on
the time evolution of spatially averaged wind speed in each region, showing a negative trend for all of them. These
tendencies depend on the region and are significant at p= 5% or slightly more for annual trends, while seasonal trends
are not significant in most of the regions and seasons. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Presently, there is great concern about the depletion of conventional energy sources and its effects on the environment and
the climate. One approach for both problems is to adopt the use of renewable energies. Among these, wind energy has been
ranked first for potential to generate energy, impact on environment, reduction of greenhouse gas emissions and the
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development of a high-tech industry and highly qualified jobs.1 Because of these advantages, wind power has become an
important energy source in the last decades. For instance, the European Union has set a binding target of a 20% renewable
energy contribution by 2020, aiming to increase the share of electricity from wind resources to 12% by that time.2 Spain is
one of the countries that it has moved the furthest in this direction. In recent years, wind power has become an important
component of energy generation, meeting 21.1% of the electrical energy demand in 2013 and making wind energy the sin-
gle most important electrical energy source in this country for this year.

Although wind energy density is a cubic function of wind speed, wind turbines produce energy at a band of wind speeds
(usually 3–26ms�1), and beyond a nominal wind speed, the production of wind turbines is constant making the wind po-
tential more sensitive to changes in lower than high wind speeds.3 Thus, decreases in wind speed could have significant
consequences for power production and hence for the overall economics of wind power plant projects. This highlights
the importance of accurate quantification and attribution of historical trends, and at the same time, robust projections of
likely future wind resources are made.

The surface circulation of the Iberian Peninsula (IP) is controlled by the Azores High. In winter, when the subtropical high
pressure is usually centered at lower latitudes, zonal circulations from the west coupled with perturbations originated by the
polar front affect the IP.4 In summer, except for the northern region, the western circulations over the IP are blocked by the
Azores High expansion to higher latitudes. The displacements and changes in the intensity of the Azores High allow a variety
of air masses of different origins to influence the circulation over the IP at regional and local scales. These include polar con-
tinental air masses; the Sahara Low, Arctic and Polar maritime air masses coming through the north and northwest of the
peninsula, and subtropical and tropical maritime air masses coming from the west or the southwest are the most well known.4

Additionally, air masses from the Mediterranean Sea can penetrate the IP from the east or the southeast. The interaction of
this variety of air masses and a particular complex topography produces a range of differentiated regional wind climates.5,6

The aforementioned atmospheric circulation and pressure patterns that affect the IP climate might change under future
climate conditions.7 Under the SRES A1B scenario, an ensemble of CMIP3 global climate models projects a significant
enhancement of the meridional pressure gradient over central and Western Europe, which strengthens the westerly mean
flow8 that is associated with a significant poleward shift of storm tracks to the end of the 21st century. Furthermore,
Kjellström et al.9 shows that mean wind speed over Europe and their seasonality may change, showing an increase of
8% in the wind velocity in Northern Europe, a decrease in the Mediterranean central area and a slight increase in South-
eastern Europe. Other studies focusing on different parts of Europe have found variations in wind patterns and behavior.
For example, Bloom et al.10 found a decrease of the wind speed over the sea and an increase over land in the eastern Med-
iterranean region. Pryor et al.11 show important increases in the wind power over the southeast of Scandinavian Peninsula
and the Baltic Sea. Although there are no published studies of the evolution of wind energy potential under climate change
focused on the IP, some recent studies of the wind evolution on the European continent show a clear but small decrease in
winds over Spain (e.g. Tobin et al.12). Besides, given the importance of wind energy for Spain, several institutions have
characterized with great detail the surface wind and wind energy potential over specific regions of the IP and the Canary
and the Balearic Islands (BI).5,6

This study aims at characterizing the surface (10m) wind speed in an ensemble of regional climate models (RCMs) sim-
ulations from the ESCENA project.13 To meet this aim, we developed a clustering method that allows us to group into the
same cluster, those points that share similar temporal wind speed behavior, identifying regions with consistent wind series
in each of the models of the ensemble. We then sought equivalent clusters across all models. We evaluated the RCMs by
comparing the wind speed probability density functions (PDFs) of each common region against the PDFs of the wind from
all the European Climate Assessment and Dataset (ECA&D) stations located in the region and by studying the correlation
between the RCMs and the ECA&D monthly wind series.

Finally, we also evaluated the changes in modeled wind speed under A1B scenario comparing the wind speed for the
periods of 1980–1999 and 2031–2050 in each of the sub-regions identified from the cluster analysis.

The present paper is organized as follows. Section 2 presents the method and tools developed to study the wind speed
variability. In Section 3, we validate the method and apply it to the winds simulated under present time forcing and present
and discuss the results for the climate change projections under the A1B scenario. Finally, in Section 4, a short summary
and conclusion completes this paper.

2. DATASET AND METHODOLOGY

2.1. Model data and observation

2.1.1. ESCENA dataset
ESCENA (http://proyectoescena.uclm.es) procures a scientific background for the use of RCMs to the study of regional

climate change impacts over Spain.
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A brief description of the RCMs used in the project (PROMES, MM5, REMO and WRF) and an evaluation of their per-
formance under present climate conditions can be found in Jimenez-Guerrero et al.13 and Dominguez et al.14

The RCM domains comprise the whole IP and BI with a horizontal resolution of 25 km (Figure 1). Since the different
RCMs used different domains and different grid projections, model wind was interpolated to a common 0.2 × 0.2° grid
by means of the nearest neighbor algorithm, interpolating the land and the sea grid points separately. With this resolution,
the RCMs are only able to reproduce the main geographical feature of the IP and BI; nevertheless, the wind speed PDFs of
simulated winds compare well with observations from the ECA&D.

The simulations analysed here are focused on the near future. They cover a control period (1950–2000) forced by bound-
ary conditions from the 20C3M ECHAM5–MPIOM historical run and the near future period 2001–2050, with boundary
conditions from the second run of the ECHAM5–MPIOM A1B scenario. Additionally, perfect boundary simulations forced
by the high-resolution ERA-Interim reanalysis were carried out to evaluate the RCMs. These cover the period of 1989–
2008.

2.1.2. ECA&D wind speed
The ECA&D15 is a collection of daily station time series of Europe and the Mediterranean area gathered from the Na-

tional Meteorological and the Hydrological Services of the different countries. These series are subjected to complemen-
tary, common quality control procedures drawn from the ECA&D project (http: http://eca.knmi.nl).

This dataset contains more than 100 surface wind speed daily time series from stations located in the IP that cover the
last half of the 20th century. The ECA&D data series, however, do not include wind data for Portugal (15% of the whole
area of study), and therefore, the results of the RCMs for this area could not be validated. From the original 112 stations, we
rejected those with more than 10% invalid data in the period from 1983 to 2013, resulting in 71 valid time series.

2.2. Methodology

2.2.1. Clusters analysis
Because of its complex orography and its position with respect to the north Atlantic, the IP presents extensive climate

heterogeneity.4 The region has six main mountain systems, one big central plateau and three depressions. Low-altitude
winds are strongly conditioned by interactions with this complex orography, the large-scale circulation and a variety of dis-
tinct air masses of different origins that influence the circulation over the IP. This leads to very different regional patterns of
wind variability in the IP.

High-resolution RCM simulations can provide better information on these spatial scales than global climate models.
However, limitations in terms of process representation still prevent the interpretation of model results on single grid cells.
Therefore, climate change patterns are frequently aggregated over space in order to reduce the complexity of result com-
munication and to reinforce the robustness of the simulation results.

When it comes to model ensembles, an additional issue arises: how and on what spatial scale results from ensembles of
climate models should be analysed. On the one hand, the model agreement generally increases on larger scales.16 If a region
is too small, different models may disagree in their signal. On the other hand, if the region is too large, the changes can be
blurred, and information can be lost because different climate regimes are averaged together, e.g. averaging positive and
negative wind change will result in little net change. One way to overcome this problem and find the proper spatial scale
would be to use clustering methods.

Figure 1. Simulation domain of the ESCENA RCMs.
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Regional climate change results are normally presented using regions of simple shape,17 basins or climate-type classifi-
cations.18 But in reality, regions of similar climate are not constrained to simple shapes, and in addition, each climate var-
iable presents different patterns of change, often not coinciding with a given basin or climate-type region. The variable(s) of
interest, the current mean climate and the projected future changes should determine how the simulated climate change re-
sults are aggregated to the regions. An alternative procedure to define regions where the climate change signal is similar in
some objective sense of distance for all grid cells involves the use of cluster analysis methods.19 The hypothesis is that, in
function of the variable(s) of interest, the models can provide robust information for a number of regions, reducing the de-
grees of freedom of the climate data.

Cluster analysis has long been recognized as a useful statistical method for grouping stations into region with similar
climatology based upon given meteorological parameters. It is also useful for classifying weather conditions into different
synoptic regimes,20 partitioning a domain of interest into distinct climatic zones21 and for model validation with sparse
observations in paleoclimate studies.22 Mahlstein and Knutti19 devised an algorithm that allowed them to define regions
with similar mean climate and projected changes for CMIP3 models. They found a significant reduction of the projected
changes on different climate variables, i.e. the consistency of the mean climate and the expected changes are more robust
in each region and therefore more representative of regional impacts.

Thus, cluster analysis seems to be well suited for the goal of this study: to assess in a robust way the ability of the
ESCENA project models to simulate the observed wind variability when forced with perfect boundary conditions using
a relatively sparse observed wind dataset and to reduce the spatial and intermodel uncertainty of the projected future
changes of wind. To this end, we define criteria to divide the IP +BI into the minimum number of regions with similar wind
characteristics. There are many different algorithms to classify observations or model data into clusters.23 To identify which
method fits better to our purpose, we applied centroid methods (K-means), hierarchical clustering (Ward’s minimum var-
iance), spectral clustering (SPCL) and density-based methods on the RCMs results. We found that density methods are not
appropriate to this study, so they show big problems when they deal with high-dimensional data. Moreover, K-means,
Ward’s minimum variance and SPCL present similar results, but Ward’s classifies less points in the optimal ensemble par-
tition than the other two, and SPCL is rather sensitive to the metric, so we decided to use the conventional K-means algo-
rithm. Using this method, the time series of daily wind speed of the grid points of the RCMs and the meteorological stations
of ECA&D are grouped into disjoint regions (clusters), and the current wind climate and its projected future changes are
studied using the aggregated wind characteristics in these sub-regions.

The main drawback of the K-means method is that the number of clusters must be given in advance. In addition, multiple
solutions may exist, and the algorithm can become trapped in a local optimum far away from the best global solution. Thus,
detecting whether a specific optimum is an actual global optimum might be impossible from a computational point of view.
One strategy to overcome this difficulty is to run the algorithm multiple times varying the initial seeds of clusters, reducing
the probability of converging to a local minimum of very low quality. Another drawback is that the possible heterogeneity
of the simulated and measured wind speeds could produce undesirable effects if the K-means algorithm is applied directly.
To deal with this problem, a principal component analysis of the data is performed, and the K-means method is then applied
on these normalized principal components.24 The application of a principal component analysis not only produces a noise
reduction but also25 proves that the continuous solution of the cluster membership indicators is given by the principal com-
ponents in the K-means clustering method.

Applying this method to the simulations forced by ERA-Interim and by ECHAM5–MPIOM for each number of clusters
and forcings, we obtain a set of four classifications, one for each model. The partitions in a given set can be more or less
similar, but for a given forcing, it is desirable that all model partitions are as similar as possible to each other. This would
mean that all models capture the same spatio-temporal wind variability and that the obtained clusters are robust across
models. Therefore, the optimal number of clusters would be that, with the highest degree of similarity among all models
partitions. The strategy used to identify the optimal number of clusters is explained in the following section.

2.2.2. Selection of the number of clusters
To find the optimal number of clusters, we first merge each set of four partitions into only one. The algorithm used is

described as follows:

• First, the partition of one of the set members is set up as a partition of reference.
• Second, a correspondence between the clusters of the remaining models with the reference partition is established. A
cluster is considered equivalent to a given cluster from the partition of reference when it shares the largest area with it.

• Third, a point is classified into a cluster of the set partition if it belongs to at least three different equivalent clusters.
Some blank areas could appear in the ensemble partition if there are unclassified points.

We repeat the procedure using each model as a reference, selecting the partition that maximizes the number of classified
points as the final set partition. This way, we obtain a unique partition per a given number of clusters and a forcing.
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To find the number of clusters that gives the optimal ensemble partition for one of the forcings, several criteria can be
used.26 In this paper, we define a new criterion based on the following two parameters:

Compactness: We define the compactness CK of an ensemble partition for K clusters as the mean compactness of the
corresponding partitions of the ensemble members. We define the model compactness cK for a partition
of K cluster as the inverse of the spatial and temporal averages of the spatial variance of the K clusters:

cK�1 ¼ 1
K

∑
K

k¼1

1
T
∑
T

i¼1

1
n kð Þ ∑

n kð Þ

j¼1
xij kð Þ � xi kð Þ� �2 ! !

where K is the number of clusters in the partition, n(k) is the number of elements (classified points) in
cluster k, T is the total number of analysed days, xi kð Þ is the mean wind speed for cluster k at day i and
xij(k) is the wind speed at time i and point j of the cluster k.

Similarity: As in defining the set of partitions, we used the number of common points of corresponding clusters, and
we take the number of classified points as a measure of the similarity between members of a set partition.

The optimum number of clusters is defined as the number that minimizes the inverse product of compactness and sim-
ilarity and gives the standard deviation per classified point. Figure 2 shows this index as a function of the number of clusters
in the common partitions for the ESCENA ensemble forced by ERA-Interim and ECHAM5–MPIOM. In both cases, the
global minimum is achieved for 11 clusters.

The corresponding global partitions for both sets of simulations are represented in Figure 3. We can note that they share
a great resemblance. In order to quantify this similarity, we introduce a resemblance coefficient (RC) as follows:

RC ¼ Common_Area
Total_Area

For two corresponding clusters, the Common_Area is the intersection area of the two clusters, and Total_Area is the
whole area of one of the two clusters, so RC can be different for each cluster. The RC quantifies the fraction of the cluster
of the one partition that is contained in the corresponding cluster of the other partition.

We calculate the RC using in the denominator the area of each of the corresponding clusters in the two ensembles. When
the clusters are coincident, the two RC reach a value of 100%. In most cases, the RCs for both ensembles have values over
80% (Figure 3). The mean RCs, weighted by the cluster areas, are over 90% for both forcings. This result shows that the
obtained partitions are robust and can be considered equivalent.

To validate our results, we compare the ensemble partitions with the ECA&D wind partition also obtained using the K-
means method. To find the optimal number of clusters for the ECA&D wind partition, we apply the elbow criterion27 to the
relative standard deviation, which is defined by the following expression:

RSD ¼ SD1 � SDN

N � 1

The RSD gives the relative change of the mean standard deviation of a partition of N clusters (SDN) when the number of
clusters (N) is increased, using the mean standard deviation of a partition of one cluster (SD1) as reference.

Figure 2. Selection parameter as function of the number of clusters. Solid line: simulations forced by ERA-Interim. Dashed line: sim-
ulations forced by present time ECHAM5–MPIOM. For both ensembles, the parameter reaches a minimum for 11 clusters.
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Figure 4 shows that the RSD presents an elbow for nine clusters. The resulting nine clusters partitioning of the IP for
ECA&D winds are presented in Figure 5.

Since the ECA&D clustering was obtained from 71 scattered meteorological stations, the results may be strongly influ-
enced by local geographical features, and therefore, we cannot make a straightforward comparison between ECA&D and
ensemble partitions. Because of this, in regions of complex orography, neighboring stations can belong to different clusters,
for example, clusters 5 and 10 (Figures 3 and 5). On the other hand, model data represent the mean wind speed in a grid
cell, and the effects of smoothed orography are less important.

Nevertheless, some qualitative relationships between ECA&D partition (Figure 5) and ERA-Interim and ECHAM5–
MPIOM partitions (Figure 3) can be found. In regions of smooth orography, the stations tend to belong to the same cluster,
and a correspondence between the ECA&D and both ERA-Interim and ECHAM5 model partitions can be established.

Another remarkable result from the cluster selection process is that the optimal number of clusters for ECA&D is nine,
which is close to the ensemble optimum of 11 wind speed clusters for the IP and BI, even though both optimal numbers
were obtained by different methods.

3. RESULTS

To evaluate the ability of RCMs to simulate the present time surface wind speed, we calculate the correlations between
RCMs and ECA&D monthly wind data series and define a skill score based on the PDFs of the modeled and observed data.

Figure 3. Left panel: ERA-Interim partition as a result of applying K-means on RCMs results forced by ERA-Interim. Right panel:
ECHAM5–MPIOM partition as a result of applying K-means on RCMs results forced by ECHAM5–MPIOM. Lower panel: resemblance

coefficient between the two partitions.

Figure 4. Relative standard deviation as function of the number of clusters for ECAD&D surface wind.
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The PDFs were constructed with daily data series of the wind speed. The use of entire PDFs provides a more complete eval-
uation of climate models as changes in parts of the distribution, which are not the mean, can be important for impact stud-
ies, and there is evidence that extremes may be even more relevant than changes in the mean.28 From the point of view of
the wind energy industry, this is a crucial point since wind turbines usually work in a determined range of wind velocities,
and changes in the frequency of weak or strong wind episodes could increase the idle periods for wind farms. Furthermore,
daily data can show biases or systematic errors that can be hidden in monthly, seasonal or longer averages. Higher frequen-
cies and resolution could show gusts or extreme events, but these phenomena are very local and brief, so their effects would
be blurred in the wind speed PDF of regions of several hundreds of square kilometers, and if a model is able to simulate
with good accuracy the PDF, we can be confident that the models are able to capture the observed climate variability. After
the evaluation of the ability of RCMs to simulate the present time wind speed, we study evolution of the wind speed in the
near future.

3.1. RCMs skill in reproducing wind speed

Before focusing on the projections of the surface wind speed in the IP and BI, we evaluate the ability of ESCENA’s RCMs
to simulate the surface wind speed for the area of study when either ERA-Interim or ECHAM5–MPIOM is used as bound-
ary conditions.

As stated previously, our validation is based on correlation analysis and on a skill score derived from the probability dis-
tribution functions of the daily wind speed. The correlation analysis was only applied to RCMs forced by ERA-Interim be-
cause simulations forced by ECHAM5–MPIOM are expected to reproduce with acceptable accuracy the statistical
characteristics of the observed wind but not their time evolution, since internal model variability dominates these time
scales.

The number of ECA&D stations is significantly smaller than the number of the model points, so for the calculation of
wind time series in the partitions, we first interpolate model data to the station locations and then calculate the spatial mean
in each cluster for observed and interpolated data, obtaining a time series representative of the wind in the cluster. This way,
the cluster means for observed and modeled data are based on the same number of values and represent values in the same
geographical location. We used these constructed cluster means to compute the time correlations between observations and
simulations forced by ERA-Interim (Table I). These correlations are always significant at 95% confidence levels and, in
most of cases, are above 0.5, which for wind reproduction is a reasonable value. In addition, RCMs are able to reproduce
well the PDF of observed wind speed.

The foregoing correlation analysis reveals a generally good agreement between monthly mean time series of ERA-
Interim forced model and observational data. However, the analysis of high frequencies is crucial if one wants to assess

Figure 5. Classification of ECA&D stations. The numbering is in correspondence with ERA-Interim and ECHAM5–MPIOM clusters.
For this correspondence, we merged two clusters of the original classification into cluster 3.
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the ensemble capability reproducing the wind power potential. Moreover, the correlation analysis cannot reveal systematic
biases in mean value. For both reasons, we decided to analyse the PDFs of daily winds with the help of the Perkins skill
score, defined as Sscore, allowing us to find the common area of both distributions.29 If a model reproduces the observed
winds perfectly, the two PDFs are coincident, and the skill score will be equal to one, or 100 if it is expressed as a percent-
age. Therefore, we use this index as a measure of similarity between model PDFs and ECA&D PDF in a given cluster.

Sscore ¼ ∑
n

1
minimum Zm; Z0ð Þ

where n is the number of bins into which the PDF was divided, Zm is the frequency of values of 10m wind in a given bin
from the model and Z0 is the frequency of values of 10m wind in the same bin from the ECA&D data.

To compare the PDFs of modeled and observed wind speed, we first interpolate daily model data to the station locations.
Then the PDFs of both observed and interpolated data in each cluster are aggregated. The aggregated PDF of the observed
wind is not evaluated for cluster number 8 for both ECHAM–MPIOM and ERA-Interim partitions because it does not con-
tain any meteorological stations.

To have a quantitative measure of how close the PDFs of the models are in each cluster, we introduce the cluster disper-
sion (Disp). In this case, the aggregated PDFs are built from the daily winds at all the points in a cluster. This metric pro-
vides the mean deviation of the PDFs of the models in a cluster for the case when all the models have the same distribution
and is defined as follows:

Disp ¼ Maximum_Area� 1
Nm � 1

whereMaximum_Area is the area under the envelope of all models’ PDFs for a cluster and is equal to one when the models
have the same PDF, and Nm is the number of models in the ensemble (in this case, 4). The denominator is chosen to nor-
malize Disp to one.

Figure 6 shows the probability wind distributions in clusters with odd numbers for the ensemble forced by the ERA-
Interim. The RCMs tend to show a higher probability of strong winds than ECA&D, with REMO being closer to observa-
tions. The probability of strong winds for WRF is higher than for the other models. PROMES and MM5 show an interme-
diate behavior, with a similar right shift of the PDFs. The values of the Sscore are shown in Table II. Despite differences in
PDFs, RCMs show a mean skill score of 75% for both partitions with values between 51% and 95% across models and
clusters. To check the similarity of the ensemble partitions for both forcings, we repeat the calculations using the partition
obtained with the ensemble forced by ECHAM5–MPIOM. We obtained very similar results for both partitions.

Table III shows the cluster dispersion for the present time simulations forced by ERA-Interim. It is not higher than 15%
for any cluster, and the mean maximum area is 30% higher than the optimum area. This implies that the models not only
agree in the spatial distribution of surface winds but also share more than 85% of the PDFs in each of the clusters, pointing
to a high accordance between the models in the simulation of surface winds.

3.2. Surface wind speed change (1980–1999 to 2031–2050)

As stated previously, simulations of current climate with the RCMs forced by ECHAM5–MPIOM give results similar to
those obtained in simulations forced by ERA-Interim. This is probably an indication that the differences in winds simulated
by the ESCENA models depend weakly on the forcing. This conclusion is reinforced by comparing metrics in Tables II and
III with the corresponding Tables IV and V. The skill scores of clusters corresponding to the simulations forced by
ECHAM5–MPIOM are similar to the skill scores of the RCMs forced by ERA-Interim, being clearly worse only for clus-
ters 9 and 10. The cluster dispersion is also very similar for both partitions, with close values for all clusters.

We have also calculated the values of the cluster dispersion for the period of 2031–2050 in the A1B scenario simula-
tions. The cluster dispersion for this period for all the clusters is also similar to the values obtained for the ensemble

Table I. Correlation coefficients between ERA-Interim-forced simulations and ECA&D monthly time series for the 1989–2008 period.

Cluster 1 2 3 4 5 6 7 9 10 11

PROM 0.63 0.65 0.65 0.25 0.51 0.42 0.60 0.79 0.62 0.75
WRF 0.51 0.64 0.63 0.27 0.50 0.32 0.62 0.77 0.62 0.69
MM5 0.65 0.68 0.75 0.35 0.51 0.43 0.63 0.79 0.63 0.77
REMO 0.59 0.67 0.55 0.36 0.44 0.37 0.60 0.77 0.58 0.69

Correlations with a 95% confidence level are in bold.
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partition of the simulations forced by ERA-Interim. This indicates that the RCMs maintain a good agreement in the statis-
tical characteristics of future simulated wind distributions (Table VI).

The relative changes in the mean wind for the 2031–2050 period under the A1B scenario with respect to the control pe-
riod (1980–1999) for each model and cluster are presented in Table VII. All the models show negative changes in the 11
clusters. For each model, the absolute changes that are smaller than the mean for all clusters are marked in light gray, while
the changes greater than the mean are marked in gray; it can be seen that although the models differ in the magnitude of the

Figure 6. Probability distribution functions of daily surface wind speed for ECA&D and ERA-Interim-forced simulations for the
1989–2008 period.

Table II. Skill score (in %) of surface wind PDFs for ESCENA RCMs forced by ERA-Interim (1989–2008 period) for corresponding
partition.

Cluster 1 2 3 4 5 6 7 8 9 10 11 Mean

PROMES 79 68 76 68 81 93 88 — 82 72 78 78
WRF 72 62 56 51 71 83 84 — 69 57 65 65
MM5 72 69 78 65 75 57 88 — 71 61 64 68
REMO 92 89 95 90 91 78 68 — 91 85 86 88
Mean 79 72 76 69 80 78 82 — 78 69 73 75

Table III. Dispersion of the surface wind PDFs for the ESCENA RCMs forced by ERA-Interim (1989–2008 period) for the
corresponding partition.

Cluster 1 2 3 4 5 6 7 8 9 10 11 Mean

Maximum area 1.28 1.36 1.38 1.40 1.28 1.36 1.31 1.30 1.25 1.29 1.27 1.30
Disp (%) 9 12 13 13 9 12 10 10 8 10 9 10
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changes, they agree in the identification of those regions where the changes will be higher or lower than the mean change,
with the exception of clusters 3 and 8, for which at least one model shows changes on different sides of the mean.

Figure 7 shows the spatial distribution of the regions where the relative changes in the mean wind speed for the 2031–
2050 period with respect to 1980–1999 are bigger (gray) or lower (light gray) than the mean change for the whole IP and
BI. We can see that the regions with smaller changes are located in the Atlantic Fringe and the southern tip of the IP, under
the direct influence of the Atlantic flow, while the regions with stronger changes are located in the interior regions or in the
Mediterranean fringe, where the influence of the Atlantic ocean on the winds is less important. These regional features
could be related to changes in synoptic-scale circulation in a future climate.30

Table IV. Skill score (in %) of surface wind PDFs for ESCENA RCMs forced by ECHAM5–MPIOM (1980–1999 period) for clusters of
the corresponding partition.

Cluster 1 2 3 4 5 6 7 8 9 10 11 Mean

PROMES 78 62 75 58 88 91 87 — 76 67 71 74
WRF 76 56 59 46 81 81 86 — 66 55 59 64
MM5 73 61 77 56 84 85 87 — 66 56 59 67
REMO 93 85 93 91 90 79 66 — 85 79 81 85
Mean 80 66 76 63 86 84 82 — 73 64 68 72

Table V. Cluster dispersion of the surface wind PDFs for ESCENA RCMs forced by ECHAM5–MPIOM (1980–1999 period) for clusters
of the corresponding partition.

Cluster 1 2 3 4 5 6 7 8 9 10 11 Mean

Maximum area 1.28 1.37 1.42 1.42 1.31 1.37 1.34 1.31 1.26 1.28 1.28 1.31
Disp (%) 9 12 14 14 10 12 11 10 9 9 9 10

Table VI. Cluster dispersion of the surface wind PDFs for ESCENA RCMs for 2031–2050 in the partition from present time
simulations forced by ECHAM5–MPIOM.

Cluster 1 2 3 4 5 6 7 8 9 10 11 Mean

Maximum area 1.27 1.37 1.41 1.41 1.30 1.37 1.34 1.30 1.26 1.28 1.27 1.31
Disp (%) 9 12 14 14 10 12 11 10 9 9 9 10

Table VII. Changes in mean wind speed between the 2031–2050 and the 1980–1999 periods for the ESCENA models in the 11
clusters and the mean for the region of study (IP + BI).

Changes less than the IP + BI mean are marked in light. Changes greater than the mean are marked in gray.
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Figure 7. Spatial distribution of changes in the mean wind speed for the 2030–2050 period with respect to 1980–2000 in IP + BI. Ab-
solute changes are less than the mean change for IP + BI in the light gray areas and higher in the gray areas.

Figure 8. Time evolution of the annual and seasonal mean wind speed over the Iberian Peninsula and Balearic Islands. The red line rep-
resents the ensemblemean. Gray lines represent themodel spread, and the green lines are a linear fit to the ensemblemean. Themean
value for the whole period has been removed from each of the model time series. Trends marked with ns are non-significant, marked
with * are significant at 10% level with a Mann–Kendall test and marked with ** are significant at 5% level with a Mann–Kendall test.
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3.3. Wind speed interannual evolution

Although the mean magnitude of the surface wind in the IP and BI varies from model to model, the tendencies of the sim-
ulated wind are very similar. In Figure 8, we represent the temporal evolution of the IP +BI mean seasonal and annual sur-
face wind for the ESCENA ensemble after removing the mean for the whole 2005–2050 period for each model. We can see
that the model spread is small for all seasons and that the models show a similar pattern of temporal evolution. The time
series of ensemble-mean surface wind in IP +BI show trends that are weakly positive for the summer and negative for
the other seasons, with stronger values for winter and spring. To analyse the significance of the trends, we use the
Mann–Kendall test, which is especially suitable to study time series that are composed of values that are non-normally dis-
tributed, and present non-linear trends as surface winds do. For the ensemble-mean seasonal time series, the Mann–Kendall
(e.g. Mavromatis and Stathis31) test shows that the trends are not significant.

A more detailed analysis of the time evolution of the surface wind in the IP and the BI is presented in Table VIII, where
the trends of the annual and seasonal means for each cluster and the whole IP +BI domain are collected. This analysis

Table VIII. Trend of the surface wind speed trend (mm s�1 year�1) for the 2000–2050 period for the ESCENA ensemble mean in the
ensemble clusters.

Winter Spring Summer Autumn Year

Cluster 1 �1.4 �3.3 �1.2* �1.4 �1.8*
Cluster 2 �4.5 �5.1 �1.9 �2.0 �3.4**
Cluster 3 �8.5** �6.5** �0.1 �0.2 �3.8**
Cluster 4 �6.6 �2.8 0.6 �1.9 �2.7**
Cluster 5 �7.6 �5.4 2.1 �3.9 �3.7**
Cluster 6 �2.0 �4.2* �2.2* �2.0 �2.6**
Cluster 7 4.4 0.6 �12.9** 1.1 �1.7*
Cluster 8 �2.6 �6.4** 3.3* �0.4 �1.5*
Cluster 9 �4.0 �3.9 0.2 �0.9 �2.4**
Cluster 10 �7.1* �5.9 1.7 �1.6 �3.2**
Cluster 11 �1.4 �3.3 �1.2* �1.4 �1.8*
IP + BI �4.5 �5.1 �1.9 �2.0 �3.4**

*Trends are significant at 10% level with a Mann–Kendall test.
**Trends are significant at 5% level with a Mann–Kendall test.

Figure 9. Spatial distribution of trends of annual mean surface wind in the IP and BI for the 2005–2050 period. Absolute trends are less
than the mean trend for IP + BI in the light gray areas and higher in the gray areas. All trends are significant at a 10% level with a Mann–

Kendall test.
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shows that the southern tip of the IP (cluster 7) displays opposite trends to most of the other clusters for all seasons, with a
strong negative trend in summer. Another interesting result is that while the trends of the annual time series show a level of
significance (p-value) of 0.05 for all clusters except for clusters 1 (0.10), 7 (0.09) and 8 (0.06), this does not happen for
seasonal values, where, in most of the cases, the significance level is higher than 0.10—that is, the addition of seasonal data
with trends, which are mainly non-significant, results in annual time series with significant decreasing trends. This could
mean that when we calculate the annual mean, the negative trends reinforce each other, counteracting the possible positive
trends and smoothing the variability. This enhances the signal/noise ratio, resulting in a significant negative annual trend. In
Figure 9, we mark with light gray the clusters where the trend of the annual time series is less negative than the trend of
annual mean surface wind speed for the whole IP +BI, while the rest of the clusters with a trend more negative than the
trend of annual mean for IP +BI is gray. A clear west–east contrast can be appreciated. The regions on the western side
of the IP, most affected by western Atlantic winds, show in general a less negative trend than the rest of the IP and BI.

4. DISCUSSION

In this paper, we study the evolution, from present time to 2050, of wind speed in the IP and the BI with a newly developed
method based on cluster analysis. This method allowed us to identify areas of similar surface wind variability in the region
of study. Our method is applied to two sets of simulations produced in the framework of the ESCENA project, one forced
by ERA-Interim and a second forced by present time simulation with the general circulation model ECHAM5–MPIOM. In
each case, the region of study has been divided into two partitions of 11 clusters. The two obtained partitions show very
similar spatial distribution, and in most cases, two equivalent sub-regions share more than 90% of points. This demonstrates
that the proposed method provides a robust spatial classification, which is mostly independent of the forcing used.

For the validation of the surface winds simulated by the RCMs, we use the ECA&D database. One of the problems that
we face in the validation procedure is that the number of meteorological stations available in a given cluster is in general
much lower than the number of model grid points in that region. In addition, surface winds can be heavily affected by the
orography. We overcome this difficulty by calculating the probability distribution function in a cluster using model data
interpolated to station locations. The PDF skill score calculated from the simulations forced by ERA-Interim and ECA&D
wind data has a mean value of 75%. The skill score for the simulations forced by ECHAM5–MPIOM for the control period
is slightly worse, 72%. To test the robustness of the obtained partitions, we also calculate the skill score for the winds from
the ERA-Interim-forced simulations on the partition obtained with the present time simulations forced by ECHAM5–
MPIOM and vice versa, obtaining values of the skill score very close to those obtained in the previous cases. These results
suggest that internal variability for regional models in the IP is strongly influenced by the local orography and the impact of
the external forcing on the statistical characteristics of the surface wind is almost marginal.

The closeness of the skill score values indicates that the winds in the control simulations forced by ECHAM5–MPIOM
are reasonably accurate, giving confidence to the projections of future changes of the surface wind simulated by the
ESCENA RCMs under the Intergovernmental Panel on Climate Change A1B scenario when we use as boundary conditions
the output of the ECHAM5–MPIOM simulation.

The correlation coefficients between corresponding observed and modeled surface wind velocity in the clusters have a
mean value of 0.65 and in all clusters are significant to the 95% confidence level. The RCMs wind data series used for the
correlations were obtained by interpolation to the station locations, giving, as a result for each cluster, the same number of
time series for the RCMs and for ECA&D.

A subjective validation of the previous results can also be made, based on the wind climatology of the IP +BI. It is well
known that dominant near-surface winds are strongly forced by topography and pressure contrasts between land and sea. In
addition, there is a well-defined periodic seasonal cycle. On the other hand, the mountainous terrain that surrounds the flat
plains of the IP has a marked influence on the movement of air masses over the IP. Examining the clusters represented in
Figure 3, it is easy to identify them with specific geographic regions like the Ebro Valley. This valley is characterized by the
cierzo wind, which is a west–northeast wind component blowing to east–southeast or its opposite throughout the entire
year. Cierzo is originated by the pressure gradient between the Cantabrian and Mediterranean seas and is channeled through
this valley. Cluster 3 perfectly represents the region affected by this wind pattern. Cluster 1 can be related to the Galicia
region, which is affected by West winds coming from Atlantic low-pressure systems. This wind is blocked by the Leon
Mountains and the Cantabrian mountain range clearly distinguishing Galicia (cluster 1) from the Castilian plateau (cluster
9). The Castilian plateau is also separated by the Cantabrian mountain range from the north coast of Spain (cluster 2), which
is under the influence of north winds or south winds. These conditions help to create the Foehn effects characteristic of the
Cantabrian region. The Levante wind originates in the central Mediterranean Sea and affects the east coast (cluster 5) in-
ducing severe rain events in the east coast during autumn season. The Strait of Gibraltar, located at the western entrance
to the Mediterranean Sea, is characterized by strong gap winds. It is a narrow 15 km wide and 55 km long sea-level passage
surrounded by high mountains (the Atlas Mountains in Morocco and the Betic range in Spain). Cluster 7 is clearly related to
this region. Cluster 6 is identified with the Guadalquivir valley. This is an open basin where wind with a SW component is
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forced by the pressure systems on the Gulf of Cadiz. This analysis shows that there is a great deal of correspondence
between known surface wind geographical features and those obtained from our cluster classification as obtained by
Lorente-Plazas et al.5,6. Regions with a simpler orography (cluster 1 or 2) have a stronger correspondence than regions
with a complex orography (cluster 5 or 10).

To study the wind speed evolution in the IP and BI in the A1B scenario, we perform two different statistical analyses.
First, we compare wind climatologies for the 1980–1999 and 2031–2050 periods, obtaining a generalized decrease of the

mean wind speed in the entirety of the IP and BI. This decrease is more marked for clusters that do not belong to the
Atlantic Fringe. The only exception is cluster 7, which covers the southern tip of the IP and where the highest mean winds
can be found for both models and observations. This region shows a negligible reduction in its mean wind speed.

Second, we study the time evolution of annual averages for the 2005–2050 period, finding negative trends for all clus-
ters. The values of these trends are comprised between 1.5 · 10�3ms�1 year�1 for cluster 8 and 3.8 · 10�3ms�1 year�1 for
cluster 3, which means a decrease of less than 5% by 2050 for any region of the IP +BI. The trends in the identified clusters
show a seasonal dependence, for example, in summer, there are several clusters with slightly positive trends. Cluster 7
shows an opposite behavior to the majority of the other clusters with a positive trend for all seasons except for summer.
This summer wind reduction might be due to a displacement of the Azores high, leading to weaker easterly winds over
Gibraltar strait. The majority of the seasonal trends are not significant at the 0.10 level, while most of the annual trends
are significant at the 0.05 level. The spatial distribution of the trends—presented in Figure 9—shows clearly a west–east
contrast: the winds in the western clusters present smaller trends than the eastern clusters. This fact could be explained
by the higher influence of the western Atlantic Ocean climate on these regions.

It is also noteworthy that despite the differences in the strength of the mean simulated wind, the model spread of the IP
+BI trends is less than 5% for the seasonal and annual time series, showing that the RCMs of the ESCENA ensemble agree
in the simulation of the trends.

The results presented here may be sensitive to the horizontal grid resolution, the scenarios and the RCM used for the
simulations and the quality of wind measurements. Nevertheless, the tendencies in the evolution of wind speed in the IP
under the A1B scenario identified in our paper seem to be common to all RCMs tested. Therefore, we think that it is im-
portant to continue the study of the evolution of the wind in this region with our newly developed methodology, consider-
ing different Intergovernmental Panel on Climate Change scenarios and/or different ensembles of RCMs as ENSEMBLES
and EURO-CORDEX.

ACKNOWLEDGEMENT

We thank Timothy Petliar and Arturo Quintanar for helping to improve our manuscript. The Spanish Ministerio de Medio
ambiente y Medio Rural y Marino funded this research through project ESCENA (ref: 200800050084265). REMO results
(from UAH) were obtained through the Spanish project CGL2008-05112-C02-02. Project CGL2010-18013, financed by
the Spanish Ministerio de Economía y Competitividad, also contributed to this study.

REFERENCES

1. Jacobson M. Review of solutions to global warming, air pollution, and energy security. Energy & Environmental
Science 2009; 2: 148–173.

2. EWEA. Pure power – wind energy scenarios up to 2030. European Wind Energy Association, Brussels (European
Wind Energy Association) 2008. [Online]. Available: http://www.ewea.org.

3. Manwell JF, McGrown JG, Rogers AL. Wind Energy Explained, Theory, Design and Application (2nd edn). Wiley:
Chichester, 2009.

4. Font-Tullot I. Climatología de España y Portugal (2a edición). Ediciones Universidad de Salamanca: Salamanca, 2000.
5. Lorente-Plazas R, Montávez JP, Jimenez PA, Jerez S, Gómez-Navarro JJ, García-Valero JA, Jiménez-Guerrero P.

Characterization of surface winds over the Iberian Peninsula. International Journal of Climatology 2014. DOI:
10.1002/joc.4034.

6. Lorente-Plazas R, Montávez JP, Jerez S, Gómez-Navarro JJ, Jiménez-Guerrero P, Jiménez PA. A 49 year hindcast of
surface wind over the Iberian Peninsula. International Journal of Climatology 2014. DOI: 10.1002/joc.4189.

7. Demuzere M, Werner M, van Lipzig NPM, Roeckner E. An analysis of present and future ECHAM5 pressure fields
using a classification of circulation patterns. International Journal of Climatology 2009; 29: 1796–1810.

8. Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova
RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL. Climate change 2014 impacts,

Wind speed variability and future change in the Iberian Peninsula G. Gómez et al.

1236 Wind Energ. 2016; 19:1223–1237 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/we

http://www.ewea.org


adaptation, and vulnerability. Part A: global and sectoral aspects. Working Group II to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change, 2014.

9. Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A. 21st Century changes in the European climate: uncer-
tainties derived from an ensemble of regional climate model simulations. Tellus A 2011; 63: 24–40.

10. Bloom A, Kotroni V, Lagauvardos K. Climate change impact of wind energy availability in the Eastern Mediterranean
using the regional climate model PRECIS. Natural Hazards and Earth System Sciences 2008; 8: 1249–1257.

11. Pryor SC, Barthelmie RJ, Kjellstromr E. Analyses of the potential climate change impact on wind energy resources in
northern Europe using output from a Regional Climate Model. Climate Dynamics 2005; 25: 815–835.

12. Tobin I, Vautard R, Balog I, Bréon FM, Jerez S, Ruti PM, Thais F, Vrac M, Yiou P. Assessing climate change impacts
on European wind energy from ENSEMBLES high-resolution climate projections. Climatic Change 2015; 128:
99–112. DOI: 10.1007/s10584-014-1291-0.

13. Jimenez-Guerrero P, Montavez JP, Domínguez M, Romera R, Fernandes J, Liguori G, Cabos Narvaez W, Gaertner
MA. Description of mean fields and interannual variability in an ensemble of RCM evaluation simulations over Spain:
results from the ESCENA project. Climate Research 2013. ISSN: 0936-577X.

14. Dominguez M, Romera R, Sanchez E, Fita L, Fernandez J, Jimenez-Guerrero P, Montalvo JP, Cabos WD, Liguori G,
Gaertner MA. Precipitation and temperature extremes under present climate over Spain from a set of high resolution
RCMs. Climate Research 2013; 58: 149–164. DOI: 10.3354/cr01186.

15. Klein Tank AMG, Coauthors. Daily dataset of 20th-century surface air temperature and precipitation series for the
European Climate Assessment. International Journal of Climatology 2002; 22: 1441–1453.

16. Räisänen J. How reliable are climate models? Department of Physical Sciences, Division of Atmospheric Sciences, P.
O. Box 64, FIN-00014 University of Helsinki, Finland, 2007.

17. Giorgi F, Mearns LO. Probability of regional climate change based on the reliability ensemble averaging (REA)
method. Geophysical Research Letters 2003; 30: 1629. DOI: 10.1029/2003GL017130.

18. Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K,
Teichmann C, Wilhelm C. Assessing the transferability of the regional climate model REMO to different coordinated
regional climate downscaling experiment (CORDEX) regions. Atmosphere 2012; 3: 181–199.

19. Mahlstein I, Knutti R. Regional climate change patterns identified by cluster analysis. Climate Dynamics 2010; 35:
587–600.

20. Peña JC, Aran M, Cunillera J, Amaro J. Atmospheric circulation patterns associated with strong wind events in
Catalonia. Natural Hazards and Earth System Sciences 2011; 11: 145–155. DOI: 10.5194/nhess-11-145-2011.

21. Lund R, Li B. Revisiting climate region definitions via clustering. Journal of Climate 2009; 22: 1787–1800. DOI:
10.1175/2008JCLI2455.1.

22. Brewer S, Guiot J, Torre F. Mid-Holocene climate change in Europe: a data-model comparison. Climate of the Past
2007; 3: 499–512.

23. Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Computing Surveys 1999; 31: 264–323.
24. Vallée F, Brunieau G, Pirlot M, Deblecker O, Lobry J. Optimal wind clustering methodology for adequacy evalu-

ation in system generation studies using nonsequential Monte Carlo simulation. IEE Transactions on Power Systems
2011; 26: 2173–2184.

25. Ding C, He X. K-means clustering via principal components analysis. Proceedings of the 21st International Confer-
ence on Machine Learning, Banff, Canada, 2004.

26. Rokach L, Maimon O. Chapter 15 clustering methods. In Data Mining and Knowledge Discovery Handbook, Depart-
ment of Industrial Engineering Tel-Aviv University. Springer, 2013. ISBN: 13978-0-387-24435-8.

27. Thorndike RL. Who belong in the family? Psychometrika 1953; 18: 267–276.
28. Schaeffer M, Selten FM, Opsteegh JD. Shifts in means are not a proxy for changes in extreme winter temperatures in

climate projections. Climate Dynamics 2005; 25: 51–63.
29. Perkins SE, Pitman AJ, Holbrook NJ, McAneney J. Evaluation of the AR4 climate models’ simulated daily maximum

temperature, minimum temperature, and precipitation over Australia using probability density functions. Journal of
Climate 2007. DOI: 10.1175/JCLI4253.1.

30. Santos JA, Rochinha C, Liberato MLR, Reyes M, Pinto JG. Projected changes in wind energy potentials over Iberia.
Renewable Energy 2015; 75: 68–80.

31. Mavromatis T, Stathis D. Response of the water balance in Greece to temperature and precipitation trends. Theoretical
and Applied Climatology 2011; 104: 13–24. DOI: 10.1007/s00704-010-0320-9.

Wind speed variability and future change in the Iberian PeninsulaG. Gómez et al.

1237Wind Energ. 2016; 19:1223–1237 © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/we


