
A LIMITING CASE OF ULTRASYMMETRIC SPACES

PEDRO FERNÁNDEZ-MARTÍNEZ AND TERESA SIGNES

Abstract. We study ultrasymmetric spaces in the case in which the fundamental
function belongs to a limiting class of (quasi)-concave functions. In the process
we study limiting cases of J interpolation spaces and establish new J-K identities
as well as a reiteration theorem for these limiting interpolation methods.

1. Introduction

Rearrangement invariant (symmetric) function spaces is a class of spaces widely
studied and very useful in applications. The best known are Lebesgue spaces Lp,
Lorentz spaces Lp,q, Lorentz-Zygmund spaces Lp,q(logL)α, Orlicz spaces and their
generalizations. We refer, for example, to the books by Bennett and Sharpley [3],
Krĕın, Petunin and Semenov [17], Lindenstrauss and Tzafriri [18] for more informa-
tion about symmetric spaces.

In 2003 E. Pustylnik introduced a large class of spaces which comprises an impor-
tant part of symmetric spaces that includes Lorentz-Zygmund spaces and their gen-
eralizations. These spaces, called ultrasymmetric spaces, are symmetric spaces with
the additional property that they are interpolation spaces for the couple (Λϕ,Mϕ)
formed by the Lorentz and the Marcinkiewicz spaces with the same fundamental
function ϕ. That is to say, they are invariant for any quasilinear operator T which
is bounded on Λϕ and on Mϕ. See [21] for more information.

An important advantage of ultrasymmetric spaces is that they have a simple
analytical description. If G is an ultrasymmetric space the norm of the elements of
G have the form

‖f‖G ∼ ‖ϕ(t)f ∗(t)‖Ẽ,

where Ẽ is a symmetric function space with respect to the measure dt/t on (0,∞), ϕ
is the fundamental function of the space G and f ∗ is the decreasing rearrangement of
f . This allows generalizations of known results about classical spaces and turns out
to be useful in applications. For example, in [22], Pustylnik generalized the results
of Pietsch [20] on approximation spaces by modelling the sequence of approximation
numbers in ultrasymmetric sequence spaces instead of on Lebesgue sequence spaces.
See also [21] and [23] for other applications.

However, the analytical description holds only for those ultrasymmetric spaces
that are not too “close” to L∞. That is to say, the fundamental function of the

1991 Mathematics Subject Classification. 46B70, 46E30, 47B38.
Key words and phrases. Function spaces, ultrasymmetric spaces, interpolation theory.
Partially supported by Ministerio de Economı́a y Competividad (MTM2013-42220-P).

1



space G does not grow too slowly (both extension indices have to be strictly greater
that zero).

Our goal in this paper, in contrast to the work of Pustylnik, is to give an analytical
description for precisely those ultrasymmetric spaces that are close to L∞, in the
sense that the extension indices of the fundamental function are both equal to zero.

An easy example that illustrates this situation is the case of Lorentz-Zygmund
spaces L∞,q(logL)α. These are the spaces of all measurable functions on (0, 1)
defined through the norms

‖f‖∞,q,α =

(∫ 1

0

(
(ln e

t
)αf ∗(t)

)q dt
t

)1/q

, if α +
1

q
< 0

‖f‖∞,∞,α = sup
0<t<1

(ln e
t
)αf ∗(t), if α < 0.

The fundamental function of the space L∞,q(logL)α, 1 ≤ q ≤ ∞, is a power of the
logarithm with both extension indices equal to zero, so the results in [21] do not
cover this case that requires a special discussion. In Section 4 we solve this problem
and we obtain that L∞,q(logL)α are ultrasymmetric spaces when α + 1

q
< 0.

The refinement of the known techniques to characterize ultrasymmetric spaces
which are too close to L∞ needs some new results in interpolation theory. In partic-
ular, we make use of limiting J-spaces and establish an equivalence theorem between
limiting K and J constructions. The equivalence between limiting K and J-spaces
has been widely studied in recent years. For ordered couples, see the papers by
Cobos and Kühn [9], Cobos, Fernández-Cabrera, Kühn and Ullrich [6] and Cobos,
Fernández-Cabrera and Mastylo [7]. For arbitrary Banach couples and some choices
of parameters, see the papers by Cobos, Segurado [10, 11] and Cobos, Fernández-
Cabrera and Silvestre [8]. Our approach overcomes these restrictions allowing gen-
eral interpolation couples and a wider family of interpolation parameters as we
present in Section 2. The limiting equivalence theorem let us in a position to estab-
lish a new reiteration result, Theorem 3.6, that will turn out to be the cornerstone
for the analytical characterization of the limiting ultrasymmetric spaces.

The paper is organized as follows. In Section 2 we define the family of concave
functions we shall work with and we describe limiting K and J-spaces. Section 3
is devoted to prove equivalence and reiteration theorems. Finally, in Section 4 we
characterize Lorentz and Marcinkiewicz spaces whose fundamental functions lie in
the limiting class of concave functions and we establish the analytical description of
ultrasymmetric spaces.

Throughout the paper we do not distinguish spaces with equivalent norms. Given
two functions f and g defined on (0,∞), by f . g we mean that there is a contant
C > 0, independent of all parameters, such that f(t) ≤ Cg(t) for all t > 0. We
write f ∼ g if f . g and g . f .

Acknowledgements. We would like to thank E. Pustylnik for some very helpful
discussions on the subject.
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2. Preliminaries

In this section we collect some of the definitions and results that are needed to
follow the paper. Our framework is the family of function spaces on (0,∞), with
the Lebesgue measure, having the Fatou property as described in [3]. Among these,
rearrangement invariant (r.i.) spaces are characterized by the fact that equidis-
tributed functions have the same norm. This property allows to define the funda-
mental function of an r.i. space, E, as ϕE(t) = ‖χD‖E, where mes(D) = t, which is
a quasi-concave function. Since E can be equivalently renormed with a r.i. norm in
such a way that the resulting fundamental function is concave, we will assume that
ϕE is concave.

Furthermore, associated to the concave function ϕE we have the Lorentz space
ΛϕE and the Marcinkiewicz space MϕE defined by the norms

‖f‖ΛϕE
=

∫ ∞
0

f ∗(t) dϕE,

‖f‖MϕE
= sup

0<t<∞
ϕE(t)f ∗∗(t),

where f ∗(t) = inf{λ > 0, mes{|f | > λ} ≤ t} and f ∗∗(t) = 1
t

∫ t
0
f ∗(s)ds, t > 0.

These spaces are, respectively, the smallest and largest r.i. spaces with funda-
mental function ϕE, that is

ΛϕE ↪→ E ↪→MϕE

and each of the embeddings has norm 1. Therefore any r.i. space E is intermediate
for the couple (ΛϕE ,MϕE).

Let ϕ be an arbitrary positive finite function on (a,∞), 0 ≤ a < ∞, we denote
its associated dilation function by

mϕ(t) = sup
max{a, a

t
}<s<∞

ϕ(ts)

ϕ(s)
, 0 < t <∞.

If mϕ(t) is finite everywhere then there exist the lower and upper extension indices
of ϕ defined as

πϕ = sup
0<t<1

lnmϕ(t)

ln(t)
= lim

t→0+

lnmϕ(t)

ln(t)

and

ρϕ = inf
t>1

lnmϕ(t)

ln(t)
= lim

t→∞

lnmϕ(t)

ln(t)
.

In general, −∞ < πϕ ≤ ρϕ < ∞, but if ϕ is quasi-concave then 0 ≤ πϕ ≤ ρϕ ≤ 1.
Note also that both indices do not change after replacing ϕ(t) by arbitrary equivalent
function. As an example, for the family of functions ϕ(t) = tα(1+| log t|)β, α, β ∈ R,
the indices satisfy πϕ = ρϕ = α.
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Many properties of r.i. spaces can be expressed in terms of the extension indices
of their fundamental functions. For example, if ρϕE < 1 the Hardy operator

(Hf)(t) =
1

t

∫ t

0

f(s)ds

is bounded on an r.i. space E on ((0,∞), dt). The converse is also true if we
substitute ρϕE by the upper Boyd index of E (see, e.g. [17]). Other example appears
in the norm characterization of ultrasymmetric spaces defined by E. Pustylnik.

Definition 2.1 ([21]). Let ϕ : (0,∞) −→ (0,∞) a function with 0 ≤ πϕ ≤ ρϕ <∞.
A rearrangement invariant space G is called ultrasymmetric if it is a real interpola-
tion space between Λϕ and Mϕ. This inmediatelly implies that ϕG ∼ ϕ.

These spaces satisfy the following analytical description:

Theorem 2.2 (Thm. 2.1 and 2.2. in [21]). An r.i. space G with 0 < πϕG ≤ ρϕG <∞
is ultrasymmetric if and only if its norm is equivalent to

‖ϕ(t)f ∗(t)‖Ẽ
for some space Ẽ which is r.i. with respect to the measure dt/t and for any parameter
function ϕ ∼ ϕG. Moreover, the space E can be obtained from the couple (L1, L∞)
by the same interpolation F which gives G = F(ΛϕE ,MϕE).

The condition 0 < πϕG ≤ ρϕG < ∞ assures that the function ϕG does not grow
too slowly and keeps the space G apart from L∞. Observe that 0 = πϕL∞ = ρϕL∞ .

Despite the restriction on the extension indices of the fundamental function ϕ,
last characterization allows the identification of large families of r.i. spaces as ultra-
symmetric. That is the case of some Orlicz spaces, see the paper by Astashkin and
Maligranda [1], Lorentz-Zygmund spaces introduced by Bennett and Rudnick in [2],
generalized Lorentz-Zygmund spaces used by Edmunds, Gurka and Opic in [13] and
Opic and Pick [19] or Lorentz-Zygmund type spaces studied by Cwikel and Pustylnik
in [12].

In the present paper we deal with ultrasymmetric spaces that are close to L∞ in
the sense that both indices are zero. To describe the family of fundamental functions
of the r.i. spaces we work with we will use the iterated logarithms:{

L1(t) = `(t) = 1 + | log t|, t > 0

Ln+1(t) = `(Ln(t)), t > 0 and n ∈ N.

Similarly, for all s ∈ R, we consider the iterated exponential functions

E−1 (s) = e1−s, E−n+1(s) = E−n (es−1), n ≥ 1,

and
E+

1 (s) = es−1, E+
n+1(s) = E+

n (es−1), n ≥ 1.

It is clear that, for all n ∈ N, Ln(E−n (t)) = t if 0 < t ≤ 1 and Ln(E+
n (t)) = t if

1 ≤ t <∞.

Definition 2.3. We say that a positive function ϕ : (0,∞) −→ (0,∞) belongs to
the family P if it satisfies the following properties:

4



a) The function ϕ is concave or quasi-concave.
b) Both extension indices are zero, πϕ = ρϕ = 0.
c) There exist n0, n1 ∈ N such that the functions Φ0 and Φ1 defined as

Φ0(s) = ϕ(E−n0
(s)) and Φ1(s) = ϕ(E+

n1
(s)), s > 1,

fulfil the conditions:

c.1) Φ0(2t) ∼ Φ0(t), Φ1(2t) ∼ Φ1(t), for all t > 0.
c.2) The dilation indices satisfy

ρΦ0 < 0 < πΦ1 .

Remark 2.4. Condition c) allow us to write the function ϕ as

(1) ϕ(t) =

{
Φ0(Ln0(t)) if t ∈ (0, 1],

Φ1(Ln1(t)) if t ∈ (1,∞).

Moreover, hypothesis c.1) on functions Φ0 and Φ1 implies that ϕ(t2) ∼ ϕ(t), t > 0.

Remark 2.5. Functions in the class P are slowly varying functions. That is to say,
if ϕ ∈ P, then for every ε > 0 the function tεϕ(t), for t > 0, is equivalent to an
increasing function while t−εϕ(t), for t > 0, is equivalent to a decreasing function.

Examples 2.6. Some slowly varying functions can be described in terms of `(t) (the
case n = 1) through functions Φ0 and Φ1. That is the case of the broken logarithmic
functions, defined as

(2) `A(t) =

{
`α0(t), 0 < t ≤ 1
`α1(t), t > 1,

where A = (α0, α1) ∈ R2. Observe that Φ0(t) = tα0 and Φ1(t) = tα1 , t > 1, then
`A ∈ P if α0 < 0 < α1.

However, functions with even slowlier variation may need to be described in terms
of Ln, with n > 1. For example,

L(t) =

{
(` ◦ `)α1(t) · (` ◦ ` ◦ `)α2(t) t ∈ (0, 1]

(` ◦ ` ◦ `)β(t) t ∈ (1,∞),

can be described using L2(t) and L3(t) in the form

L(t) =

{
L2(t)α1 · `α2(L2(t)) t ∈ (0, 1]

L3(t)β t ∈ (1,∞).

Hence L ∈ P if α1 and α2 are negative and β is positive.

Next we describe the family of spaces we will use as parameters in the analytical
characterization of ultrasymmetric spaces. Let ϕ ∈ P and consider the natural
numbers n0, n1 provided by condition c) of Definition 2.3. We define the function

L(t) =

{
L1(t)L2(t) · · ·Ln0(t), t ∈ (0, 1]

L1(t)L2(t) · · ·Ln1(t), t ∈ (1,∞).
5



The function L depends on n0 and n1 which are determined by ϕ. Therefore L may
stand for different functions if we make differents choices of ϕ. However, this will
cause no confusion. Now we introduce the measure

ν(A) =

∫ ∞
0

χA(t)
dt

tL(t)
.

It is an straightforward computation to show that

(3) 1
tL(t)

=

−
L
′
n0

(t)

Ln0 (t)
if t ∈ (0, 1]

L
′
n1

(t)

Ln1 (t)
if t ∈ (1,∞)

.

We consider the couple (L̂1, L∞) of Lebesgue spaces with respect to the measure
ν,

‖f‖L̂1
=

∫ ∞
0

|f(t)| dt
tL(t)

and ‖f‖L∞ = sup
t>0
|f(t)|.

Since we consider function spaces with the Fatou property, given an r.i. space
E there exists an exact interpolation functor F that generates E from the couple

(L1, L∞), that is to say E = F(L1, L∞). We define Ê as the space generated by the

action of F on the couple (L̂1, L∞),

Ê = F(L̂1, L∞).

Then, Ê is an r.i. space with respect to the measure ν.

The norms of the spaces E and Ê can be directly connected without the use of
interpolation functors. For measurable functions f : (0,∞) −→ (0,∞) we have

‖f‖Ê(0,1) = ‖f(E−n0
(eu))‖E and ‖f‖Ê(1,∞) = ‖f(E+

n1
(eu))‖E.

Spaces Ê are often supplied with weights ϕ : (0,∞) −→ (0,∞). We denote by

Êϕ the space with the norm ‖f‖Êϕ = ‖ϕf‖Ê.

Next lemma shows basic properties of functions in the family P.

Lemma 2.7. Let ϕ ∈ P. Then

‖ϕ‖L̂1(0,s) . ϕ(s) and ‖1/ϕ‖L̂1(s,∞) . 1/ϕ(s)

for all s ∈ (0,∞).

Proof. For 0 < s ≤ 1 we use the expression of ϕ on (0, 1) to write

‖ϕ‖L̂1(0,s) =

∫ s

0

ϕ(t)
dt

tL(t)
=

∫ s

0

Φ0(Ln0(t))
dt

tL(t)

= −
∫ s

0

Φ0(Ln0(t))
L
′
n0

(t)

Ln0(t)
dt =

∫ ∞
Ln0 (s)

Φ0(u)
du

u
.

By hypothesis ρΦ0 < 0, then using Corollary 1 of [17, p. 57] we get

‖ϕ‖L̂1(0,s) ∼ Φ0(Ln0(s)) = ϕ(s).

Similarly it can be proved that ‖ϕ‖L̂1(0,s) . ϕ(s) when s > 1 and the second estimate.
�
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Now we recall the definitions of the K and J interpolation methods in the context
we are going to use them. We refer to the monographs [5] and [4] for an complete
account on K and J interpolation methods.

Let A = (A0, A1) be a Banach couple, that is, A0 and A1 are Banach spaces
continuously embedded in some Hausdorff topological vector space. For t > 0,
Peetres’s K and J-functionals are defined by

K(t, a) = K(t, a;A0, A1)

= inf
{
‖a0‖0 + t‖a1‖1; a = a0 + a1, ai ∈ Ai

}
, a ∈ A0 + A1

and

J(t, a) = J(t, a;A0, A1) = max
{
‖a‖A0 , t‖a‖A1

}
, a ∈ A0 ∩ A1.

Throughout the paper, the function

ϕ̂(t) = ϕ(t)
t
, t > 0,

will simplify our notation.

Definition 2.8. Let A = (A0, A1) be a Banach couple, ϕ ∈ P and let E be an r.i.
space. The space (A0, A1)K

Êϕ̂
consists of all those elements a in A0 +A1 that satisfy

‖K(t, a)‖Êϕ̂ <∞.

These spaces can be seen as extreme K-spaces with parameter θ = 1, since

‖a‖K
Êϕ̂

= ‖t−1ϕ(t)K(t, a)‖Ê.

Moreover, when E = Lq for 1 ≤ q <∞, (A0, A1)K
Êϕ̂

coincides with the interpolation

space (A0, A1)1,ϕ(t)/L1/q(t),Lq defined in [14] by the norm

‖a‖K
L̂ϕ̂q

=
(∫ ∞

0

( K(t, a)

tL1/q(t)/ϕ(t)

)q dt
t

)1/q

,

while (A0, A1)K
L̂ϕ̂∞

= (A0, A1)1,ϕ(t),L∞ . We refer to [14], [16] and the bibliography

therein, for reiteration theorems of those methods. Moreover, in [15] the spaces
(A0, A1)K

Êϕ̂
are identified with extreme reiteration spaces when the function ϕ ∈ P

with L(t) = `(t), t > 0.
It is easy to check by standard arguments that the space (A0, A1)K

Êϕ̂
is not only a

Banach space but also an interpolation space for the couple (A0, A1). See [4] or [14,
Prop. 3.2].

Next we introduce J interpolation spaces.

Definition 2.9. Let A = (A0, A1) be a Banach couple, ϕ ∈ P and let E be an r.i.
space. We say an element a ∈ A0 + A1 belongs to the space (A0, A1)J

Êϕ̂L
if there

exists a representation of a as

(4) a =

∫ ∞
0

u(t)
dt

t

where u is a strong measurable function with values in A0 ∩ A1, satisfying that

(5)
∥∥J(t, u(t))

∥∥
Êϕ̂L

<∞.
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The norm of the element a in the space (A0, A1)J
Êϕ̂L

is given by

‖a‖J
Êϕ̂L

= inf
{
‖J(t, u(t))‖Êϕ̂L

}
,

where the infimum is taken over all representations of a satisfying (4) and (5).

Standard arguments show that

A0 ∩ A1 ↪→ (A0, A1)J
Êϕ̂L

.

In the next section, we will prove that the space (A0, A1)J
Êϕ̂L

is embedded in the

sum A0 + A1, establishing that it is an intermediate space for the couple (A0, A1).
Actually, it is an interpolation space too. See [4], § 3.2.

3. J-K Identities

Now we obtain an equivalence theorem between theK and J limiting interpolation
spaces and a reiteration result. Let us begin with the embedding(

A0, A1

)J
Êϕ̂L

↪→
(
A0, A1

)K
Êϕ̂
.

J and K-functionals of any element a in A0 ∩ A1 are related by the inequality

K(t, a) ≤ min
{

1, t
s

}
J(s, a), t, s > 0.

This makes the operator (
Sf
)
(t) =

∫ ∞
0

min{1, t
s
}f(s)ds

s

an important tool to establish embeddings of J-spaces into the K-spaces. Next
result will be useful for this purpose.

Proposition 3.1. Let ϕ ∈ P and let E be an r.i space. Then, the operator

(6) S : Êϕ̂L −→ Êϕ̂

is bounded.

Proof. We prove first that the operator S is bounded between L1 spaces. Let f ∈
L̂ϕ̂L1 , then

‖Sf(t)‖
L̂ϕ̂1
≤
∫ ∞

0

ϕ̂(t)

∫ ∞
0

min{1, t
s
}|f(s)|ds

s
dt
tL(t)

=

∫ ∞
0

ϕ(t)

t

(∫ t

0

|f(s)|ds
s

+

∫ ∞
t

t
s
|f(s)|ds

s

)
dt
tL(t)

=

∫ ∞
0

(∫ ∞
s

ϕ(t)

tL(t)
dt
t

)
|f(s)|ds

s
+

∫ ∞
0

(∫ s

0

ϕ(t) dt
tL(t)

)
|f(s)|
s

ds
s

By Lemma II.1.5 of [17] and Lemma 2.7, we get
8



‖Sf‖
L̂ϕ̂1
.
∫ ∞

0

ϕ(s)
sL(s)
|f(s)|ds

s
+

∫ ∞
0

ϕ(s)

s
|f(s)|ds

s

=

∫ ∞
0

ϕ̂(s)( 1
L(s)

+ 1)|f(s)|ds
s

. ‖f‖
L̂ϕ̂L1

.

Now we proceed to prove that the operator S : L̂ϕ̂L∞ −→ L̂ϕ̂∞ is also bounded. We
claim that

(7)

∫ ∞
0

min
{

1, t
s

}
1

ϕ̂(s)L(s)
ds
s
. 1

ϕ̂(t)

(
1

L(t)
+ 1
)
, t > 0.

Actually, by Lemma II.1.4 of [17]∫ t

0

1
ϕ̂(s)L(s)

ds
s

=

∫ t

0

s
ϕ(s)L(s)

ds
s
∼ t

ϕ(t)L(t)
= 1

ϕ̂(t)L(t)
, t > 0.

On the other hand, Lemma 2.7 assures that∫ ∞
t

1
sϕ̂(s)L(s)

ds
s
. 1

tϕ̂(t)
, t > 0.

This establishes (7). Now choose f ∈ L̂ϕ̂L∞ , then

‖Sf‖
L̂ϕ̂∞
≤ sup

0<t<∞
ϕ̂(t)

∫ ∞
0

min{1, t
s
}|f(s)|ds

s

≤ ‖f‖
L̂ϕ̂L∞

sup
0<t<∞

ϕ̂(t)

∫ ∞
0

min
{

1, t
s

} 1

ϕ̂(s)L(s)

ds

s

. ‖f‖
L̂ϕ̂L∞

.

Finally, by interpolation we get that the operator (6) is bounded. �

We are now in position to establish the embedding of the J-space into the K-space.

Theorem 3.2. Let A = (A0, A1) be a Banach couple and let ϕ ∈ P, then(
A0, A1

)J
Êϕ̂L

↪→
(
A0, A1

)K
Êϕ̂
.

Proof. Let a =
∫∞

0
u(t)dt

t
be a representation of a ∈

(
A0, A1

)J
Êϕ̂L

such that

‖J(t, u(t))‖Êϕ̂L ≤ (1 + ε)‖a‖J
Êϕ̂L

for some ε > 0. The K-functional of a can be estimated in terms of the operator S
acting on the J-functional as follows. For t, s > 0,

K(t, a) = K

(
t,

∫ ∞
0

u(s)
ds

s

)
≤
∫ ∞

0

K(t, u(s))
ds

s

≤
∫ ∞

0

min{1, t
s
}J(s, u(s))

ds

s
= S

(
J(s, u(s))

)
(t).
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Therefore, by Proposition 3.1, we have

‖K(t, a)‖Êϕ̂ ≤ ‖SJ(t, u(t))‖Êϕ̂ ≤ ‖S‖ ‖J(t, u(t))‖Êϕ̂L
≤ (1 + ε)‖S‖ ‖a‖J

Êϕ̂L
,

where ‖S‖ stands for the norm of the operator (6). This completes the proof. �

As a direct consequence we get that the J-space is embedded in the sum, so it is
intermediate for the couple (A0, A1).

Now we focus on the reverse embedding(
A0, A1

)K
Êϕ̂

↪→
(
A0, A1

)J
Êϕ̂L

.

The following properties of the K-functional for the elements in the space (A0, A1)K
Êϕ̂

play an important role in the process of showing that every element in (A0, A1)K
Êϕ̂

is also an element of the space (A0, A1)J
Êϕ̂L

.

Proposition 3.3. Let A = (A0, A1) be a Banach couple and let ϕ ∈ P. If a ∈
(A0, A1)K

Êϕ̂
, then

K(t, a)→ 0 as t→ 0,

K(t, a)

t
→ 0 as t→∞.

Proof. Choose s < 1 such that Ln0(s) > e and let b = E−n0
(1
e
Ln0(s)). Then, using

the concavity of the K-functional and of ϕ, we get

‖a‖
A
K

Êϕ̂
= ‖ϕ̂(t)K(t, a)‖Ê ≥ ‖

ϕ(t)
t
K(t, a)‖Ê(s,b)

≥ K(s, a)ϕ(b)
b
‖χ(s,b)‖Ê = K(s, a)ϕ(b)

b
ϕÊ(1).

Hence, b
ϕ(b)
‖a‖

A
K

Êϕ̂
& K(s, a) ≥ 0. Now, if s→ 0 then b→ 0 and b

ϕ(b)
→ 0 (since the

lower index of the function t
ϕ(t)

is strictly positive) which proves that K(s, a) → 0

if s→ 0.
For the second limit choose s > 1 such that Ln1(s) > e and let b = E+

n1
(1
e
Ln1(s)).

Then

‖a‖
A
K

Êϕ̂
= ‖ϕ̂(t)K(t, a)‖Ê ≥ ‖ϕ(t)K(t,a)

t
‖Ê(b,s)

≥ K(s,a)
s

ϕ(b)‖χ(b,s)‖Ê = K(s,a)
s

ϕ(b)ϕÊ(1).

Since πΦ1 > 0, lims→∞ ϕ(E+
n1

(1
e
Ln1(s)) = lims→∞Φ1(1

e
Ln1(s)) = ∞ and we deduce

that lims→∞
K(s,a)
s

= 0. �

Next result gives the inclusion of the K-space into the J-space.

Theorem 3.4. Let ϕ ∈ P and E be a r.i. space. Then, for any Banach couple
A = (A0, A1),

(A0, A1)K
Êϕ̂

↪→ (A0, A1)J
Êϕ̂L

.

10



Proof. Let us begin by establishing a partition of (0,∞). Define the increasing
sequence (λν)ν∈Z as

λν =

{
E−n0

(2−ν) if − ν ∈ N,
E+
n1

(2ν) if ν ∈ N ∪ {0},

and the family of intervals

Iν =


(λν−1, λν ] if − ν ∈ N
(λ−1, λ0) if ν = 0

[λν−1, λν) if ν ∈ N.

Let a ∈ (A0, A1)K
Êϕ̂

. Using the properties of the K-functional, we can find decom-
positions a = a1,ν + a0,ν , ai,ν ∈ Ai, such that

‖a0,ν‖A0 + λν−1‖a1,ν‖A1 ≤ 2K(λν−1, a) for ν ∈ Z.

The elements vν = a0,ν − a0,ν−1 = a1,ν−1 − a1,ν in A0 ∩ A1 represent the element a
through the series a =

∑
ν∈Z vν . Actually

a−
M∑

ν=−N

vν = a−
M∑

ν=−N

(a0,ν − a0,ν−1) = a− (a0,M − a0,−N−1)

= a1,M − a0,−N−1.

Moreover, by Lemma 3.3,

∥∥∥a− M∑
ν=−N

vν

∥∥∥
A0+A1

≤ ‖a0,−N−1‖A0 + ‖a1,M‖A1

≤ 2K(λ−N−2, a) + 2
1

λM−1

K(λM−1, a)→ 0

as M,N →∞ since λ−N−2 → 0 as N →∞ and λM−1 →∞ as M →∞.
In order to prove that a is an element of the J-space an integral representation of

a is required, so we define

v(t) =
vν

µ(Iν)L(t)
if t ∈ Iν with ν ∈ Z,

where µ(Iν) =
∫
Iν

dt
tL(t)

= log(2). Clearly∫ ∞
0

v(t)
dt

t
=
∑
ν∈Z

vν = a.

Next we establish estimates for the function L(t)J(t, v(t), A0, A1)/t, t > 0, on
every interval Iν , ν ∈ Z. Take t ∈ Iν with ν ∈ Z, using the monotonicity of the

11



K-functional and of the sequence (λν)ν∈Z, we have

L(t)

t
J(t, v(t)) . max{1

t
‖vν‖A0 , ‖vν‖A1}

≤ max
{ 1

λν−1

‖a0,ν − a0,ν−1‖A0 , ‖a1,ν−1 − a1,ν‖A1

}
≤
[ 1

λν−1

‖a0,ν‖A0 + ‖a1,ν‖A1 +
1

λν−1

‖a0,ν−1‖A0 + ‖a1,ν−1‖A1

]
.

1

λν−2

K(λν−2, a).

Since E is a rerrangement-invariant space, using that
⋃
ν∈Z Iν = (0,∞) and the

previous estimates, we derive

‖a‖J
Êϕ̂L
≤
∥∥∥ϕ(t)

t
L(t)J(t, v(t))

∥∥∥
Ê

=
∥∥∥∑
ν∈Z

ϕ(t)

t
L(t)J(t, v(t))χIν (t)

∥∥∥
Ê

.
∥∥∥ ∑
ν≤−2

ϕ(t)
1

λν−2

K(λν−2, a)χIν (t)
∥∥∥
Ê

(8)

+
∥∥∥∑
ν≥3

ϕ(t)
1

λν−2

K(λν−2, a)χIν (t)
∥∥∥
Ê

(9)

+
∥∥∥ 2∑
ν=−1

ϕ(t)K(λν−2, a)χIν (t)
∥∥∥
Ê
.(10)

In order to estimate summand (8) we notice that if t ∈ Iν with ν ≤ −2 then
E−n0

(4Ln0(t)) ∈ Iν−2 = (λν−3, λν−2] and so

1

λν−2

K(λν−2, a) ≤ 1

E−n0
(4Ln0(t))

K(E−n0
(4Ln0(t)), a).

Moreover, ϕ(t) = Φ0(Ln0(t)) ∼ Φ0(4Ln0(t))) = ϕ(E−n0
(4Ln0(t))) for t ∈ Iν with

ν ≤ −2. Then∥∥∥ ∑
ν≤−2

ϕ(t)

λν−2

K(λν−2, a)χIν (t)
∥∥∥
Ê

.
∥∥∥ ∑
ν≤−2

ϕ(E−n0
(4Ln0(t)))

E−n0
(4Ln0(t))

K(E−n0
(4Ln0(t)), a)χIν (t)

∥∥∥
Ê

=
∥∥∥ϕ(E−n0

(4Ln0(t)))

E−n0
(4Ln0(t))

K(E−n0
(4Ln0(t)), a)

∥∥∥
Ê(0,E−n0

(4))

=
∥∥∥ϕ(t)

t
K(t, a)

∥∥∥
Ê(0,1)

.

12



Last estimate is due to the fact that

σ− :
(

(0, 1),
dt

tL(t)

)
−→

(
(0, E−n0

(4)),
dt

tL(t)

)
t 7−→ E−n0

(4Ln0(t))

is a measure preserving transformation, so f ◦ σ− and f are equimesurable and

‖f ◦ σ−‖Ê(0,E−n0
(4)) = ‖f‖Ê(0,1).

Similarly, to estimate the term (9) notice that if t ∈ Iν with ν ≥ 3, then
E+
n1

(1
4
Ln1(t)) ∈ Iν−2 = [λν−3, λν−2), therefore

1

λν−2

K(λν−2, a) ≤ 1

E+
n1

(1
4
Ln1(t))

K(E+
n1

(1
4
Ln1(t)), a).

Now ϕ(t) ∼ ϕ(E+
n1

(1
4
Ln1(t))) for t ∈ Iν with ν ≥ 3, and the transformation

σ+ :
(

(1,∞),
dt

tL(t)

)
−→

(
(E+

n1
(4),∞),

dt

tL(t)

)
t 7−→ E+

n1
(1

4
Ln1(t))

preserves the measure. Using the same techniques as above we obtain the estimates∥∥∥∑
ν≥3

ϕ(t)

λν−2

K(λν−2, a)χIν (t)
∥∥∥
Ê

.
∥∥∥∑
ν≥3

ϕ(E+
n1

(1
4
Ln1(t)))

E+
n1

(1
4
Ln1(t))

K(E+
n1

(1
4
Ln1(t)), a)χIν (t)

∥∥∥
Ê

≤
∥∥∥ϕ(E+

n1
(1

4
Ln1(t)))

E+
n1

(1
4
Ln1(t))

K(E+
n1

(1
4
Ln1(t)), a)

∥∥∥
Ê(E+

n1
(4),∞)

∼
∥∥∥ϕ(t)

t
K(t, a)

∥∥∥
Ê(1,∞)

.

The remaining term, (10), obviously satisfies the inequality∥∥∥ 2∑
ν=−1

ϕ(t)K(λν−2, a)χIν (t)
∥∥∥
Ê
.
∥∥∥ϕ(t)

t
K(t, a)

∥∥∥
Ê
.

Putting together the previous estimates

‖a‖J
Êϕ̂L
.
∥∥∥ϕ(t)

t
K(t, a)

∥∥∥
Ê

= ‖a‖K
Êϕ̂

and the theorem is proved. �

Theorems 3.2 and 3.4 yield the equivalence theorem.

Theorem 3.5. Let A = (A0, A1) be a Banach couple. Then, for any ϕ ∈ P and any
r.i. space E (

A0, A1

)J
Êϕ̂L

=
(
A0, A1

)K
Êϕ̂
.

13



Now we are in a position to establish the reiteration theorem. The proof follows
classical techniques (see [5]).

Theorem 3.6. Let F be an interpolation functor and A = (A0, A0) a Banach couple.
Then, for any ϕ ∈ P

(11) F
(

(A0, A1)K
L̂ϕ̂1
, (A0, A1)K

L̂ϕ̂∞

)
= (A0, A1)K

Êϕ̂

where Ê = F
(
L̂ϕ̂1 , L̂

ϕ̂
∞
)
.

Proof. Consider the couple L1 =
(
L1, L1(1

t
)
)
. The J interpolation method (· , ·)J

Êϕ̂L

is minimal among all those methods M that satisfy the embedding

Êϕ̂L ↪→M(L1).

Let us consider the interpolation method

F
(

(·, ·)J
L̂ϕ̂L1

, (·, ·)J
L̂ϕ̂L∞

)
.

If we make it act on the couple L1 we get

F
(

(L1)J
L̂ϕ̂L1

, (L1)J
L̂ϕ̂L∞

)
= F

(
L̂ϕ̂L1 , L̂ϕ̂L∞

)
= Êϕ̂L.

Therefore, by the minimality property of the J-method

(12) (A0, A1)J
Êϕ̂L

↪→ F
(

(A0, A1)J
L̂ϕ̂L1

, (A0, A1)J
L̂ϕ̂L∞

)
.

Similarly, consider the couple L∞ =
(
L∞, L∞(1

t
)
)

and recall that theK-interpolation

method (· , ·)K
Êϕ̂

is maximal among all those methods M that acting on the couple

L∞ satisfy that

M(L∞) ↪→ Êϕ̂.

In particular, if we choose the interpolation method

F
(

(·, ·)K
L̂ϕ̂1
, (·, ·)K

L̂ϕ̂∞

)
and we make it act on the couple L∞ we obtain

F
(

(L∞)K
L̂ϕ̂1
, (L∞)K

L̂ϕ̂∞

)
= F

(
L̂ϕ̂1 , L̂

ϕ̂
∞

)
= Êϕ̂.

Therefore, the maximality of the K-method acting on the couple L∞ yields

(13) F
(

(A0, A1)K
L̂ϕ̂1
, (A0, A1)K

L̂ϕ̂∞

)
↪→ (A0, A1)K

Êϕ̂
.

Now, the combination of embeddings (12), (13) and Theorem 3.2 establishes

A
J

Êϕ̂L ↪→ F
(
A
J

L̂ϕ̂L1
, A

J

L̂ϕ̂L∞

)
↪→ F

(
A
K

L̂ϕ̂1
, A

K

L̂ϕ̂∞

)
↪→ A

K

Êϕ̂ ,

which together with Theorem 3.4 gives the equality

F
(

(A0, A1)K
L̂ϕ̂1
, (A0, A1)K

L̂ϕ̂∞

)
= (A0, A1)K

Êϕ̂
.

This completes the proof. �
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4. Ultrasymmetric spaces

In this section we provide the analytical characterization of ultrasymmetric spaces
whose fundamental functions lie in the class P.

We start describing Lorentz and Marcinkiewicz spaces, with fundamental function
ϕ ∈ P, as K interpolation spaces for the couple (L1, L∞). For this purpose, we will
need the following assertion.

Lemma 4.1. Let ϕ : (0,∞) −→ (0,∞) be a function with upper index ρϕ < 1.
Then, for any r.i. space E, the Hardy operator

(14) (Hf)(t) =
1

t

∫ t

0

f(s)ds, t > 0,

is bounded on the space Êϕ. In particular,

(15) ‖ϕ(t)f ∗∗(t)‖Ê ∼ ‖ϕ(t)f ∗(t)‖Ê.
Proof. First we prove that the Hardy operator (14) is bounded on each of the spaces

L̂ϕ1 and L̂ϕ∞. Actually, let f ∈ L̂ϕ1 , then

‖Hf‖L̂ϕ1 ≤
∫ ∞

0

ϕ(t)
1

t

∫ t

0

|f(s)|ds dt

tL(t)

=

∫ ∞
0

|f(s)|
∫ ∞
s

ϕ(t)

tL(t)

dt

t
ds.

The condition ρϕ < 1 ensures that the function ϕ(t)/tL(t), t > 0, has upper index
less than zero. So

∫∞
s
ϕ(t)/tL(t)dt

t
∼ ϕ(s)/sL(s) (see [17, p. 57]) and

‖Hf‖L̂ϕ1 .
∫ ∞

0

ϕ(s)

sL(s)
|f(s)|ds = ‖f‖L̂ϕ1 .

The norm of operator H : L̂ϕ∞ −→ L̂ϕ∞ can be estimated similarly,

‖Hf‖L̂ϕ∞ ≤ sup
0<t<∞

ϕ(t)
1

t

∫ t

0

|f(s)|ds

= sup
0<t<∞

ϕ(t)

t

∫ t

0

ϕ(s)|f(s)| s

ϕ(s)

ds

s

≤ ‖f‖L̂ϕ∞
ϕ(t)

t

∫ t

0

s

ϕ(s)

ds

s

. ‖f‖L̂ϕ∞ .
Last equivalence follows from the fact that the function t/ϕ(t) has strictly positive
lower index (see [17, p. 57]).

Now, since Êϕ is an interpolation space between (L̂ϕ1 , L̂
ϕ
∞), we obtain that the

Hardy operator (14) is bounded on the space Êϕ. In particular, for any f ∈ Êϕ

‖ϕ(t)f ∗∗(t)‖Ê . ‖ϕ(t)f ∗(t)‖Ê.
This, together with the fact that f ∗(t) ≤ f ∗∗(t) for t > 0, yields the equivalence
(15). �
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Proposition 4.2. Let ϕ be a function in P, and consider the Lorentz and Marcinkiewicz
spaces associated to ϕ, Λϕ and Mϕ. Then

Λϕ = (L1, L∞)K
L̂ϕ̂1

and Mϕ = (L1, L∞)K
L̂ϕ̂∞
.

Proof. Let Lni and Φi, i = 0, 1, be the functions that appear in the description (1)
of ϕ. By hypothesis the dilation indices of Φ0 and Φ1 satisfy ρΦ0 < 0 < πΦ1 , then
there exist equivalent differentiable functions, which we denote in the same way,
such that

tΦ
′
0(t)

Φ0(t)
∼ −1 and

tΦ
′
1(t)

Φ1(t)
∼ 1,

for all t ≥ 1 (see [24, Lemma 2.1]). Hence we can assume that ϕ is a differentiable
function with

ϕ
′
(t) =

{
Φ
′
0(Ln0(t))L

′
n0

(t) t ∈ (0, 1)

Φ
′
1(Ln1(t))L

′
n1

(t) t ∈ (1,∞)
.

Using (3) we get that ϕ
′
(t) ∼ ϕ(t) 1

tL(t)
for all t > 0.

Now, using Lemma 4.1 and the above equivalences, we have that for any function
f ∈ Λϕ

‖f‖Λϕ = ϕ(0+)‖f‖L∞ +

∫ ∞
0

f ∗(t)dϕ(t) =

∫ ∞
0

f ∗(t)ϕ
′
(t)dt

∼
∫ ∞

0

f ∗(t)ϕ(t)
dt

tL(t)
∼
∫ ∞

0

f ∗∗(t)ϕ(t)
dt

tL(t)

=

∫ ∞
0

K(t, f ;L1, L∞)
ϕ(t)

t

dt

tL(t)

= ‖f‖(L1,L∞)K
L̂
ϕ̂
1

.

Notice that ϕ(0+) = 0 since πΦ0 < 0 and Petree’ s result K(t, f ;L1, L∞) = tf ∗∗(t),
t > 0.

Similarly, having in mind that L∞ = L̂∞ and Lemma 4.1, any f ∈Mϕ satisfies

‖f‖Mϕ = ‖ϕ(t)f ∗∗(t)‖L∞ = ‖ϕ̂(t)K(t, f ;L1, L∞)‖L̂∞ = (L1, L∞)K
L̂ϕ̂∞
.

�

The previous result can be compared with the classical result that assures that if
the parameter function ϕ has both dilation indices strictly between 0 and 1 then

Λϕ = (L1, L∞)K
L̃ϕ̂1

and Mϕ = (L1, L∞)K
Lϕ̂∞
,

where L̃1 is the space L1 with the homogeneous measure dt/t and, as usual, ϕ̂(t) =
ϕ(t)/t, t > 0.

Now we are in a position to establish our main result.

Theorem 4.3. An r.i. space G, with fundamental function ϕG ∈ P, is ultrasym-
metric if and only if its norm is equivalent to

‖f‖G ∼ ‖ϕ(t)f ∗(t)‖Ê
16



for some space Ê which is an r.i. space with respect to the measure dt/tL(t) and
for any parameter function ϕ ∼ ϕG. Moreover, if F is the interpolation method that

generates G from the couple (Λϕ,Mϕ) then Ê = F
(
L̂1, L̂∞

)
.

Proof. Take ϕ = ϕG and let F be the interpolation method that generates the
ultrasymmetric space G as

G = F(Λϕ,Mϕ).

Then, by Proposition 4.2 and Theorem 3.6 we get

G = F(Λϕ,Mϕ) = F
((
L1, L∞

)K
L̂ϕ̂1
,
(
L1, L∞

)K
L̂ϕ̂∞

)
=
(
L1, L∞

)K
Êϕ̂
,

where Ê = F(L̂1, L̂∞). Hence

‖f‖G = ‖K(t, f ;L1, L∞)‖Êϕ̂ = ‖tf ∗∗(t)‖Êϕ̂ = ‖ϕ(t)f ∗∗(t)‖Ê
∼ ‖ϕ(t)f ∗(t)‖Ê,

where the last inequality follows from Lemma 4.1.
Conversely, last chain of equivalences also shows that any r.i. space whose norm

is equivalent to ‖ϕ(t)f ∗(t)‖Ê coincides with the interpolation space

(L1, L∞)K
Êϕ̄

= F(Λϕ,Mϕ),

and therefore is an ultrasymmetric space. �

Example 4.4. Let 1 ≤ q < ∞ and −∞ < α < ∞. The Lorentz-Zygmund spaces
L∞,q(logL)α and Lαexp were introduced in [2] as the spaces of all measurable functions
on (0, 1) with the norms

‖f‖∞,q,α =

(∫ 1

0

(
(ln e

t
)αf ∗(t)

)q dt
t

)1/q

, if α +
1

q
< 0,

‖f‖∞,∞,α = sup
0<t<1

(ln e
t
)αf ∗(t), if α < 0,

respectively. In the case 1 ≤ q < ∞, the fundamental function of the space is

ϕ(t) = (ln(e/t))α+ 1
q , 0 < t < 1, which has both extension indices equal to zero, so

the results in [21] does not cover it. We write the norm of the space in the form

‖f‖∞,q,α =

(∫ 1

0

(
ϕ(t)f ∗(t)

)q dt

t ln(e/t)

)1/q

.

If α + 1
q
< 0, then ϕ ∈ P and, by Theorem 4.3, the Lorentz-Zygmund space

L∞,q(logL)α is ultrasymmetric, that is, it is an interpolation space between Λϕ

and Mϕ. Similarly, if α < 0 the space Lαexp is ultrasymmetric, that is, it is an
interpolation space for the couple (Λϕ,Mϕ) with ϕ(t) = (ln(e/t))α, 0 < t < 1.

Example 4.5. Similarly the generalized Lorentz-Zygmund spaces L∞,q,A defined in
[19] are ultrasymmetric.

Let (Ω, µ) denote a totally σ-finite measure space with a non-atomic measure µ
and let A = (α0, α1). The generalized Lorentz-Zygmund space L∞,q,A(Ω, µ) is the

17



set of all µ-measurable functions such that

‖f‖∞,q,A =

(∫ ∞
0

(
`A(t)f ∗(t)

)q dt
t

)1/q

<∞,

where `A is defined in (2). The fundamental function of this space is ϕ(t) = `A+1(t),
0 < t < 1, which belongs to P if α0 + 1

q
< 0 < α1 + 1

q
. Hence, by Theorem 4.3, the

generalized Lorentz-Zygmund space L∞,q,A(Ω, µ) is ultrasymmetric for α0 + 1
q
< 0 <

α1 + 1
q
.
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cia, Campus de Espinardo, 30071 Espinardo (Murcia), Spain

E-mail address: tmsignes@um.es

19


