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[1] Climate models are usually assessed through their
capacity to reproduce present climate conditions, which in
turn are established by comparing the output of climate
simulations with observational data sets including gridded
products. However, due to the nature of the procedures to
obtain observations and the statistical techniques employed
to extrapolate this information onto reference gridded data-
bases, they contain important uncertainties which may com-
promise the evaluation process. This paper examines to what
extent the evaluation and ranking of an ensemble of regional
climate models, according to their ability to reproduce the
observed climatologies, is sensitive to the choice of the ref-
erence observational data set. Results show that even in areas
covered by dense monitoring networks such as Spain,
uncertainties in the observations are comparable to the
uncertainties within state-of-the-art Regional Climate Mod-
els, at least when they are driven by nominally perfect
boundary conditions like reanalysis. These findings point out
that model evaluation should take into account the observa-
tional uncertainties. In particular, weighting models accord-
ing to how well they perform with respect to a unique
observation dataset, without acknowledging uncertainties in
the observational dataset, might reduce the quality of the
weighted ensemble average. Citation: Gómez-Navarro, J. J.,
J. P. Montávez, S. Jerez, P. Jiménez-Guerrero, and E. Zorita
(2012), What is the role of the observational dataset in the eval-
uation and scoring of climate models?, Geophys. Res. Lett., 39,
L24701, doi:10.1029/2012GL054206.

1. Introduction

[2] Regional Climate Models (RCMs) are powerful tools
that provide high-resolution information of a number of cli-
matological variables. The simulations performed with these
models can be used for a variety of purposes, such as to gain
insight in the past and future evolution of the climate, climate
change impact studies, air quality evaluation, or assessment
of wind power resources among many others. However, the
skill of the simulations must be established before the gen-
erated information can be safely employed, given that they
are not free of uncertainties. These uncertainties arise from
many factors, such as the unknown evolution of climate

forcings in the past, caveats in the input fields used to drive
the regional simulation, or from physical processes not
properly described in the regional model itself.
[3] A standard approach to address the model uncertainty is

through ensembles of simulations. In particular, the uncer-
tainties attributable to the use of regional models are especially
noticeable when several RCMs are driven by the same
boundary conditions. In this sense, large community projects
such as PRUDENCE [Jacob et al., 2007], ENSEMBLES
[Christensen et al., 2010] or more recently CORDEX [Nikulin
et al., 2012], have produced large ensembles of regional cli-
mate simulations with different models over the same area and
period, with the aim of producing accurate climate change
projections but also identifying the uncertainties associated with
the use of regional models. Two such ensembles have been
recently produced for the Iberian Peninsula. The ESCENA
project [Jiménez-Guerrero et al., 2012] was aimed at producing
a multi-model ensemble of regional simulations over an area
encompassing Spain up to the Canary Island. A second
ensemble was produced by Jerez et al. [2012], in which all
the members share the RCM but use different parametrization
schemes, with the aim of identifying the uncertainties attrib-
utable to these parametrizations within the same model.
[4] In the context of model ensembles, a key question is

how to combine the output of different models to improve
the quality of the information from that available from any
individual simulation. Experience has demonstrated that this
is not a simple task, and so far there is no consensus on what
is the best methodology to achieve optimum result. The easiest
approach consists of assigning one vote to each model [Meehl
et al., 2007], while other authors propose using different
weights for every model within the ensemble according to
different criteria. A common criterion involves comparing the
model results with observations of the present climate. Several
techniques have been developed since the first attempts by
Giorgi and Mearns [2002] based on Reliability Ensemble
Average (REA) method, many of which have been tested
within the ENSEMBLES project. Coppola et al. [2010]
introduced a model weight based on mesoscale structures in
precipitation and temperature. Kjellström et al. [2010] devel-
oped a metric based on the ability of the models to reproduce
the Probability Distribution Function (PDF) of daily and
monthly series of temperature and precipitation. Lenderink
[2010] concentrated the scoring on how the models repro-
duced extreme precipitation events, and found that they gen-
erally tend to overestimate these events, whereas Lorenz and
Jacob [2010] focused it on how models reproduced the sea-
sonal and annual trends in the period 1960–2000 compared to
ERA40. These studies found that although the ensemble mean
weighted according to each technique performs better than the
unweighted version in the simulation of the observed climate,
no metric was able to identify a model that outperforms the
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others in every area, season and/or variable. However there are
also weighting schemes that depend on other factors than
simply the similarity between model output and observations.
This includes the similarities among the model simulations
themselves [Tebaldi et al., 2005] or a combination of both
[Räisänen et al., 2010].
[5] When using a weighting methodology according to

howmodels reproduce the observed present, it should be kept
in mind that the observational datasets used as a reference
also contain non-negligible uncertainties. Although it has
been suggested that errors in observations are relatively small
compared with intermodel differences [Gleckler et al., 2008],
both kinds of uncertainties become comparable at local scale
when regional models are driven by “perfect” boundary
conditions. In this respect, Lenderink [2010] pointed out
within the ENSEMBLES project context that the spread
between models and observations was generally larger over
areas with a low density of observations, which might indi-
cate that the quality of the observational dataset should also
be considered. In the same special issue, Christensen et al.
[2010] also suggested that the quality of the observations
should be assessed, but they postponed it for future studies.
[6] The present study tries to determine whether the

observational dataset used to score climate models might
play an important role in the ranking of climate simulations
within an ensemble. To do so, the results of two independent
ensembles are analysed and compared with three different
observational databases over a region with a relatively good
station coverage (Spain) during the last part of the 20th
century, where and when the spread between observational
databases is expected to be small.

2. Data Employed

[7] This study employs several datasets: three gridded
observational databases (E-OBS, SPAIN02 and AEMET) and
two ensembles of hindcast simulations (MULTI-MODEL and
MULTI-PHYSICS), presented in greater detail below.
[8] The observational dataset E-OBS [Haylock et al.,

2008] covers Europe and was originally developed within
the context of the ENSEMBLES project. It has been updated
several times to improve its quality by increasing the number of
meteorological stations in poorly-covered areas. This study
employs version 5, which includes a better coverage of obser-
vations over the Iberian Peninsula compared to earlier versions.
SPAIN02 [Herrera et al., 2010] was developed in the Univer-
sity of Cantabria. It only considers Spain and compiles infor-
mation from a large number of meteorological stations over the
area. Finally, the AEMET database [Yolanda-Luna et al., 2008]
is an observational database developed by the Spanish Mete-
orological Office and is the one that includes the largest
number of observations. All these observational datasets share
a number of important features which make them suitable for
this analysis. First, the overlap period covers more than fifty
years (1950–2008), which is a fairly long period for validation
purposes. Second, their spatial resolution is also similar,
around 25 km, which allows interpolating all databases onto
the same grid, thereby minimizing errors. Finally, all obser-
vational databases contain daily series of the same three vari-
ables: maximum temperature (TMAX), minimum temperature
(TMIN) and accumulated precipitation (PRE).
[9] In the simulations, two independent model simulation

ensembles have been employed. The MULTI-MODEL

ensemble consists of a five-member group of high-resolution
climate simulations performed with five Regional Climate
Models (RCM) over the Iberian Peninsula producedwithin the
context of the ESCENA project [Jiménez-Guerrero et al.,
2012]. All simulations were driven by the reanalysis ERA
Interim from the ECMWF [Dee et al., 2011]. The period
considered is 1989–2008, and all the simulated domains,
although slightly different in each model, cover the Iberian
Peninsula with a resolution of 25 Km. The MULTI-PHYSICS
ensemble consists of eight members, having in common the
RCM used to conduct all the simulations, MM5 [Jerez et al.,
2012]. The driving conditions are ERA40 [Uppala et al.,
2005], and the simulated period is 1970–2000. In this case
the domain is the same in all simulation, encompassing the
Iberian Peninsula with a resolution of 30 Km. The ensemble
has been generated by selecting two different options of
physical schemes for each one of the following three para-
metrizations schemes: Planetary Boundary Layer, Micro-
physics and Cumulus. Thus, the major difference between the
two ensembles is the driving data (ERA40 vs. ERA Interim,
but in all cases updated every 6 hours), and the fact that the
MULTI-MODEL is more heterogeneous in terms of grid and
model setup. The use of two independent ensembles, with
different nature and spanning different periods, solidify the
findings analysed in this paper.
[10] To facilitate the comparison between different sour-

ces, all datasets have been interpolated onto the same grid
using a bilinear method. Given that observations do not cover
the ocean, a land mask has been applied also to the model
fields, so that calculations herein do not consider ocean grid-
cells. The common grid and land mask where all calculations
are performed is the original SPAIN02 grid, consisting in an
regular 0.2� � 0.2� latitude-longitude grid.

3. Results

3.1. Scoring the Models

[11] As mentioned above, this study uses three different
observational datasets to rank the models within two inde-
pendent ensembles, to analyze the impact of the choice of a
reference frame in the evaluation process. The ranking is
established according to how well models reproduce the
seasonal mean values of the three variables considered in a
reference period (1970–2000 for MULTI-PHYSICS and
1989–2008 for MULTI-MODEL). For the sake of simplicity,
a straightforward metric has been chosen, consisting of the
spatial correlation of observed and simulated fields, although
other metrics such as the Root Mean Squared Error, (RMSE)
have been employed with similar results. Top half of
Figure 1 shows the results of this scoring within the MULTI-
PHYSICS ensemble. First, the figure illustrates that a “best
model”, one that outperforms the others for all variables and
seasons, does not really stand out. This is in good agreement
with former analysis with ensembles of simulations [Coppola
et al., 2010; Jiménez-Guerrero et al., 2012; Jerez et al., 2012].
However, more interesting is to note that even focusing on one
variable and one season, the model ranking is very sensitive to
the choice of the observational database. For example in the
case of TMAX in winter, the pink model is the best when
SPAIN02 or AEMET databases are used as reference, but is
fourth when E-OBS is considered. The yellow model is the
best for reproducing maximum temperature in winter with
respect to E-OBS, while it is the worst with respect to
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AEMET. These are not isolated cases, but rather the general
picture that emerges from the figure. If the choice of the
observational database played a weak role in the validation
process, all colours would tend to line up. However, this is
clearly not the case. Instead, Figure 1 shows a rather quasi-
random distribution of skills, with the noticeable exception of
summer TMAX and PRE, where the squares tend to line up.
Results for the MULTI-MODEL ensemble, shown in the
bottom half of the Figure 1 are very similar and reinforce the
findings described for the MULTI-PHYSICS ensemble.

3.2. Spread in the Scores

[12] Figure 1 qualitatively illustrates how the order in the
ranking of climate models is sensitive to the observational
dataset employed as reference. In order to assess quantita-
tively the contribution of observations and models to the
evaluation of uncertainties, two new statistical parameters
have been defined. The spatial correlations of the climato-
logical patterns in a reference period are computed between
all combinations of models and observations. Thus, a set of
correlations ri,j is generated, where i runs over the 3 obser-
vational datasets and j the ensemble (8 elements in the
MULTI-PHYSICS ensemble and 5 in the MULTI-MODEL
ensemble). Within this set, the model spread (Dmod) is
defined as the mean (within the three observational data-
bases) of the maximum distance in the correlations across
the ensemble models. This is:

Dmod ¼ 1

3

X
i

max
i

ri; j;∀j
n o

� min
i

ri; j;∀j
n o� �

ð1Þ

Similarly, the observation-derived spread (Dobs) is defined
as the mean (within the ensemble) of the maximum distance
in the correlations through the databases:

Dobs ¼ 1

8

X
j

max
j

ri;j;∀i
n o

� min
j

ri;j;∀i
n o� �

ð2Þ

These statistics indicate the variability in the calculation of
the spatial correlation due to the use of different models
(Dmod) or observational datasets (Dobs). Obviously, these
spreads can be calculated using metrics other than the spatial
correlation, such as RMSE, and their comparison can
determine whether the uncertainties related to climate mod-
els are comparable to those in the observations.
[13] The results for the spreads associated with the calcu-

lation of spatial correlation and RMSE for the MULTI-
PHYSICS ensemble are shown in the first four columns of
Table 1. In precipitation, the spread among the models is
generally larger than in observations, regardless of the met-
ric employed to validate the models (with the noticeable
exception of spring precipitation, where differences among
observations are more prominent than those among models).
This indicates that the physical processes involved in pre-
cipitation are still not fully understood (note that although
the model is the same in all the ensemble members, each one
employs different parametrization schemes), with underly-
ing uncertainties that exceed those associated to observa-
tions. However, the situation is different for temperature,
where the spread in the correlation is generally larger for
observations than for models. This indicates that uncertain-
ties in observations are at least as relevant as those within
this ensemble of simulations when evaluating how models

Figure 1. Scoring results within the (top) MULTI-PHYS-
ICS ensemble and (bottom) MULTI-MODEL ensemble. In
each case, there are 12 panels representing the result of the
scoring separately for each season (by columns) and variable
(by rows) considered here. Within a panel, each colour
represents a model configuration. The lower is the square
in the column, the better the model performs with respect
to a given observational database. The three columns within
a panel represent the scoring using the three observational
datasets in this order (from left to right): SPAIN02, AEMET
and E-OBS. The colours legend is not shown deliberately,
and grey squares represent the ensemble average.
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reproduce maximum and minimum temperature patterns. In
the case of RMSE, the spread between model configurations
is larger due to the systematic biases that different para-
metrizations introduce, and in particular Jerez et al. [2012]
pointed out that the largest differences among parametriza-
tions schemes were due to the PBL scheme. An exception is
TMIN in summer, where differences in the observations are
even greater than among models (the spatial-average of
TMIN in SPAIN02 is half a degree colder than in the other
two databases, which has an important impact in the calcu-
lation of RMSE, and hence Dobs).
[14] The same calculations have been applied to the

MULTI-MODEL ensemble, and are shown in the last four
columns in Table 1. Performing the same analysis in two
ensembles allows for an assessment of the robustness of
these findings, given their different nature. The results are
consistent with the former analysis: for precipitation, the
spread in models is larger than for observations, while for
temperature it depends on which metrics has been employed.
As before, the observations exhibit larger uncertainties for
correlation in temperature variables, but lower when RMSE
is employed. It is noteworthy that although the size of the
MULTI-MODEL ensemble is smaller, the spread among the
models is generally larger than in the MULTI-PHYSICS
ensemble. This is due to the fact that the former includes not
only different parametrization schemes, but also completely
different RCMs and even slightly different domains although
with the same spatial resolution.

4. Discussion

[15] Most methodologies developed so far for weighting
simulations of climate change do not take into account explic-
itly the uncertainty contained in the observational database used
as reference. This approach is based in the assumption that
the observational uncertainty is small compared with inter-
model variability [Gleckler et al., 2008]. However, Räisänen
et al. [2010] explored the sensitivity to the observational
database in the weighting of global circulation models, and
concluded that uncertainties in observations are not negligi-
ble in all circumstances. This fact has also been pointed out
by other authors in a regional model context [Christensen
et al., 2010; Lenderink, 2010]. In general terms, it is expec-
ted that when the intermodel variability decreases, as is the

case when an ensemble is driven by the same “perfect”
boundary conditions, the observation uncertainties becomes
relevant.
[16] In this analysis, three different gridded observational

databases over Spain are employed, which contain daily
series of maximum and minimum temperature as well as
precipitation. The aim is to rank the models in two indepen-
dent ensembles of high-resolution climate simulations driven
by “perfect” boundary conditions. In good agreement with
previous attempts [e.g., Räisänen et al., 2010; Kjellström
et al., 2010; Lenderink, 2010; Lorenz and Jacob, 2010;
Jerez et al., 2012], the analysis shows that it is not possible to
identify a “best model”, given that the performance of the
model depends on which season and variable is considered
more relevant. More importantly, the ranking of the models is
also sensitive to the choice of the observational database used
to evaluate the simulations. Even considering the same vari-
able and season, a model can be scored as one of the best/
worst in the ensemble depending on what database is used as
reference. Two spreads that allow the comparison of quanti-
tative uncertainties within an ensemble with those embedded
in the observations are defined. For precipitation, the spread
among the models is larger than that among the observations
in the two ensembles. However, for maximum and minimum
temperatures, it turns out that uncertainties among observa-
tions are at least as relevant, when ranking models according
to how well they reproduce the climatological values, as
uncertainties among the models within an ensemble. The fact
that the same conclusions can be drawn from both ensembles
reinforces our findings. Indeed, the major difference between
them is that the spreads between models are generally larger
in the MULTI-MODEL ensemble, although it is smaller.
This is due to the fact that their members not only consider
different parametrization schemes, but complete RCMs and
even slightly different domains.
[17] Despite its successful implementation in seasonal fore-

casting, the development of an objective, general and widely
accepted methodology to weight climate change projections
has turned out to be difficult.Weigel et al. [2010] explored the
risks involved with a conceptual model, and demonstrated that
although errors in equally weighted multimodels can be
reduced by model weighting, if the real uncertainties are not
properly taken into account more information may actually be
lost than gained by optimum average. The comparison exercise

Table 1. Spread in the Calculation of Spatial Correlation (�100) and RMSE (in Degrees Celsius for TMAX and TMIN and mm/season
for PRE) Within the MULTI-PHYSICS Ensemble and MULTI-MODEL Ensemble for All Variables and Seasons

Var. Seas.

MULTI-PHYSICS MULTI-MODEL

COR (�100) RMSE COR (�100) RMSE

Dmod Dobs Dmod Dobs Dmod Dobs Dmod Dobs

TMAX DJF 1.53 3.45 1.88 0.66 3.19 5.16 1.84 0.57
MAM 1.42 3.73 1.49 0.95 3.52 3.27 1.85 0.58
JJA 3.92 4.23 1.56 1.20 2.51 2.57 1.70 0.62
SON 1.77 2.99 1.60 0.90 2.02 3.08 1.39 0.57

TMIN DJF 1.86 4.71 1.51 0.46 4.02 4.89 1.12 0.41
MAM 2.50 4.07 0.76 0.44 3.91 5.14 1.17 0.38
JJA 1.87 4.50 0.46 0.56 4.54 5.55 2.28 0.64
SON 1.32 4.49 0.94 0.53 3.56 4.77 1.84 0.45

PRE DJF 3.83 1.71 10.73 9.97 7.74 4.95 38.69 10.84
MAM 6.94 8.21 9.39 17.05 11.50 4.23 60.76 10.66
JJA 16.6 3.64 51.94 11.81 8.74 4.46 53.03 9.85
SON 11.09 6.99 17.06 15.87 10.55 6.79 46.78 16.30
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developed in this paper demonstrates that the uncertainties in
the observational databases are not negligible in some cir-
cumstances, and that non uniform weighting should only be
used with great care. In particular, sticking to a unique obser-
vational database to weight an ensemble of climate models
according to how well they reproduce these observations is
somewhat inappropriate, as this procedure propagates the
uncertainties in the observations to the weighted result. The
authors consider that new techniques should be implemented to
overcome this problem, although finding a proper solution is
beyond the scope of the present paper. For example the
observational uncertainty arising from the existence of different
observational data sets can be naturally included in probabi-
listic projections of regional climate change within a Bayesian
framework [Tebaldi et al., 2005], although to our knowledge it
has not been done yet.
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