

Funciones reales.

FUNCIONES

Una función es una correspondencia que asocia a cada elemento x de un conjunto A, denominado dominio, exactamente otro elemento f(x) en un conjunto B. El elemento f(x) se dice que es el valor de la función f en x o la imagen de x mediante f. El conjunto formado por todas las imágenes f(x) es denominado conjunto imagen.

En las definiciones de límites nos quedaremos, prácticamente, en una idea intuitiva:

Decimos que la función f(x) tiene como límite el número real L por la izquierda (respec. L' por la derecha), cuando x tiende hacia a siendo x < a (respec. x > a), si f(x) se aproxima a L (recpec. L') tanto como se desee, con la condición de que x esté lo suficientemente cerca de a. Se escribe

$$\lim_{x \to a_{x < a}} f(x) = \lim_{x \to a^{-}} f(x) = L \text{ (respec. } \lim_{x \to a_{x > a}} f(x) = \lim_{x \to a^{+}} f(x) = L').$$

Si existen los dos límites laterales y coinciden, se dice que f(x) tiene límite L cuando x tiende hacia a y escribimos:

$$\lim_{x\to a} f(x) = L.$$

CONTINUIDAD

Una función f(x) es continua en un punto a si verifica:

- 1. Existe f(a).
- 2. Existe $\lim_{x\to a} f(x)$ y vale, precisamente f(a).

Si existe $\lim_{x\to a^-} f(x) = f(a)$ decimos que f es continua en a por la izquierda; y si existe $\lim_{x\to a^+} f(x) = f(a)$ que lo es por la derecha.

La suma de dos funciones continuas, el producto de un escalar por una función continua, el producto de dos funciones continuas y el cociente de dos funciones continuas (siempre que el denominador no se anule), son funciones continuas.

Teorema del valor intermedio.- Si f es una función continua en [a, b] y k es cualquier valor entre f(a) y f(b), entonces existe, al menos, un número real $c \in [a, b]$, tal que f(c) = k.

Teorema de Bolzano.- Si f es una función continua en [a,b] y f(a)f(b) < 0, entonces existe al menos un punto $c \in [a,b]$ tal que f(c) = 0.

LÍMITES INFINITOS

Si f es una función tal que dado cualquier número real M > 0 (respec. N < 0), existe un valor de x suficientemente próximo a un punto a tal que f(x) > M (respec. f(x) < N), decimos que el límite de f(x) cuando x tiende hacia a es ∞ (respec. $-\infty$); y se escribe

$$\lim_{x \to a} f(x) = \infty$$
, (respec. $\lim_{x \to a} f(x) = -\infty$).

Igual que antes, se puede hablar de límites por la izquierda y por la derecha y escribimos:

$$\lim_{x\to a^-} f(x) = \infty, \quad \lim_{x\to a^-} f(x) = -\infty, \quad \lim_{x\to a^+} f(x) = \infty, \quad \lim_{x\to a^-} f(x) = -\infty.$$

Cuando alguno de estos límites existe, se dice que f(x) tiene una asíntota vertical, siendo x = a la recta asíntota.

LÍMITES EN EL INFINITO

Si f(x) es una función tal que existe un número real L tal que, cuanto más grande (respec. más pequeño) es x f(x) más se aproxima a L, decimos que el límite de f(x) cuando x tiende a ∞ (respec. $-\infty$), es L, y es cribimos:

$$\lim_{x \to \infty} f(x) = L, \quad \text{(respec.} \quad \lim_{x \to -\infty} f(x) = L \text{)}.$$

Cuando alguno de estos límites existe, se dice que f(x) tiene una asíntota horizontal, siendo y = L la recta asíntota.

DERIVADAS

Si f(x) es una función tal que existe el límite

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

decimos que f es derivable en a y su derivada vale f'(a).

La derivada de una función se interpreta geométricamente como la pendiente de la recta tangente a una función en un punto; así la ecuación de la recta tangente a f(x) e el punto (a, f(a))es y - f(a) = f'(a)(x - a).

A continuación, tenemos la reglas elementales de derivación de funciones, así como las derivadas de operaciones con funciones derivables.

f(x) = k = cte.	f'(x) = 0
f(x) = x	f'(x) = 1
$f(x) = x^a$	$f'(x) = ax^{a-1}$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$
$f(x) = \ln x$	$f'(x)\frac{1}{x}$
$f(x) = \log_a x$	$f'(x) = \frac{1}{\ln a} \frac{1}{x}$
$f(x) = e^x$	$f'(x) = e^x$
$f(x) = a^x$	$f'(x) = a^x \ln a$
$f(x) = \sin x$	$f'(x) = \cos x$
$f(x) = \cos x$	$f'(x) = -\sin x$
$f(x) = \tan x$	$f'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x$
$f(x) = \arcsin x$	$f'(x) = \frac{1}{\sqrt{1-x^2}}$
$f(x) = \arccos x$	$f'(x) = \frac{-1}{\sqrt{1-x^2}}$
$f(x) = \arctan x$	$f'(x) = \frac{1}{1+x^2}$

h(x) = f(x) + g(x)	h'(x) = f'(x) + g'(x)
$h(x) = \lambda f(x) \ (\lambda \in \mathbb{R})$	$h'(x) = \lambda f'(x)$
h(x) = f(x)g(x)	h'(x) = f'(x)g(x) + f(x)g'(x)
$h(x) = \frac{f(x)}{g(x)} \left(g(x) \neq 0 \right)$	$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$
$h(x) = (f \circ g)(x) = f(g(x))$	h'(x) = f'(g(x))g'(x)

Una función f es creciente (respec. decreciente) en un punto a si existe un intervalo abierto I que contiene a a y tal que $f(x) \le f(a)$ (respec. $f(x) \ge f(a)$) si $x \in I$ con x < a y $f(a) \le f(x)$ (respec. $f(a) \ge f(x)$) si $x \in I$ con x > a.

Teorema.- Si f es derivable en a, se verifican:

- a) Si f'(a) > 0, entonces f es creciente en a.
- b) Si f'(a) < 0, entonces f es decreciente en a.

Una función f(x) tiene en a un máximo relativo (respec. mínimo) si existe un intervalo abierto I que contiene a a y que verifica que $f(x) \leq f(a)$ (respec. $f(x) \geq f(a)$), para todo $x \in I$. A estos puntos se les llama extremos.

Teorema.-Si f tiene un extremo en a y es derivable en a, entonces f'(a) = 0.

Teorema.-Si f es derivable dos veces en a y f'(a) = 0, se verifican:

- a) Si f''(a) > 0, entonces, f(a) es un mínimo relativo.
- b) Si f''(a) < 0, entonces, f(a) es un máximo relativo.

Teorema de Rolle.- Sea f una función continua en un intervalo cerrado [a,b] y derivable en el intervalo abierto (a,b) tal que f(a)=f(b). Entonces existe un punto $c\in(a,b)$ tal que f'(c)=0.

Teorema del valor medio.-Sea f una función continua en un intervalo cerrado [a,b] y derivable en el intervalo abierto (a,b). Entonces existe un punto $c \in (a,b)$ tal que

$$f(b) - f(a) = f'(c)(b - a)$$