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6. Sintaxis de lenprop: alcances y supresión de paréntesis . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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8. Semántica veritativo-funcional: validez y consecuencia lógica . . . . . . . . . . . . . . . . . . . . 68
9. Formalización en lenprop: negaciones y conjunciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10. Formalización en lenprop: disyunciones, condicionales y bicondicionales . . . . . . . . 90
11. Dednatprop con primitivas: regla de premisas, modus ponens y modus tollens . . 101
12. Dednatprop con primitivas: doble negación, supuestos y prueba condicional . . . . 111
13. Dednatprop con primitivas: reglas de intro y elim de conjunción y disyunción . . 122
14. Dednatprop con primitivas: intro y elim de bicondic y reducción al absurdo . . . . 134
15. Más ejemplos de formalización y derivación en dednatprop con primitivas . . . . . . 143
16. Dednatprop con derivadas: conmutativas, transitiva, contradicciones y PTE . . . . 150
17. Dednatprop con derivadas: silogismo disyuntivo, interdefinición y De Morgan . . 161
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Tema 1

Organización de la asignatura

§ 1.1. DOCENCIA

Las clases de esta asignatura serán de tres tipos:

Temas: consistirán en leer uno de los temas del manual, y contes-
tar por escrito a las cuestiones que figuran al final del mismo. Para
ello, cada estudiante deberá traer consigo papel y boli, aśı
como este manual, ya sea en papel o en un dispositivo
(en pdf).

Controles: tendrán lugar en las clases prácticas, y consistirán
en evaluaciones de una parte de la materia.

Juntas: consistirán en un debate abierto y puesta en común (en
forma de asamblea), bajo la moderación del profesor.

Algunos temas se realizarán en grupos de dos personas (pero sin
repetir pareja a lo largo del cuatrimestre). El resto, se realizará de
forma individual.

Los controles se realizarán todos de forma individual y sin ningún
material de apoyo.
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LÓGICA FORMAL 1 (LÓGICA PROPOSICIONAL) 5

Las respuestas recibidas en clase a los temas y controles se colgarán
en la carpeta de Recursos del sitio web de esta asignatura en el Aula
virtual. Quien no desee que aparezca su nombre en estos ejercicios, o
en las tablas de calificaciones, puede acordar con el profesor el uso de
un apodo (o nickname), como por ejemplo “Mozart”.

§ 1.2. CRONOGRAMA

En la misma carpeta de Recursos del Aula virtual, se encontrará tam-
bién un Cronograma docente (abreviadamente, “Crono”), con el
detalle de todas las fechas y datos relevantes.

Dicho documento está disponible también para su libre descarga
en:

webs.um.es/picazo

§ 1.3. EVALUACIÓN

La evaluación de esta asignatura se realizará de la siguiente manera:

Temas: están planificados 24 temas, que se valorarán sobre 0,12
puntos cada uno, hasta un máximo de 2,88 puntos.

Controles: están planificados 10 controles, que se valorarán sobre
0,3 puntos cada uno, hasta un máximo de 3 puntos.

Tutoŕıas: la realización de una tutoŕıa (en cualquier momento
del cuatrimestre) se valorará sobre 0,12 puntos. Se realizará con
Gustavo Picazo, en la Planta 3 del Edificio Luis Vives, Despacho
3.065, y se podrá asistir en compañ́ıa.

https://webs.um.es/picazo/
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Examen: el examen final se valorará sobre 4 puntos. Junto al
examen, se podrá realizar opcionalmente un Anexo, para subir
la nota obtenida en temas, controles y tutoŕıas. Hacia la mitad
del cuatrimestre, se publicará un Modelo de examen (junto con
su Anexo), para dar idea del tipo de preguntas y el nivel de difi-
cultad.

Las juntas no se evalúan: ni la asistencia ni la participación en las
juntas repercuten en la calificación de manera alguna.

En función de las puntuaciones que se acaban de indicar, es posible
superar esta asignatura hasta con 6 puntos, sin presentarse
al examen.

Y también es posible obtener la máxima calificación en esta asig-
natura, sin realizar ningún tema, ni control, ni tutoŕıa: para ello, hay
que contar con la exención del departamento (véase a continuación),
y obtener la máxima calificación en el examen y su anexo.

§ 1.4. EXENCIÓN DE ASISTENCIA

La asistencia a las clases prácticas (es decir, a los controles) es
obligatoria. Si alguien no asiste al menos a un 70 % de estas clases, no
tiene derecho a superar la asignatura. La asistencia al resto de clases
(es decir, a los temas y a las juntas) es opcional.

Quien no pueda asistir a las clases prácticas por motivos justifica-
dos, deberá pedir la exención de asistencia al Departamento de
Filosof́ıa. Para ello, se dirigirá a la administrativa del departamento,
Maŕıa Dolores Gómez Giménez (“Maruja”, en la Planta 0 del Edificio
Luis Vives, Despacho 0.030).
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Quien obtenga dicha exención, podrá entregar online las
cuestiones de los temas, y tareas sustitutivas a los controles,
en la herramienta de Tareas del Aula virtual.

Si alguien tiene motivos justificados para faltar a un tema o control
de manera puntual, en relación a un d́ıa en concreto, puede comuni-
carlo a Gustavo Picazo (en persona, o por email a picazo@um.es).
El profesor, a la vista de las circunstancias, decidirá si autoriza la
realización online en ese caso puntual.

Quien no asista a un tema o control, y no tenga la exención del
departamento ni la autorización del profesor, no podrá realizarlo de
forma online. Si alguien hace la entrega online sin autorización, no se
le valorará.

§ 1.5. MEDITACIÓN

En algunos descansos entre clase y clase, realizaremos una iniciación a
la meditación (opcional, solo para quien quiera quedarse). Sobre esta
práctica, pueden consultarse:

“The neuroscience of mindfulness meditation” (Nature, 2015).

Los beneficios de la meditación (Daniel Goleman y Richard Da-
vidson, 2017).

Kairos zen (Gustavo Picazo, 2018).

Introducción al zen (Alexander Poraj-Zakiej, 2025).

mailto:picazo@um.es
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§ 1.6. AUTOCONCEPTO, ACTITUD Y RENDIMIENTO

Tras muchos años dando clase, he llegado al convencimiento de que
todes les estudiantes que he tenido poséıan el mismo nivel de inteli-
gencia, e incluso el mismo nivel de inteligencia para la filosof́ıa y para
la lógica: lo único que les separaba era su propia actitud y su propio
autoconcepto.

El autoconcepto es un elemento muy poderoso en la vida de las
personas. Un autoconcepto bajo de mı́ mismo hace que disminuya
mi motivación (“no voy a ser capaz de hacerlo”); la escasa motivación
hace que mi actitud sea poco aplicada (“para qué le voy a echar horas,
si no servirá de nada”); la falta de trabajo hace que disminuya mi
rendimiento, y el poco rendimiento me lleva a la obtención de bajos
resultados.

Por último, los bajos resultados redundan en un juicio externo ne-
gativo, que a su vez refuerza mi bajo autoconcepto:

juicio externo Ñ autoconcepto Ñ motivación

Ò Ó

resultado Ð rendimiento Ð actitud

También una autoestima excesiva puede minar mis posibilidades de
éxito. Por ejemplo, si yo me creo tan genial que no necesito trabajar
para aprender cosas nuevas, ello me puede perjudicar seriamente.

Sobre todo esto, se puede consultar mi curso de Metodoloǵıa de
la investigación filosófica (pág. 12 y siguientes). Dicho manual está
disponible para libre descarga en

webs.um.es/picazo

https://webs.um.es/picazo/
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§ 1.7. PATRONES DE DESIGUALDAD

La lógica formal, como todas las disciplinas académicas, está atravesa-
da por varios patrones de desigualdad. No todas las personas que
viven en una misma época tienen las mismas oportunidades
de contribuir relevantemente a la producción de conocimien-
to.

El género es uno de los patrones de desigualdad más visibles. Otros
son la etnicidad, el lugar de nacimiento y el origen cultural y socio-
económico.

En este manual, he optado por el uso de un lenguaje neutro, con
preferencia por la terminación en “-e”.

He aqúı algunas mujeres que han contribuido recientemente a la
lógica y los fundamentos de la matemática:
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§ 1.8. RECOMENDACIÓN SOBRE EL EMAIL Y EL AULA
VIRTUAL

Si no consultas regularmente tu email UMU, es recomendable que
configures tu gestor de correo habitual, para que importe el correo
UMU y te lo muestre alĺı. Aśı estarás al tanto de los correos que te
llegan a tu cuenta “. . . @um.es”.

Por las mismas razones, una vez que tengas acceso al Aula virtual,
es recomendable que vayas a Mi Sitio > Preferencias, y actives las
opciones de Notificaciones.

§ 1.9. ADVERTENCIA SOBRE EL MÁSTER DE PROFE-
SORADO

Para poder enseñar Filosof́ıa en la Educación Secundaria, tanto en
centros públicos como privados, no basta con terminar el grado: es
obligatorio cursar, a continuación, el Máster de Formación del Profe-
sorado.

Ahora bien, las universidades públicas (incluida la UMU) ofertan
bastantes menos plazas de este máster, que personas se han graduado
el año anterior. Esto ocurre tanto en Filosof́ıa como en el resto de
especialidades.

Ello obliga muches estudiantes a cursar dicho máster en universi-
dades privadas. En todo caso, para maximizar las opciones de obtener
plaza en este máster en la UMU, conviene hacer la preinscripción “en
primera fase”. Para ello, hay que defender el TFG en la primera con-
vocatoria disponible, o bien dejar un año en blanco tras terminar el
grado, para preinscribirse en el máster en primera fase al curso si-
guiente.
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§ 1.10. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr.

1. En esta asignatura, ¿hay alguna parte del trabajo en el aula que
se realice en grupo? Explica los detalles.

2. Indica qué material debes traer contigo a los temas, controles y
juntas.

3. ¿Para qué sirve el uso de un apodo, en esta asignatura?

4. Suma las puntuaciones máximas que se pueden obtener por te-
mas, controles, tutoŕıa y examen, e indica el total obtenido.

5. Explica en qué consiste el “anexo” del examen final, y cómo se
puntúa.

6. Indica quién puede entregar un tema online, o realizar la tarea
sustitutiva a un control. A continuación, indica en qué consiste
dicha tarea sustitutiva, y dónde se hacen estas entregas.

7. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Explica qué parte de la filosof́ıa te interesa más en este mo-
mento, y por qué.

b) Escribe tu opinión sobre cualquier aspecto de este tema que
hayan llamado tu atención.



Tema 2

El estudio de los argumentos

§ 2.0. ADVERTENCIAS PRELIMINARES

1. Grietas. Todo el conocimiento humano, incluida la ciencia, con-
tiene “grietas” (es decir, cosas que no terminan de estar claras,
y que con el tiempo se van ajustando), aśı como errores (cosas
que se afirman durante un tiempo, pero se acaban rechazando
después). Ello afecta incluso a las matemáticas y a la lógica, y en
particular a los contenidos de este manual. Por todo ello — y por-
que el autor de este manual también es persona, y se ha podido
equivocar — ninguna de las afirmaciones que aqúı se contienen
se debe tomar como una verdad indiscutible.

2. Formato facilitado. Además, hay que tener en cuenta que la ex-
posición de contenidos en este manual se realiza a un nivel intro-
ductorio (sumamente facilitado), en contraste con lo que aparece
en textos de lógica avanzada.

3. Variaciones. Por último, también hay que tener en cuenta que
existe mucha variabilidad en los textos de lógica, en cuanto a la
notación, terminoloǵıa y enfoque. Aśı por ejemplo, en la elección
de los śımbolos lógicos, los sistemas deductivos y otros muchos de-

13
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talles. En particular, las abreviaturas como “logfor1”, “lenprop”,
etc, han sido acuñadas por el autor de este manual y son exclusi-
vas del mismo. Conviene tener esto presente a la hora de consultar
otras exposiciones de esta materia.

§ 2.1. LA ARGUMENTACIÓN HUMANA EN DISTINTOS
ÁMBITOS

Argumentar es dar razones en favor de una creencia o una
acción.

Las personas argumentamos en distintos ámbitos, desde la vida coti-
diana hasta el conocimiento cient́ıfico, pasando por las investigaciones
policiales y muchas otras cosas.

Un ejemplo de argumento perteneciente a la vida cotidiana es:

Compra kiwis, que han bajado de precio. (1)

Un ejemplo de argumento cient́ıfico es:

La desviación del perihelio de Mercurio

confirma la teoŕıa general de la relatividad.
(2)

Un ejemplo de argumento polićıaco es:

El arma estaba en su poder. Y no tiene coartada.

Por lo tanto, es culpable.
(3)

§ 2.2. ESTRUCTURA ARGUMENTAL
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La mayoŕıa de los argumentos tienen premisas y conclusión. La
conclusión es aquella creencia o acción que el argumento trata de res-
paldar. Y las premisas conforman las razones que se dan en favor de
esa conclusión.

Aqúı conviene hacer tres aclaraciones:

Hablamos genéricamente de “las premisas” de un argumento,
aunque solo tenga una.

Al formular un argumento, hay veces en que la conclusión aparece
detrás de las premisas, y hay veces en que aparece delante.

Hay algunos argumentos, un tanto excepcionales, que no tienen
premisas. Veremos nuestro primer ejemplo en §12.8 (hasta en-
tonces, no debemos preocuparnos por ellos).

El argumento (1) ejemplifica los dos primeros puntos:

Compra kiwis, que han bajado de precio.

En efecto, este argumento te intenta convencer de que compres kiwis
(te intenta convencer de esa acción). Por lo tanto, su conclusión es:

Compra kiwis.

Y su premisa, obviamente, es:

[Los kiwis] han bajado de precio

puesto que esa es la razón que da el argumento, para comprar kiwis.

Por consiguiente, (1) es un argumento con una sola premisa, y está
formulado de tal manera que la conclusión aparece delante, y la pre-
misa detrás.
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Examinemos ahora la estructura del argumento (2):

La desviación del perihelio de Mercurio

confirma la teoŕıa general de la relatividad.

Este argumento también tiene una sola premisa: La desviación del
perihelio de Mercurio (o mejor dicho: El hecho de que la órbita de
Mercurio tenga una determinada desviación en su perihelio).

A su vez, la conclusión del argumento (2) es la teoŕıa general de la
relatividad, publicada por Einstein en 1915.

Por consiguiente, el argumento (2) también consta de una sola pre-
misa, pero en esta ocasión aparece antes de la conclusión.

Por último, examinemos la estructura del argumento (3):

El arma estaba en su poder. Y no tiene coartada.

Por lo tanto, es culpable.

En este caso, el argumento tiene dos premisas. La primera premisa es:
El arma estaba en su poder. La segunda premisa es: No tiene coartada.
Y la conclusión que se extrae de esas dos premisas, y que aparece a
continuación de las mismas, es: Es culpable.

§ 2.3. TIPOS DE ARGUMENTOS

A los argumentos cuya conclusión es una creencia (una proposición) se
les llama “argumentos teóricos”. A los argumentos cuya conclusión
es una acción se les llama “argumentos prácticos”. De los tres
ejemplos que acabamos de ver, el argumento (1) es práctico, mientras
que los argumentos (2) y (3) son teóricos.
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De entre los argumentos teóricos, la lógica formal centra su aten-
ción en un grupo muy especial, que son los llamados “argumentos
deductivos” (también conocidos como “razonamientos deducti-
vos” o “inferencias deductivas”). Estos argumentos se caracterizan
porque es imposible que las premisas sean verdaderas y la conclusión
falsa.

Dicho de otro modo:

Un argumento deductivo es aquel en el cual, suponiendo
que las premisas sean verdaderas, la conclusión ha de ser
necesariamente verdadera.

Ninguno de los dos argumentos teóricos que acabamos de ver es
deductivo. En efecto, aunque la desviación del perihelio de Mercurio
hace bastante probable la teoŕıa general de la relatividad, no impli-
ca que sea verdadera necesariamente: existe una posibilidad (aunque
pequeña) de que la órbita de Mercurio tenga esa desviación por otras
razones, y que la teoŕıa general de la relatividad sea falsa.

Igualmente, el hecho de que alguien tenga el arma del crimen y ca-
rezca de coartada, no implica necesariamente que sea culpable: podŕıa
ser casualidad, o una trampa.

Un ejemplo de argumento deductivo es el siguiente:

Llueve y hace fŕıo. Por lo tanto, hace fŕıo.

En este caso, la premisa es: Llueve y hace fŕıo. Y la conclusión es:
Hace fŕıo. Pues bien, en este caso, a diferencia de los anteriores, la
conclusión se deriva necesariamente de la premisa: no hay resquicio de
posibilidad a que la premisa sea verdadera y la conclusión falsa.
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A los argumentos teóricos que no son deductivos, se les llama a
veces “argumentos probables”, “argumentos rebatibles”, o directamente
“argumentos no deductivos”.

§ 2.4. EL ESTUDIO DE LOS ARGUMENTOS

El estudio sistemático de la argumentación humana es muy antiguo, se
remonta a Aristóteles. En efecto, Aristóteles elaboró la primera gran
teoŕıa sobre la lógica deductiva (la siloǵıstica) y analizó minuciosa-
mente muchas otras formas de argumentar.

En 1º Curso del Grado en Filosof́ıa de la UMU, hay una asignatura
dedicada al estudio de la argumentación en su conjunto: la Teoŕıa de
la argumentación, que se imparte en el 2º Cuatrimestre. Y también
tenemos esta asignatura (Lógica formal 1) y su pareja (Lógica for-
mal 2, en el 2º Cuatrimestre), dedicadas al estudio de los argumentos
deductivos.

Además, a lo largo del Grado hay asignaturas dedicadas a la Teoŕıa
del conocimiento y la Epistemoloǵıa, donde se estudia el conocimien-
to cotidiano (o “conocimiento ordinario”) y la argumentación en ese
contexto. También hay asignaturas sobre Ética, Estética y Filosof́ıa
poĺıtica, que son relevantes para la argumentación en cada uno de esos
ámbitos. Y por último, hay asignaturas dedicadas a la Filosof́ıa de la
ciencia, donde se aborda la argumentación cient́ıfica (por ejemplo, a
la hora de defender qué teoŕıa explica mejor la evidencia, o está mejor
respaldada por ella).

En cuanto al estudio de la argumentación en otros ámbitos (como
el ámbito juŕıdico o el ámbito comercial) se aborda en otros grados
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que ofrece la UMU, aśı como en infinidad de libros y documentos que
se pueden encontrar en bibliotecas y en internet.
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§ 2.5. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Pon un ejemplo de argumento práctico. A continuación, indica
cuál es su estructura en premisas y conclusión, aśı como el ámbito
al que pertenece.

2. Pon dos ejemplos de argumentos teóricos no deductivos. Para
cada uno de ellos, indica cual es su estructura y el ámbito al que
pertenece.

3. Pon dos ejemplos de argumentos deductivos. A continuación, in-
dica cuál es la estructura de cada uno de ellos, y en qué ámbito
se podŕıa utilizar, si se te ocurre alguno.

4. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Explica qué parte de la argumentación humana te interesa
más en este momento, y por qué.

b) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

c) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.



Tema 3

Panorama de la lógica formal y de la
asignatura

§ 3.0. ADVERTENCIAS PRELIMINARES

1. Grietas. Todo el conocimiento humano, incluida la ciencia, con-
tiene “grietas” (es decir, cosas que no terminan de estar claras,
y que con el tiempo se van ajustando), aśı como errores (cosas
que se afirman durante un tiempo, pero se acaban rechazando
después). Ello afecta incluso a las matemáticas y a la lógica, y en
particular a los contenidos de este manual. Por todo ello — y por-
que el autor de este manual también es persona, y se ha podido
equivocar — ninguna de las afirmaciones que aqúı se contienen
se debe tomar como una verdad indiscutible.

2. Formato facilitado. Además, hay que tener en cuenta que la ex-
posición de contenidos en este manual se realiza a un nivel intro-
ductorio (sumamente facilitado), en contraste con lo que aparece
en textos de lógica avanzada.

3. Variaciones. Por último, también hay que tener en cuenta que
existe mucha variabilidad en los textos de lógica, en cuanto a la
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notación, terminoloǵıa y enfoque. Aśı por ejemplo, en la elección
de los śımbolos lógicos, los sistemas deductivos y otros muchos de-
talles. En particular, las abreviaturas como “logfor1”, “lenprop”,
etc, han sido acuñadas por el autor de este manual y son exclusi-
vas del mismo. Conviene tener esto presente a la hora de consultar
otras exposiciones de esta materia.

§ 3.1. LA LÓGICA Y LAS MATEMÁTICAS

Como explicamos en el tema anterior, la caracteŕıstica definitoria del
razonamiento deductivo es que si las premisas son verdaderas, la con-
clusión ha de ser necesariamente verdadera. Esto se resume a veces
diciendo que “en el razonamiento deductivo, la conclusión está
contenida en las premisas”.

Por esta razón, el razonamiento deductivo resulta mucho más fir-
me que el razonamiento no deductivo; pero por eso mismo, también
resulta mucho menos útil, en términos generales. Ahora bien, hay un
ámbito del discurso humano en el cual el razonamiento deductivo es
tan importante o más que el razonamiento no deductivo: las ma-
temáticas.

Ello explica el interés que se ha suscitado históricamente, en ma-
temáticas, hacia el estudio del razonamiento deductivo. De hecho, la
obra “fundacional” de la lógica formal (es decir, la obra en la que se
sientan las bases de esta disciplina, tal y como la conocemos ahora)
fue escrita por un matemático, Gottlob Frege. Dicha obra se titula
Begriffsschrift (Conceptograf́ıa) y fue publicada en 1879.

Una de las innovaciones de la Conceptograf́ıa fue la introducción
de un lenguaje lógico-formal para la representación del razonamiento
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deductivo. Ello dio pie al uso de todo un aparataje matemático,
asociado a ese nuevo lenguaje, para avanzar en el estudio de este tipo
de razonamiento.

Aśı se explica que a la nueva disciplina, surgida de la aportación
de Frege y otres pensadores, se le llame “lógica formal” (aśı como
“lógica moderna”, “lógica simbólica” y “lógica matemática”).
Por contraste, a la lógica anterior se la conoce como “lógica tradicio-
nal”, y consiste básicamente en la siloǵıstica de Aristóteles, aderezada
con algunas contribuciones posteriores.

§ 3.2. LÓGICA, FILOSOFÍA Y OTRAS DISCIPLINAS

Además de ser de interés para las matemáticas, la lógica formal tam-
bién ha suscitado atención desde la lingǘıstica. De hecho, las técnicas
de análisis sintáctico están inspiradas, en parte, en los procedimientos
de la nueva lógica. Y también ha suscitado interés en las llamadas
“ciencias de la computación” (esto es, la informática), cuyo origen
está ligado a la lógica formal, y con la que mantiene varios puntos de
contacto.

Ahora bien, donde más representada se encuentra la lógica, en cuan-
to a profesorado especializado y presencia en los estudios universita-
rios, es sin duda en los departamentos de Filosof́ıa.

Dentro de la filosof́ıa, la lógica es objeto de atención especialmente
en la corriente denominada “filosof́ıa anaĺıtica”.

Y dentro de esa corriente, la lógica formal se ha utilizado, en par-
ticular, en filosof́ıa del lenguaje, como herramienta para ayudar a re-
presentar el significado en el lenguaje natural. También se ha usado
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en filosof́ıa general de la ciencia, para ayudar a representar las teoŕıas
cient́ıficas, aśı como los mecanismos de confirmación respecto a la evi-
dencia disponible — entre otras cosas. Y es vital en filosof́ıa de la
matemática, como instrumento para analizar las caracteŕısticas on-
tológicas, epistemológicas y semánticas de la ciencia matemática.

Por último, también se suele encontrar una referencia a la lógica
formal dentro de la teoŕıa de la argumentación (de la que ya hemos
hablado), puesto que el razonamiento deductivo es parte del razona-
miento humano, y puede aparecer en un intercambio argumentativo
en cualquier momento.

§ 3.3. LENGUAJES FORMALES

Como hemos dicho en §3.1 , una de las principales herramientas que
utiliza la lógica moderna para analizar los razonamientos deductivos
son los llamados “lenguajes formales”.

Un lenguaje formal es un lenguaje artificial, cuyo alfabeto y sinta-
xis se pueden especificar completamente sin hacer referencia a ninguna
interpretación suya.

Esto significa que, antes de empezar a utilizar ese lenguaje, tenemos
que estar en condiciones de indicar exactamente:

1. Cuáles son los śımbolos básicos que contiene ese lenguaje (a lo
cual llamamos su “alfabeto”).

2. Cuáles son las reglas mediante las cuales se pueden combinar esos
śımbolos, para dar lugar a expresiones más complejas. Dichas
reglas constituyen la sintaxis de ese lenguaje.
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Aśı por ejemplo, los lenguajes de programación son lenguajes for-
males en este sentido. En efecto, para escribir un programa informático
en un lenguaje de programación, tenemos que ajustarnos estrictamen-
te a los śımbolos y cadenas de śımbolos aceptadas en ese lenguaje. Si
escribimos un código con śımbolos ajenos a ese lenguaje, o formamos
cadenas de śımbolos que no están permitidas, el programa no funcio-
nará.

Pues bien, dicho esto, vamos a convenir en que a partir de este
momento, cuando hablemos de “formalización” a secas (y más aún
si hablamos de “formalización propiamente dicha” o “formalización
completa”), nos estaremos refiriendo al uso de un lenguaje formal
con las caracteŕısticas que acabamos de describir. Es importante re-
cordarlo.

§ 3.4. EL LENGUAJE NATURAL

Por el contrario, en los lenguajes naturales (es decir, el castellano,
el inglés, etc), la aplicación de las reglas sintácticas exige cono-
cer el significado de las oraciones.

Aśı por ejemplo, en:

El trofeo no cab́ıa en el malet́ın, porque era muy voluminoso. (1)

lo voluminoso es “el trofeo” (el sujeto de “era” es “el trofeo”).

Mientras que en:

El trofeo no cab́ıa en el malet́ın, porque era muy pequeño. (2)

lo pequeño es “el malet́ın” (en (2), el sujeto de “era” es “el malet́ın”).
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Esto nos resulta obvio, porque sabemos qué son los trofeos y los
maletines, qué se mete dentro de qué, y cómo influye el tamaño para
que uno quepa o no quepa en el otro.

En la misma ĺınea, si en vez de un trofeo estuviésemos hablando
de una estatuilla, entonces tendŕıamos que decir que “la estatuilla no
cab́ıa en el malet́ın porque era muy voluminosa” (ella, la estatuilla);
pero podŕıamos seguir diciendo que “la estatuilla no cab́ıa en el ma-
let́ın porque era muy pequeño” (ya que en esta última frase, lo pequeño
es el malet́ın; por eso tiene sentido decir que la estatuilla no cabe).

Todo esto ilustra el hecho de que para manejar la estructura sintácti-
ca de las oraciones — es decir, para maniobrar correctamente las re-
laciones de dependencia y concordancia entre sus elementos — nece-
sitamos información que va más allá de la sintaxis: necesitamos infor-
mación de carácter semántico o fáctico.

Y esto que ocurre con (1) y (2) no es una excepción. En general,
la sintaxis del lenguaje natural está “impregnada de semántica”: de
ah́ı la radical diferencia que existe entre los lenguajes naturales y los
lenguajes formales.

§ 3.5. PANORAMA DE LA ASIGNATURA

Como dijimos en el tema anterior, en el Grado en Filosof́ıa de la UMU
hay dos asignaturas dedicadas al estudio de la lógica deductiva:

Lógica formal 1 (la cual abreviaremos poniendo “logfor1”).

Lógica formal 2 (la cual abreviaremos poniendo “logfor2”).

En esta primera asignatura (logfor1 ), vamos a centrar nuestra aten-
ción en un lenguaje formal en concreto, el llamado “lenguaje de la
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lógica proposicional clásica”. Pues bien, introduciremos dicho len-
guaje en los temas 4–6, y a continuación, definiremos una forma de
interpretarlo — la semántica veritativo-funcional — a la cual dedica-
remos los temas 7 y 8.

Una vez hecho eso, abordaremos la capacidad de nuestro lenguaje
formal para representar la estructura lógica de algunas proposiciones
en castellano. A ello dedicaremos los temas 9 y 10.

A continuación, exploraremos tres sistemas deductivos distintos,
que nos ayudarán a modelar, cada uno a su manera, la estructura de
la argumentación deductiva. A ello dedicaremos los temas 11–23.

Por último, dedicaremos el tema 24 a analizar otras teoŕıas de lógi-
ca formal (las llamadas “lógicas no clásicas”), que se han propuesto
en competencia con la lógica proposicional estándar. Y también ha-
remos una breve incursión en la inteligencia artificial, abordando las
últimas estrategias de computación, mediante las que se consigue emu-
lar el razonamiento deductivo humano — y tantas otras habilidades
intelectuales — de forma notable.

§ 3.6. PANORAMA DE LA LÓGICA FORMAL

Como hemos indicado en §2.0 y §3.0 , lo que asomará en este manual
de la lógica como disciplina será muy poco (la punta del iceberg, o
menos que eso). Quien quiera adentrarse a fondo en el estudio de la
lógica, deberá profundizar en las siguientes materias:

Teoŕıa de modelos : estudio de las interpretaciones de los lenguajes
lógico-formales, aśı como de las consecuencias matemáticas que
se derivan de ellas.
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Teoŕıa de la prueba: estudio de los cálculos deductivos y sus pro-
piedades.

Teoŕıa de la recursión (o teoŕıa de la computabilidad): estudio de
la noción de algoritmo (o procedimiento mecánico) y sus propie-
dades.

Teoŕıa de conjuntos : estudio de la noción de conjunto y la relación
de pertenencia, cuyas consecuencias son asombrosas e inespera-
das.

Teoŕıa de categoŕıas : estudio de la relación entre estructuras ma-
temáticas de diferentes campos.

Todas estas disciplinas — junto con la filosof́ıa de la matemática,
de la que ya hemos hablado — conforman el área de fundamentos de
la matemática.

Además, hay que mencionar el campo de las lógicas no clásicas, que
también acabamos de mencionar, y que exploran sistemas distintos al
de la lógica clásica — y derivan en su propia teoŕıa de modelos, sus
propios cálculos deductivos, etc.

Y por último, hay que mencionar el campo de la filosof́ıa de la
lógica, donde se abordan las diferencias entre unos sistemas y otros,
aśı como su capacidad para formalizar adecuadamente el razonamien-
to deductivo en lenguaje natural, o para dar respuestas a problemas
diversos.

Cualquiera de estas disciplinas cuenta con manuales densos y volu-
minosos, y con una bibliograf́ıa ingente. En particular, el profesor de
esta asignatura tiene escritos manuales universitarios de:

Lógica avanzada
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Teoŕıa de conjuntos

Filosof́ıa de la matemática

Semántica de la lógica intuicionista

Metodoloǵıa de la investigación filosófica

Todos ellos están disponibles para su libre descarga en:

webs.um.es/picazo

§ 3.7. ¿ES CIERTO QUE “LA FILOSOFÍA AYUDA A PEN-
SAR” Y “LA LÓGICA AYUDA A RAZONAR”?

Una idea muy repetida en el gremio de la filosof́ıa académica, en Es-
paña y otros páıses, es que “La filosof́ıa ayuda a pensar”.

Sin embargo, yo nunca he visto esa idea concretarse en algo tangi-
ble. Y no conozco ningún estudio que demuestre que la filosof́ıa que
se enseña en España — especialmente cuando se centra en la historia
y la interpretación de autores — ayude a pensar, más de lo que pueda
ayudar el aprendizaje de cualquier otra disciplina académica.

En mi opinión, esa frase es un mero eslogan, tan falso como intere-
sado. Es decir, se trata de publicidad engañosa, lanzada interesa-
damente desde el gremio de la filosof́ıa académica.

Más bien al contrario, yo pienso que la afirmación de que “La fi-
losof́ıa ayuda a pensar” se desmiente a śı misma, precisamente por
el poco esṕıritu cŕıtico con el que es acogida por la comunidad de la
filosof́ıa académica — sin que casi nadie la ponga en cuestión, o se

https://webs.um.es/picazo/
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pregunte cómo sabemos que es cierta, más allá de que nos interesa
que la gente se lo crea.

Pues bien, desde el gremio de la lógica formal se maneja a veces un
eslogan parecido, según el cual “El estudio de la lógica ayuda a razo-
nar”. Sin embargo, en todos mis años de carrera, yo no he conocido un
solo caso de alguien que haya necesitado formalizar un argumento (en
el sentido especificado en §3.3 ), para poder aclararse con el mismo.

Es por eso que, en mi opinión, la lógica formal tiene un interés
fundamentalmente teórico, como forma de representación abstracta
de esa habilidad humana que llamamos “razonamiento deductivo”.
Pero no es útil en la práctica, ni para entrenar nuestra habilidad
mental con el razonamiento deductivo, ni para ayudarnos a lidiar con
razonamientos deductivos complejos.

En función de este enfoque, los ejercicios de este manual son más
sencillos que los de otros manuales de introducción a la lógica. He
procurado evitar derivaciones o formalizaciones excesivamente com-
plicadas, bajo el entendimiento de que el dominio las técnicas que
aporta esta disciplina es importante, pero lo más importante es la
comprensión de la base conceptual.

§ 3.8. LENGUAJES SEMI-FORMALES

En este punto, conviene hacer la siguiente aclaración. Donde quiera
que abordamos razonamientos complejos, es habitual utilizar términos
técnicos, śımbolos especiales y diagramas, para comunicar nuestras
ideas. Las matemáticas, y la ciencia en general, están llenas de estos
recursos.
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Sin embargo, tal lenguaje simbólico se introduce por lo general de
manera espontánea, sin seguir reglas fijas, y ligado a una comprensión
intuitiva de lo que estamos representando. Por lo tanto, no constituye
una formalización completa en el sentido explicado en §3.3 .

Las matemáticas, aśı como la ciencia y la tecnoloǵıa en general,
usan lenguajes semi-formales, es decir: utilizan una profusión de
śımbolos y términos técnicos, pero no se expresan casi nunca — salvo
raras excepciones — en un lenguaje completamente formalizado.

De hecho, ni siquiera a la hora de resolver los t́ıpicos “acertijos de
lógica” que aparecen en las revistas de pasatiempos, facilitamos la ta-
rea realizando una formalización completa. En todo caso, lo que suele
ayudar a resolver tales acertijos es la realización del tipo de diagra-
mas espontáneos (con una interpretación sobrentendida), a los
que nos acabamos de referir.

§ 3.9. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Describe un escenario argumental concreto, en el que sea relevante
el razonamiento deductivo (por ejemplo, el ámbito juŕıdico, u otro
que tú elijas, pero distinto a las matemáticas).

2. Indica, si lo conoces, algún otro ejemplo de lenguaje formal, dis-
tinto a los lenguajes lógicos y los lenguajes de programación.

3. Indica, si se te ocurre, algún otro caso que ilustre la imbricación
entre sintaxis y semántica en el lenguaje natural (por ejemplo, la
ambigüedad de una palabra que pueda funcionar como verbo o
como sustantivo, dependiendo del contexto).
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4. Suponiendo, como se afirma en el tema, que el estudio de la lógica
formal no ayude a mejorar nuestra habilidad para manejarnos con
el razonamiento deductivo, ¿qué otro estudio, o actividad podŕıa
ayudar?

5. Si te sobra tiempo, responde razonadamente a alguna/s de las
siguientes cuestiones, a tu elección:

a) ¿Consideras que hay personas especialmente capacitadas, des-
de la infancia, para aprender matemáticas (o dibujo, idiomas,
etc); o bien, todo depende de nuestra propia actitud y nues-
tro propio autoconcepto (es decir, de la intensidad con que
nos empleamos en aprender cualquiera de esas cosas)?

b) Ordena estas cuatro materias, de la más necesaria a la menos
necesaria para el Grado en Filosof́ıa, en tu opinión: Lógica
formal, Historia del arte contemporáneo, Filosof́ıa oriental,
Filosof́ıa de la inteligencia artificial.

c) Expresa tu opinión razonada sobre el eslogan “La filosof́ıa
ayuda a pensar”, coincida o no con la opinión expresada en
el tema por el profesor de la asignatura.



Tema 4

Sintaxis de lenprop: el alfabeto y la
definición de “fórmula”

§ 4.0. ADVERTENCIAS PRELIMINARES

1. Grietas. Todo el conocimiento humano, incluida la ciencia, con-
tiene “grietas” (es decir, cosas que no terminan de estar claras,
y que con el tiempo se van ajustando), aśı como errores (cosas
que se afirman durante un tiempo, pero se acaban rechazando
después). Ello afecta incluso a las matemáticas y a la lógica, y en
particular a los contenidos de este manual. Por todo ello — y por-
que el autor de este manual también es persona, y se ha podido
equivocar — ninguna de las afirmaciones que aqúı se contienen
se debe tomar como una verdad indiscutible.

2. Formato facilitado. Además, hay que tener en cuenta que la ex-
posición de contenidos en este manual se realiza a un nivel intro-
ductorio (sumamente facilitado), en contraste con lo que aparece
en textos de lógica avanzada.

3. Variaciones. Por último, también hay que tener en cuenta que
existe mucha variabilidad en los textos de lógica, en cuanto a la

33
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notación, terminoloǵıa y enfoque. Aśı por ejemplo, en la elección
de los śımbolos lógicos, los sistemas deductivos y otros muchos de-
talles. En particular, las abreviaturas como “logfor1”, “lenprop”,
etc, han sido acuñadas por el autor de este manual y son exclusi-
vas del mismo. Conviene tener esto presente a la hora de consultar
otras exposiciones de esta materia.

§ 4.1. EL LENGUAJE DE LA LÓGICA PROPOSICIONAL
CLÁSICA. LENGUAJE OBJETO Y METALENGUAJE

En este tema, vamos a presentar el lenguaje formal con el que traba-
jaremos en el presente curso, que es el lenguaje de la lógica pro-
posicional clásica (abreviadamente, lenprop).

A este lenguaje lo vamos a llamar “lenguaje objeto”, porque va
a constituir uno de nuestros principales objetos de atención durante
el presente curso.

Por contraste, al lenguaje que utilizamos para hablar de ese lengua-
je lo llamaremos “metalenguaje”. Aśı pues, nuestro metalenguaje
será el castellano, enriquecido con todos los términos técnicos y sim-
bolismos que vayamos introduciendo a lo largo del curso.

§ 4.2. INVISIBILIDAD DE LOS SÍMBOLOS DE LENPROP

Una peculiaridad notable de lenprop, tal y como lo vamos a presentar
aqúı, es que no vamos a ver sus śımbolos en ningún momento.
De hecho, no sabremos cómo son, y ello no tiene por qué ser motivo
de preocupación.
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Lo único que requerimos es que haya un śımbolo diferente para cada
una de las funciones que vamos a describir, y que todos ellos tengan
una forma reconocible a simple vista.

Entonces, lo que haremos para referirnos a los śımbolos y las cade-
nas de śımbolos de lenprop, será utilizar nombres metalingǘısticos
(es decir, śımbolos metalingǘısticos) para hablar de ellos. Esta
estrategia nos ayudará a representar los śımbolos y las cadenas de
śımbolos de lenprop con mayor rigor.

En particular, usaremos algunos śımbolos metalingǘısticos para de-
notar śımbolos concretos de lenprop. Por ejemplo, uno de los śımbo-
los más importantes de lenprop, como vamos a ver enseguida, es el
śımbolo condicional. Pues bien, en este manual representaremos el
condicional mediante:

Ñ

Ello no significa que el śımbolo condicional de lenprop tenga forma
de flecha resaltada en malva, sino que ese es el modo en que nos
referiremos al śımbolo condicional en el presente manual — además
de llamarle “śımbolo condicional”.

También usaremos śımbolos metalingǘısticos para denotar śımbolos
genéricos, o cadenas de śımbolos genéricas, de lenprop. Por ejemplo,
con frecuencia usaremos el śımbolo

A

para representar una fórmula cualquiera de lenprop.

Pues bien, en ese caso, A no denota un śımbolo concreto de len-

prop, ni una cadena concreta de śımbolos de lenprop. En ese caso, A
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denota cualquier cadena que cumpla con las condiciones para consti-
tuir una fórmula. Enseguida veremos cuáles son esas condiciones.

De cualquier modo, si a alguien le incomoda la idea de no poder
ver los śımbolos de nuestro lenguaje objeto, y necesita representárse-
los visualmente en su mente, hay una solución muy sencilla. Basta
con imaginarse que los śımbolos de lenprop tienen la misma forma
que los śımbolos metalingǘısticos que utilizamos para denotarlos. Aśı,
podemos imaginar que el śımbolo condicional realmente tiene forma
de flecha resaltada en malva, y lo mismo con el resto de śımbolos que
vamos a ir introduciendo.

No hay ningún problema en imaginarse esto, siempre que recorde-
mos que es una mera estrategia heuŕıstica. Estrictamente hablando,
los śımbolos de lenprop no están a la vista, y no sabemos cómo son.

§ 4.3. EL ALFABETO DE LENPROP

El lenguaje de la lógica proposicional, tal y como lo vamos a presentar
en este curso, consta de tres tipos de śımbolos: śımbolos proposiciona-
les, conectivas y paréntesis.

Los śımbolos proposicionales (abreviadamente, simprops) son:

p q r s t

p1 p2 p3 . . . (y aśı hasta el infinito)

(donde p1 se lee “pe sub uno”, o más abreviadamente, “pe uno”).

Las conectivas son cinco:
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El śımbolo de negación:  

El śımbolo de conjunción: ^

El śımbolo de disyunción: _

El śımbolo condicional: Ñ

El śımbolo bicondicional: Ø

Y los paréntesis son dos:

El paréntesis izquierdo: p

El paréntesis derecho: q

A las conectivas las llamaremos “śımbolos lógicos”, mientras que
al resto de śımbolos (es decir, a los śımbolos proposicionales y a los
paréntesis) los llamaremos “śımbolos no lógicos” (o “śımbolos
extra-lógicos”).

§ 4.4. LA DEFINICIÓN DE FÓRMULA DE LENPROP

A continuación, introducimos otra definición clave en este curso, que
es la noción de fórmula de nuestro lenguaje formal (abreviadamente,
fla).

Dicha definición consta de seis “cláusulas recursivas”, aśı llama-
das porque están imbricadas unas con otras, y su uso combinado da
lugar a fórmulas más y más complejas.

1. Cualquier śımbolo proposicional que aparezca solo, constituye
una fórmula atómica (abreviadamente, fla atóm).
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2. Si A es cualquier fórmula, entonces  A es otra fórmula, lla-
mada “negación”.

A continuación, si A y B son cualesquiera fórmulas, entonces:

3. pA ^ B q es otra fórmula, llamada “conjunción”.

4. pA _ B q es otra fórmula, llamada “disyunción”.

5. pA Ñ B q es otra fórmula, llamada “condicional”.

6. pA Ø B q es otra fórmula, llamada “bicondicional”.

§ 4.5. EJEMPLOS DE FÓRMULAS ATÓMICAS

Dada la definición anterior, son ejemplos de fórmulas atómicas de len-
prop las expresiones:

p5 t p27 s q p135

Sin embargo, no es un ejemplo de fórmula atómica de lenprop la
expresión:

H

ya que H no denota ningún śımbolo del alfabeto de lenprop.

Tampoco es un ejemplo de fórmula atómica de lenprop la expresión:

s4
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ya que s4 tampoco forma parte del alfabeto de lenprop (de acuerdo

con la definición §4.3 , solo la letra p con sub́ındices denota śımbolos

proposicionales).

Y por último, tampoco son ejemplos de fórmulas atómicas de len-
prop las expresiones

pp ppq pÑ q

La razón es que en estas expresiones aparecen śımbolos proposicionales
de lenprop junto con otros śımbolos del alfabeto, pero no aparece un
śımbolo proposicional solo.

§ 4.6. EJEMPLOS DE NEGACIONES

Por su parte, son ejemplos de negaciones de lenprop todas las expre-
siones siguientes:

 p5  p135  t   t    t

De la fórmula   t decimos que es una “doble negación” (y lo mismo

con fórmulas similares). De la fórmula    t decimos que es una
“triple negación” (y lo mismo con fórmulas similares).

Otros ejemplos de negaciones de lenprop son las expresiones:

 pp^ sq  pq _ qq  pq Ø p5q

Sin embargo, no son ejemplos de negaciones de lenprop las expre-
siones:

    H
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La razón es que el śımbolo de negación tiene que ir antepuesto a una
fórmula, y en estos tres casos no ocurre aśı: en el primer ejemplo,
el śımbolo de negación no va antepuesto a nada; y en los otros dos
ejemplos, va antepuesto a una expresión que no es una fórmula.

Tampoco son negaciones de lenprop las expresiones:

p p135 pp^ sq 

porque el śımbolo de negación tiene que ir antepuesto a una fórmula,
y en estos casos aparece detrás.

§ 4.7. EJEMPLOS DE CONJUNCIONES

A su vez, son ejemplos de conjunciones de lenprop las expresiones:

pp^ qq pp^ pq p p5 ^  pq _ qq q

Pero no es un ejemplo de conjunción la expresión:

pp_ qq

porque no contiene el śımbolo ^ . Y tampoco es un ejemplo de con-
junción la expresión

pp^ q

porque en ella aparece el śımbolo ^ , pero no conecta dos fórmulas.

§ 4.8. EJEMPLOS DE DISYUNCIONES, CONDICIONA-
LES Y BICONDICIONALES
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A su vez, son ejemplos de disyunciones de lenprop las expresiones:

pp_ qq pp_ pq p p5 _  pq _ qq q

Son ejemplos de condicionales de lenprop las expresiones:

ppÑ qq ppÑ pq p p5 Ñ  pq _ qq q

Y son ejemplos de bicondicionales de lenprop las expresiones:

ppØ qq ppØ pq p p5 Ø  pq _ qq q

§ 4.9. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Pon algún otro ejemplo que se te ocurra de la distinción entre
lenguaje objeto y metalenguaje, aunque sea en un contexto que
no tenga nada que ver con la lógica.

2. Explica con tus propias palabras la diferencia que existe entre
la flecha resaltada en malva ( Ñ ) y el śımbolo condicional de
lenprop.

3. Pon un ejemplo de expresión que constituya una fórmula atómica
de lenprop.

4. Pon un ejemplo de expresión que no constituya un fórmula atómi-
ca de lenprop, y explica por qué no lo es.

5. Pon un ejemplo de expresión que constituya una negación de
lenprop.
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6. Pon un ejemplo de expresión que no constituya una negación de
lenprop, y explica por qué no lo es.

7. Pon un ejemplo de expresión que constituya un condicional de
lenprop.

8. Pon un ejemplo de expresión que no constituya un condicional
de lenprop, y explica por qué no lo es.

9. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Pon ejemplos de expresiones que constituyan conjunciones,
disyunciones y bicondicionales.

b) Pon ejemplos de expresiones que no constituyan conjuncio-
nes, disyunciones o bicondicionales.

c) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.



Tema 5

Sintaxis de lenprop: estructura de las
fórmulas compuestas

§ 5.0. ADVERTENCIAS PRELIMINARES

1. Grietas. Todo el conocimiento humano, incluida la ciencia, con-
tiene “grietas” (es decir, cosas que no terminan de estar claras,
y que con el tiempo se van ajustando), aśı como errores (cosas
que se afirman durante un tiempo, pero se acaban rechazando
después). Ello afecta incluso a las matemáticas y a la lógica, y en
particular a los contenidos de este manual. Por todo ello — y por-
que el autor de este manual también es persona, y se ha podido
equivocar — ninguna de las afirmaciones que aqúı se contienen
se debe tomar como una verdad indiscutible.

2. Formato facilitado. Además, hay que tener en cuenta que la ex-
posición de contenidos en este manual se realiza a un nivel intro-
ductorio (sumamente facilitado), en contraste con lo que aparece
en textos de lógica avanzada.

3. Variaciones. Por último, también hay que tener en cuenta que
existe mucha variabilidad en los textos de lógica, en cuanto a la

43
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notación, terminoloǵıa y enfoque. Aśı por ejemplo, en la elección
de los śımbolos lógicos, los sistemas deductivos y otros muchos de-
talles. En particular, las abreviaturas como “logfor1”, “lenprop”,
etc, han sido acuñadas por el autor de este manual y son exclusi-
vas del mismo. Conviene tener esto presente a la hora de consultar
otras exposiciones de esta materia.

§ 5.1. FÓRMULAS COMPUESTAS

Como hemos visto en el tema anterior, las fórmulas atómicas de len-
prop están constituidas por una única letra proposicional, mientras
que los restantes tipos de fórmulas (negaciones, conjunciones, etc) son
expresiones más complejas.

Por esa razón, a las fórmulas de lenprop que no son atómicas, las
llamamos “fórmulas compuestas”. Pues bien, ahora vamos a tratar
brevemente de la estructura de las fórmulas compuestas, introduciendo
una terminoloǵıa que nos será de gran ayuda para manejarnos con
ellas.

§ 5.2. ESTRUCTURA DE LAS NEGACIONES

Como hemos explicado en el tema anterior, una negación de lenprop

tiene la forma  A , donde A es, a su vez, una fórmula de lenprop.

Pues bien, en este contexto, decimos que el śımbolo de negación
que aparece delante es la “conectiva principal” de esta fórmula.

Y decimos también que su “alcance” es la fórmula A . Por último,
de esta fórmula decimos asimismo que es la “fórmula negada” en

 A .
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En definitiva:

 
�� ��A
| |

conectiva principal alcance de la conectiva principal
(aparición inicial de  ) (fórmula negada)

Aśı por ejemplo, en la fórmula  p , la conectiva principal es  

(en su primera y única aparición), y el alcance de dicha conectiva es
la fórmula p :

 
�� ��p
| |

conectiva principal alcance de dicha conectiva

Además, decimos que la “fórmula negada” en  p es la fórmula p .

Por su parte, en la fórmula    t , la conectiva principal es  

en su primera aparición, y el alcance de dicha conectiva es la fórmula
  t :

 
�� ��  t

| |

conectiva principal alcance de dicha conectiva

Además, decimos que la   t es la “fórmula negada” en    t .

Por último, en la fórmula  pq Ø p5q , la conectiva principal es  

(en su primera y única aparición), y el alcance de dicha conectiva es

la fórmula pq Ø p5q :
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�
�
�
�pq Ø p5q

| |

conectiva principal alcance de dicha conectiva

Naturalmente, de la fórmula pq Ø p5q decimos que es la “fórmula

negada” en  pq Ø p5q .

§ 5.3. ESTRUCTURA DE LAS CONJUNCIONES

Como también explicamos en el tema anterior, una conjunción de

lenprop tiene la forma pA^Bq , donde A y B son, a su vez,

fórmulas de lenprop.

Pues bien, en este contexto, decimos que el śımbolo de conjunción

que aparece entre A y B es “la conectiva principal” de esta
fórmula. También decimos que “el alcance” de dicha fórmula com-

prende las fórmulas A y B . Y por último, a la fórmula A la
llamamos “el primer conyunto” de la conjunción, y a la fórmula

B la llamamos “el segundo conyunto” de la conjunción.

En definitiva:

conectiva principal
|

p
�� ��A ^
�� ��B q

| |

alcance de la conectiva princi-
pal (primer conyunto)

alcance de la conectiva princi-
pal (segundo conyunto)



LÓGICA FORMAL 1 (LÓGICA PROPOSICIONAL) 47

Aśı por ejemplo, en la fórmula

p p5 ^ pq _ qqq

la conectiva principal es ^ (en su única aparición), y el alcance de

dicha conectiva son las fórmulas  p5 y  pq _ qq :

conectiva principal
|

p
�� �� p5 ^
�
�
�
� pq _ qq q

| |

alcance de la conectiva princi-
pal (primer conyunto)

alcance de la conectiva princi-
pal (segundo conyunto)

§ 5.4. ESTRUCTURA DE LAS DISYUNCIONES

La estructura de disyunciones es similar, poniendo:

conectiva principal
|

p
�� ��A _
�� ��B q

| |

alcance de la conectiva princi-
pal (primer disyunto)

alcance de la conectiva princi-
pal (segundo disyunto)
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§ 5.5. ESTRUCTURA DE LOS CONDICIONALES

También es similar la estructura de los condicionales, poniendo:

conectiva principal
|

p
�� ��A Ñ
�� ��B q

| |

alcance de la conectiva princi-
pal (antecedente)

alcance de la conectiva princi-
pal (consecuente)

§ 5.6. ESTRUCTURA DE LOS BICONDICIONALES

Y por último, también la estructura de los bicondicionales es similar
a las anteriores, poniendo:

conectiva principal
|

p
�� ��A Ø
�� ��B q

| |

alcance de la conectiva princi-
pal (primer término del bi-
condicional)

alcance de la conectiva prin-
cipal (segundo término del
bicondicional)

§ 5.7. SUBFÓRMULAS

Dada cualquier negación,  A , decimos que la fórmula negada, A , es

una “subfórmula” (abreviadamente, “subfla”) de la fórmula  A .
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Asimismo, dada cualquier conjunción, A^B , decimos que los

conyuntos A y B son “subfórmulas” (abreviadamente, “sub-

flas”) de la fórmula A^B .

Y otro tanto decimos de las disyunciones, condicionales y bicondi-
cionales.

Por último, si A tiene como subfórmula a B , y B tiene como

subfórmula a C , entonces también C es una subfórmula de A .
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§ 5.8. DESCOMPOSICIÓN

A veces, nos interesa descomponer una fórmula en todas las subfórmu-
las que la componen. Al hacerlo, vamos realizando sucesivas descom-
posiciones, hasta que no se pueda seguir más.

Aśı por ejemplo, la fórmula

   t

se descompone en las siguientes tres subfórmulas:

  t  t t

Y por su parte, la fórmula  pq Ø p5q se descompone en la subfla:

pq Ø p5q

que a su vez se descompone en:

q p5

Por consiguiente, la fórmula

 pq Ø p5q

se descompone en las tres subfórmulas:

pq Ø p5q q p5

Y por último, la fórmula

p p5 ^ pq _ qqq

se descompone sucesivamente en las subfórmulas
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 p5 pq _ qq

p5 q

Como vemos, a la base de la descomposición de cualquier fórmu-
la compuesta están los śımbolos proposicionales. Efectivamente, estos
śımbolos son las piezas más básicas e imprescindibles en la construc-
ción de fórmulas — algo aśı como los “ladrillos” en una obra, que
después se han de “pegar” unos a otros con la “argamasa” que supo-
nen las conectivas.

§ 5.9. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Pon un ejemplo de fórmula que contenga dos conectivas distintas.
Indica qué tipo de fórmula es (es decir, si se trata de una negación,
o una conjunción, etc). Rodea su conectiva principal, e indica cuál
es su alcance.

2. Repite el ejercicio anterior, pero esta vez con una fórmula que
contenga tres conectivas distintas, una de las cuales aparezca dos
veces.

3. Repite el ejercicio anterior, pero esta vez con una fórmula que
contenga tres conectivas distintas, dos de las cuales aparezcan
dos veces.

4. Para cada una de las fórmulas anteriores, indica todas las subfórmu-
las en las que se pueden descomponer, hasta llegar a los śımbolos
proposicionales.
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5. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

b) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

c) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 6

Sintaxis de lenprop: alcances y
supresión de paréntesis

§ 6.1. IDENTIFICACIÓN DE ALCANCES

Con frecuencia, necesitamos conocer el alcance de las diversas conecti-
vas que aparecen en el interior de una fórmula compuesta. Por ejemplo,
ya vimos en §5.2 que el alcance de la primera aparición del śımbolo
de negación en la fórmula    t , es la fórmula   t :

 
�� ��  t

| |

conectiva principal alcance de dicha conectiva

Pues bien, el alcance de la segunda aparición del śımbolo de nega-
ción, en esa misma fórmula, es la fórmula  t :

 
�� �� �� �� t
| |

conectiva interior alcance de dicha conectiva
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Y el alcance de la tercera aparición del śımbolo de negación, en esa
misma fórmula, es la fórmula atómica t :

  
�� �� �� ��t
| |

conectiva interior alcance de dicha conectiva

Ahora, veamos otro ejemplo. En la fórmula

p p5 ^ pq _ qqq

el alcance del śımbolo de disyunción son los dos disyuntos, es decir, la
fórmula q que aparece repetida, a ambos lados de _. Esto es:

conectiva interior
|

p p5 ^ p
�� ��q _ �� ��q qq
| |

alcance de esa conectiva
(primer disyunto)

alcance de esa conectiva (se-
gundo disyunto)

§ 6.2. ABREVIATURAS: REGLAS DE SUPRESIÓN DE
PARÉNTESIS

A veces, en vez de decir “Verónica” decimos “Vero”, y en vez de decir
“Federico” decimos “Fede”. Pues bien, con el mismo esṕıritu, vamos
a introducir algunas reglas de supresión de paréntesis en los nombres
metalingǘısticos de las fórmulas de lenprop, a fin de agilizar nuestro
manejo con ellas.
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1. Supresión de paréntesis exteriores. Cuando una conjunción

pA^Bq se nombre sola, suprimimos los paréntesis exteriores,

poniendo sencillamente:

A^B

Lo mismo hacemos con disyunciones, condicionales y bicondicio-
nales, cuando estas fórmulas se nombran solas:

A_B AÑ B AØ B

2. Conjunciones iteradas. Dadas cualesquiera fórmulas A, B y

C de lenprop, abreviamos la conjunción iterada A^ pB ^ Cq ,

poniendo sencillamente:

A^B ^ C

3. Disyunciones iteradas. De igual modo, dadas cualesquiera flas

A, B y C de lenprop, abreviamos la disyunción iterada A_ pB _ Cq ,

poniendo sencillamente:

A_B _ C

4. Conjunción y disyunción ligan más fuerte. Dadas cuales-
quiera fórmulas A, B y C de lenprop,

abreviamos AÑ pB ^ Cq mediante: AÑ B ^ C

De este modo, al suprimir los paréntesis en torno a ^ , en-
tendemos que esta conectiva “liga más fuerte”, por aśı decirlo,
que Ñ .
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Otro tanto hacemos cuando ^ aparece en el antecedente:

abreviamos pA^Bq Ñ Cq mediante: A^B Ñ C

Por lo tanto, aqúı también se entiende que ^ “liga más fuer-
te” que Ñ .

Por su parte, cuando se combinan Ñ y _ , hacemos lo mis-
mo: entendemos que _ liga más fuerte que Ñ .

Por consiguiente:

abreviamos AÑ pB _ Cq mediante: AÑ B _ C

” pA_Bq Ñ Cq ” A_B Ñ C

Y exactamente lo mismo hacemos cuando ^ y _ se combi-
nan con Ø . También en estos casos entendemos que ^ y _

ligan más fuerte que Ø , de tal modo que:

abreviamos AØ pB ^ Cq mediante: AØ B ^ C

” pA^Bq Ø C ” A^B Ø C

” AØ pB _ Cq ” AØ B _ C

” pA_Bq Ø Cq ” A_B Ø C
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§ 6.3. EJEMPLOS

Un ejemplo de fórmula de lenprop en cuyo nombre hemos aplicado
varias de estas convenciones, es la siguiente:

p ^ q ^ r Ñ s _ t

Pues bien, si restauramos todos los paréntesis suprimidos, obtendŕıamos:

p p p^ pq ^ rq q Ñ ps^ tq q

Sin embargo, a la fórmula AÑ pB Ñ Cq no le podemos quitar el

paréntesis interior, porque no se le aplica ninguna de estas reglas.

Y a la fórmula A^ pB Ñ Cq , tampoco le podemos quitar el parénte-

sis interior, porque tampoco se le aplica ninguna de estas reglas.

§ 6.4. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Pon un ejemplo de fórmula compuesta que tenga al menos 12 ca-
racteres (es decir, al menos 12 apariciones de śımbolos, contando
repeticiones y paréntesis).

2. Para la fórmula propuesta, elige una conectiva interior e indica
cuál es su alcance.

3. Repite los ejercicios anteriores, pero esta vez con una fórmula que
tenga al menos 18 caracteres.
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4. Pon un ejemplo de fórmula a la que se pueda aplicar la primera
regla de supresión de paréntesis (la supresión de paréntesis exte-
riores), e indica cuál es el resultado de abreviarla de esa manera.

5. Repite el ejercicio anterior, pero esta vez respecto a la segunda
regla de supresión de paréntesis.

6. Repite el ejercicio anterior, pero esta vez respecto a la tercera
regla de supresión de paréntesis.

7. Repite el ejercicio anterior, pero esta vez respecto a la cuarta
regla de supresión de paréntesis.

8. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

b) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

c) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 7

Semántica veritativo-funcional:
bivalencia y reglas de valoración

§ 7.1. EL PRINCIPIO DE BIVALENCIA

El lenguaje de la lógica proposicional es un lenguaje formal, porque lo
hemos definido completamente, en su alfabeto y su sintaxis (es decir,
las reglas de combinación de śımbolos), sin hacer referencia a ninguna
interpretación suya.

Sin embargo, para que este lenguaje nos sea de utilidad, tenemos
que interpretarlo de alguna manera. Pues bien, aqúı vamos a explo-
rar la principal forma de interpretar este lenguaje, que es la llamada
“semántica veritativo-funcional” (o “semántica vf”, para abre-
viar).

La semántica vf pone en relación dos cosas: por una parte, fórmulas
de lenprop; y por otra, los llamados “valores de verdad” (es decir,
verdadero y falso, la verdad y la falsedad).

En este curso no vamos a detenernos a investigar qué es la verdad
y qué es la falsedad. Nos conformaremos con la comprensión intuitiva
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de que hay proposiciones que son verdaderas (por ejemplo, La Tierra
es un planeta) y otras que son falsas (por ejemplo, Murcia es la ciudad
más grande de España).

Ello presupone un trasfondo que en buena medida es discutible y
está por descubrir; pero aqúı no vamos a detenernos a explorarlo. Nos
limitaremos a suponer — es decir, a dar por sentado — que algunas
proposiciones son verdaderas y otras falsas. Y sobre esa base, iremos
asignando la verdad (abreviadamente, “V”), o la falsedad (abreviada-
mente, “F”), a cada una de las fórmulas de lenprop.

En todo caso, la semántica vf es bivalente, porque en cada inter-
pretación, cada una de las flas de lenprop resultará ser, o bien ver-
dadera, o bien falsa. A este presupuesto se le llama “principio de
bivalencia”, y es uno de los pilares fundamentales de la lógica
clásica.

§ 7.2. REGLAS DE VALORACIÓN SEMÁNTICA

A los valores de verdad (V y F) se les llama también “valores verita-
tivos”. De ah́ı viene la expresión “semántica veritativo-funcional”.

La otra parte de la expresión (“funcional”) hace referencia a que
los valores de verdad de las fórmulas compuestas se asignan en fun-
ción de los valores de sus subfórmulas. A su vez, los valores de estas
subfórmulas se asignan en función de los valores de las subfórmulas
más pequeñas que contengan, y aśı hasta llegar a las fórmulas atómicas
(es decir, a los śımbolos proposicionales).

De este modo, el valor de verdad de una fórmula compuesta estará
en función del valor de verdad de los śımbolos proposicionales que
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aparezcan en ella — aśı como de la combinación de estos śımbolos
con las diferentes conectivas. Y para realizar esa asignación, hay unas
pautas (o reglas de valoración semántica), que son las que vamos
a exponer a continuación.

Teniendo en cuenta todo esto, definimos una interpretación pro-
posicional (abreviadamente, intprop) como una asignación de va-
lores de verdad a las fórmulas de lenprop, de acuerdo con las siguien-
tes cláusulas recursivas:

1. Fórmulas atómicas. Si A es una fórmula atómica (es decir,
un śımb prop), entonces una intprop I le asignará un valor de
verdad, verdadero o falso. Abreviadamente:�



�
	Si A es una fla atóm, entonces Ip A q “ V o Ip A q “ F

2. Negaciones. Sea A es cualquier fórmula. Entonces, si una int-

prop I asigna a la fórmula A el valor V, le asignará a la fórmula

 A el valor F; y viceversa.

Es decir:

�

�

�

�
Ip  A q “

$

’

&

’

%

V si Ip A q “ F

F si Ip A q “ V

A continuación, sean A y B cualesquiera fórmulas.

3. Conjunciones. Una intprop I asignará a la fórmula A^B el
valor verdadero, si asigna el valor verdadero tanto a la fórmula
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A como a la fórmula B ; en cualquier otro caso, I asignará a

la fórmula A^B el valor falso.

Es decir:

�

�

�

�
Ip A^B q “

$

&

%

V si Ip A q “ V y Ip B q “ V

F en cualquier otro caso

4. Disyunciones. Una intprop I asignará a la fórmula A_B el

valor verdadero, si asigna el valor verdadero a la fórmula A , o

a la fórmula B , o a ambas; en cualquier otro caso, I asignará a

la fórmula A_B el valor falso.

Es decir:

�

�

�

�
Ip A_B q “

$

&

%

V si Ip A q “ V o Ip B q “ V

F en cualquier otro caso

5. Condicionales. Una intprop I asignará a la fórmula AÑ B el

valor falso, si asigna a la fórmula A el valor verdadero y asigna

a la fórmula B el valor falso; en cualquier otro caso, I asignará

a la fórmula AÑ B el valor verdadero.

Es decir:
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�

�

�

�
Ip AÑ B q “

$

&

%

F si Ip A q “ V y Ip B q “ F

V en cualquier otro caso

6. Bicondicionales. Una intprop I asignará a la fórmula AØ B

el valor verdadero, si asigna el mismo valor a las fórmulas A

y B (es decir, si les asigna a las dos el valor verdadero, o les
asigna a las dos el valor falso); en caso contrario, I asignará a la

fórmula AØ B el valor falso.

Es decir:

�

�

�

�
Ip AØ B q “

$

&

%

V si Ip A q “ Ip B q

F en caso contrario

§ 7.3. SATISFACCIÓN

Dicho todo esto, al valor que una interpretación proposicional I asigna

a una fórmula A , lo llamamos también “el valor de A bajo I”.

Asimismo, si este valor es V, decimos que I “hace V a A ”, o que

I “satisface” A . Y esto lo abreviamos mediante el signo de “puerta
giratoria doble” con el sub́ındice “prop”, poniendo:

I |ù
PROP

A



64 GUSTAVO PICAZO (UNIV. DE MURCIA, CURSO 25.26)

Por su parte, si el valor que I asigna a una fórmula A es F,

entonces decimos que I “hace F a A ”, o que I “no satisface” A .
Y esto lo abreviamos mediante el signo anterior, pero tachado, aśı:

I �
�|ù

PROP
A

Usando esta terminoloǵıa, podemos decir que una intprop I hace

V a una fórmula condicional AÑ B , cuando sucede que si I hace V
al antecedente ( A ), entonces también hace V al consecuente ( B ).

Del mismo modo, podemos decir que una intprop I hace V a una

fórmula bicondicional AØ B , cuando sucede que I hace V a A si

y solo si hace V a B .

Aśı se entiende mejor que Ñ y Ø se llamen “śımbolo condicio-
nal” y “śımbolo bicondicional” respectivamente.

Finalmente, también es bastante obvio que una intprop I hace V
a un bicondicional AØ B , cuando sucede que I hace V a los con-

dicionales en los dos sentidos, AÑ B y B Ñ A . Por consiguiente,

el bicondicional AØ B será verdadero exactamente en los mismos
casos en que lo sea la conjunción:

pAÑ Bq ^ pB Ñ Aq

§ 7.4. EJEMPLOS DE VALORACIONES SEMÁNTICAS

Sea I una intprop tal que:

Ip p q “ V
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Ip q q “ F

Ip t q “ V

Ip p5 q “ F

Pues bien, en ese caso, aplicando la cláusula 2 de la definición an-
terior, tendremos:

Ip  p q “ F Ip  p5 q “ V

Ip  t “ F Ip   t q “ V Ip    t q “ F

Por su parte, aplicando la cláusula 6 de la definición anterior, y
teniendo en cuenta que Ip q q “ F e Ip p5 q “ F, tendremos:

Ip q Ø p5 q “ V

Y por consiguiente, aplicando la cláusula 2:

Ip  pq Ø p5q q “ F

Aplicando ahora las cláusulas 2, 3 y 4 de esta misma definición,
tendremos:

Ip q _ q q “ F Ip  pq _ qq q “ V Ip  p5 ^ pq _ qq q “ V

Y finalmente, aplicando las cláusulas 2 y 5, tendremos:

Ip p5 Ñ q _ q q “ V
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Nótese que, por la regla de supresión de paréntesis que introdujimos
en el tema anterior, la disyunción liga más fuerte que el condicional,

con lo cual esta fórmula ha de leerse: p5 Ñ pq _ qq

Naturalmente, si tomamos otra interpretación diferente, que asigne
otros valores a nuestras cuatro fórmulas atómicas

p q t p5

entonces podŕıan cambiar, a su vez, los valores de todas las fórmulas
compuestas en las que estas fórmulas atómicas aparecen.

§ 7.5. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Propón una intprop J para los śımbolos proposicionales p , q ,

r y s . Es decir, especifica, para cada una de estas cuatro fórmu-
las atómicas, cuál es su valor (V o F) bajo J , a tu elección. (Puedes
elegir el valor que quieras para cada fórmula.)

2. Especifica cuál es el valor de la negación de cada una de esas
cuatro fórmulas bajo J . Es decir, especifica

Jp  p q Jp  q q Jp  r q Jp  s q

3. Basándote en tus respuestas anteriores, especifica:

Jp p^ q q Jp r _ s q Jp pÑ r q Jp q Ø s q

4. Basándote en tus respuestas anteriores, especifica:

Jp  pÑ p^ q q Jp  pr _ sq q Jp ppÑ rq ^ pq Ø sq q
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Recuerda que la disyunción liga más fuerte que el condicional, por

lo que la primera de estas fórmulas ha de leerse:  pÑ pp^ qq .

5. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Razona detalladamente lo que se apunta al final de §7.3 :
que una intprop I hace V a

AØ B

exactamente en los mismos casos en que a

pAÑ Bq ^ pB Ñ Aq

b) Especula libremente, pero de forma breve, sobre cómo seŕıa
una lógica “no bivalente”.

c) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

d) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

e) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 8

Semántica veritativo-funcional:
validez y consecuencia lógica

§ 8.1. TAUTOLOGÍAS

La semántica vf tiene una curiosa consecuencia: algunas fórmulas de
lenprop resultan verdaderas bajo cualquier interpretación.

El ejemplo por antonomasia es:

p _  p

En efecto, dadas las reglas de valoración semántica que vimos en
§7.2 , para cualquier intprop I tenemos que:

(a) Si Ip p q “ V, entonces, por la cláusula 4 de las reglas de valora-

ción, sucede que Ip p_ p q “ V.

(b) Pero si Ip p q “ F, entonces, por la cláusula 2 de las reglas de

valoración, sucede que Ip  p q “ V. Y por consiguiente, aplican-

do de nuevo la cláusula 4 de las reglas de valoración, tendremos
igualmente Ip p_ p q “ V.

68
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En definitiva, la fórmula p_ p resulta verdadera bajo cual-

quier interpretación proposicional, y para expresar esto decimos
que es una “tautoloǵıa”, o que es “tautológica” (abreviadamente,
“taut”). También decimos que es una “ley lógica a nivel de la
lógica proposicional” (o que es una “ley de la lógica proposi-
cional”.

Otro tanto ocurre, obviamente, si en lugar de p ponemos cualquier

otro śımbolo proposicional (como q , etc).

Y también son tautoloǵıas muchas otras fórmulas de lenprop, como
por ejemplo:

pÑ p pØ   p pp^ qq _  pp^ qq

En efecto, de cada una de esas fórmulas, es fácil comprobar que resulta
verdadera para cualquier interpretación.

Por último, de las tautoloǵıas decimos también que son “verdades
lógicas de la lógica proposicional”, o “fórmulas lógicamente
válidas de la lógica proposicional”.

§ 8.2. CONTRADICCIONES

Rećıprocamente, hay también fórmulas de lenprop que resultan falsas
bajo cualquier interpretación. En este caso, el ejemplo por antonomasia
es:

p ^  p

En efecto, dadas las reglas de valoración semántica que vimos en
§7.2 , es obvio que para cualquier interpretación I:
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(a) Si Ip p q “ V, entonces tendremos Ip  p q “ F. Y por consi-

guiente, por la clásula 3 de las reglas de valoración, tendremos
Ip p^ p q “ F.

(b) Pero si Ip p q “ F, entonces directamente (por misma cláusula

3), tendremos Ip p^ p q “ F.

En definitiva, la fórmula p^ p resulta falsa bajo cualquier

interpretación proposicional, y para expresar esto decimos que es
una “contradicción”, o que es “contradictoria” (abreviadamente,
“contrad”).

La fórmula p^ p (o con cualquier otro simbprop, q , etc) cons-

tituye la contradicción por antonomasia, es decir, la más reconocible
en lenprop.

Sin embargo, no es dif́ıcil encontrar otras contradicciones en este
lenguaje (esto es, otras fórmulas que también son falsas bajo cualquier
intprop). Por ejemplo:

pØ  p  p^  p pp^ qq ^  pp^ qq

De cada una de esas fórmulas, es fácil comprobar que resulta falsa
para cualquier interpretación.

Finalmente, de las contradicciones decimos también que son “fórmu-
las insatisfacibles en lógica proposicional”, o “fórmulas lógi-
camente falsas en lógica proposicional”.
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§ 8.3. SATISFACIBILIDAD DE UNA FÓRMULA

Si A es una fórmula de lenprop, decimos que A es “satisfacible en
lógica proposicional” si existe alguna interpretación proposicional

que la satisface (es decir: si existe alguna intprop I, tal que Ip A q “

V).

Naturalmente, cualquier fla de lenprop que no sea una contradic-
ción, será satisfacible. Ello incluye las tautoloǵıas, pero también mu-
chas otras fórmulas de este lenguaje, que resultan verdaderas en algu-
nas interpretaciones, pero no en todas.

Como ejemplos de fórmulas satisfacibles de lenprop podemos señalar
las siguientes:

pÑ p p_ p p q p_ q

Las dos primeras son tautoloǵıas. Las otras tres son simplemente sa-
tisfacibles, pero no tautológicas.

§ 8.4. CONJUNTOS Y PERTENENCIA

A un grupo de ovejas que pastan juntas lo llamamos “rebaño”. A un
grupo de abejas que vuelan juntas lo llamamos “enjambre”.

Pues bien, con este mismo esṕıritu, hablamos a veces de “un con-
junto” de objetos (los que sean), y expresamos que un determinado
objeto “pertenece” a ese conjunto, mientras que otro objeto “no
pertence”. A veces abreviamos la palabra, y escribimos simplemente
“cjto”.

Además, para exhibir los objetos que pertenecen a un conjunto, uti-
lizaremos la llamada “notación de llaves”. Aśı por ejemplo, podemos
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especificar el conjunto de provincias de Aragón, poniendo:

Aragón “ tZaragoza, Huesca, Teruel u

Incluso si un conjunto es infinito, se puede a veces dar a entender
cuáles son sus elementos, mostrando unos pocos. Aśı por ejemplo, es
habitual caracterizar el conjunto N de los números naturales, ponien-
do:

N “ t 0, 1, 2, . . . u

(donde está claro que la serie continúa 3, 4, 5, 6, . . ., y aśı hasta el
infinito).

Por último, si D es un conjunto y el objeto a pertenece al mismo,
entonces pondremos, para abreviar,

a P D

Y si b es un objeto que no pertenece al conjunto D, entonces lo que
pondremos es:

b R D

Por consiguiente, dados los ejemplos anteriores, podemos decir que:

Zaragoza P Aragón Murcia R Aragón

7 P N
3

4
R N
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§ 8.5. SATISFACCIÓN DE UN CONJUNTO DE FÓRMU-
LAS

Sea ahora D un conjunto de fórmulas de lenprop, y sea I una inter-
pretación proposicional. Entonces, decimos que I “satisface” D, si
satisface todas y cada una de las fórmulas de D. Esto lo abreviamos
mediante el signo de la puerta giratoria doble:

I |ù
PROP

D si y solo si I |ù
PROP

A para cualquier fla A P D

Por el contrario, si existe al menos una fla en D que la intprop
I no satisface, entonces decimos que I “no satisface” D, lo cual
abreviamos mediante el signo de puerta giratoria doble, pero tachado:

I��|ùPROP
D si y solo si I��|ùPROP

A para alguna fla A P D

Aśı por ejemplo, tomemos el siguiente conjunto de fórmulas:

D1 “ t p , q ,  r u

Pues bien, una interpretación que satisface ese conjunto es, obviamen-
te:

I1p p q “ V I1p q q “ V I1p r q “ F

Mientras que una interpretación que no lo satisface es, por ejemplo:

I2p p q “ F I2p q q “ V I2p r q “ F

Ahora tomemos otro conjunto de fórmulas:

D2 “ t p_ q _ r ,  p ,  q u
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Pues bien, en este caso, una intprop que satisface este otro conjunto
es la siguiente:

I3p p q “ F I3p q q “ F I3p r q “ V

Mientras que una intprop que no lo satisface es:

I4p p q “ F I4p q q “ F I4p r q “ F

§ 8.6. SATISFACIBILIDAD DE UN CONJUNTO DE FÓRMU-
LAS

A continuación, decimos que un conjunto de fórmulas de lenprop D
es “satisfacible en lógica proposicional” (abreviadamente, “sat
logprop”) cuando existe alguna interpretación proposicional que lo
satisface.

Los dos ejemplos anteriores, D1 y D2, son obviamente satisfacibles.

Otro ejemplo de conjunto de fórmulas satisfacible es:

D3 “ t p_ q _ r , p u

En efecto, es inmediato darse cuenta de que cualquier interpretación
en la que p sea V, también hará V a la fórmula p_ q _ r (y por

consiguiente, a todo el conjunto D3).

Por último, decimos que un conjunto de fórmulas de lenprop es
“insatisfacible en lógica proposicional” (abreviadamente, “in-
sat logprop”) cuando no es satisfacible, es decir, cuando no existe
ninguna interpretación proposicional que haga verdaderas a todas sus
fórmulas.
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Un ejemplo obvio de conjunto de fórmulas insatisfacible es:

D4 “ t p ,  p u

En efecto, dada la definición de interpretación proposicional, es claro
que no puede haber ninguna interpretación que haga verdaderas a las
fórmulas p y  p .

Y otro ejemplo — también bastante claro — de conjunto de fórmu-
las insatisfacible, es:

D5 “ t p_ q ,  p ,  q u

En efecto, si una interpretación hace V a p_ q , entonces tendrá que

hacer V a p o a q , y por tanto hará F a alguna de las fórmulas  p

o  q .

§ 8.7. CONSECUENCIA LÓGICA

Dadas dos fórmulas A y B de lenprop, decimos que “la fórmula

B es consecuencia lógica de la fórmula A en lógica pro-
posicional” (abreviadamente, “consec logprop”), cuando sucede

que cualquier interpretación proposicional que satisfaga A ,

también satisface B .

Cuando ocurre esto, también decimos que “ B se sigue de A

en lógica proposicional”, o que “el argumento de A a B

es válido en lógica proposicional”. Y este hecho lo abreviamos
poniendo:

A |ù
PROP

B
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En caso contrario (es decir, cuando B no es consecuencia lógica

de A ), ponemos:

A �
�|ù

PROP
B

Aśı por ejemplo, es fácil darse cuenta de que:

p^ q |ù
PROP

p

En efecto, si una interpretación satisface p^ q , también tiene que

satisfacer p . Por lo tanto, p es consecuencia lógica de p^ q .

Por otra parte, también es fácil ver que:

p_ q �
�|ù

PROP
p

En efecto, puede haber una interpretación que satisfaga p_ q y no

satisfaga p (basta con que satisfaga q ). Por consiguiente, p no es

una consecuencia lógica de p_ q .

Por último, dada una fórmula A y un conjunto de fórmulas D, de-

cimos que “la fórmula A es consecuencia lógica del conjunto D
en lógica proposicional” ((abreviadamente, “consec logprop”),
cuando sucede que cualquier interpretación proposicional que
satisfaga el conjunto D, también satisface la fórmula A.

En este caso, también decimos que “ A se sigue de D en lógica

proposicional”, o que “el argumento de D a A es válido en
lógica proposicional”. Y este hecho lo abreviamos poniendo:

D |ù
PROP

A
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En caso contrario (es decir, cuando A no es consecuencia lógica
de D), ponemos:

D �
�|ù

PROP
A

Los siguientes casos son ejemplos bastante obvios de una cosa y de
otra:

t p , pÑ q u |ù
PROP

q

t p , pÑ q u �
�|ù

PROP
r

En este punto, conviene recordar la regla de valoración semántica del
condicional (§7.2 , regla 5). Pues bien, dada esta regla, es claro que
si una interpretación satisface el conjunto de fórmulas t p , pÑ q u,

también tendrá que satisfacer la fórmula q (en otro caso, la fórmu-

la pÑ q seŕıa falsa bajo esa interpretación). Por consiguiente, esta

última fórmula es una consecuencia lógica de dicho conjunto.

Pero por otro lado, una interpretación puede satisfacer ese conjun-
to sin satisfacer la fórmula r , por lo que esta fórmula no es una
consecuencia lógica suya.

§ 8.8. EQUIVALENCIA LÓGICA

Finalmente, decimos que dos fórmulas de lenprop, A y B son “lógi-
camente equivalentes en lógica proposicional”, cuando tenemos
al mismo tiempo:

A |ù
PROP

B y B |ù
PROP

A
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Esto lo abreviamos poniendo:

A ”
PROP

B

Aśı por ejemplo, es fácil ver que si una intprop I satisface una

fórmula A , también satisfará su doble negación,   A , y vicecersa.

En efecto, si I hace V a A , entonces hará F a  A , y por lo tanto

hará V a   A . Y rećıprocamente: si I hace V a   A , entonces

hará F a  A , y por consiguiente hará V a A .

En definitiva, hemos demostrado que para cualquier fla A ,

A ”
PROP

  A

§ 8.9. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Pon un ejemplo de tautoloǵıa.

2. Pon un ejemplo de contradicción.

3. Pon un ejemplo de fórmula satisfacible no tautológica.

4. Especifica un conjunto mediante la notación de llaves. A conti-
nuación, da un ejemplo de objeto que pertenezca a ese conjunto,
y otro que no pertenezca, mediante la notación indicada en §8.4 .

5. Da un ejemplo de conjunto de fórmulas satisfacible y especifica
una interpretación que lo satisfaga.
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6. Da un ejemplo de conjunto de fórmulas insatisfacible y explica
por qué lo es.

7. Especifica un conjunto de tres fórmulas, y a continuación indica
una fórmula que sea consecuencia lógica de ese conjunto, y otra
que no lo sea.

8. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Da una explicación, similar a la de §8.8 , que establezca que

para cualesquiera fórmulas A y B ,

AÑ B ”
PROP

 A_B

b) Da una explicación, similar a la de §8.8 , que establezca que

para cualesquiera fórmulas A y B ,

AØ B ”
PROP

pAÑ Bq ^ pB Ñ Aq

c) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

d) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

e) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 9

Formalización en lenprop: negaciones
y conjunciones

§ 9.1. ARGUMENTOS FORMALES, VALIDEZ Y CONSE-
CUENCIA LÓGICA

Para que todo el aparataje que llevamos construido hasta aqúı sea de
alguna utilidad en el análisis de los argumentos deductivos, tenemos
que ponerlo en relación con el lenguaje natural, que es donde se lleva
a cabo la argumentación humana.

Para ello, vamos a intentar “extraer” algunas estructuras lógi-
cas subyacentes a las proposiciones del lenguaje natural, y a
ponerlas en correspondencia con fórmulas de nuestro lengua-
je formal. A esta tarea la llamamos “formalización”.

Al formalizar las premisas y la conclusión de un argumento de-
ductivo, obtenemos su contrapartida formal. Esta contrapartida
consiste en un argumento formal, esto es: un conjunto de fórmulas
que corresponden a las premisas del argumento, junto con una fórmula
adicional, que corresponde a su conclusión.

80
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Pues bien, la noción de consecuencia lógica definida en §8.7 tiene
la siguiente propiedad: si el argumento formalizado es válido
(es decir, si el argumento expresado en lenguaje natural constituye
un argumento deductivo correcto), entonces, en su contrapartida
formal, la conclusión es consecuencia lógica de las premisas.

Esto es obvio, teniendo en cuenta que la caracteŕıstica definitoria
de los argumentos deductivos es precisamente que si las premisas son
verdaderas, la conclusión también tiene que serlo. Y eso coincide con
la noción de consecuencia lógica de §8.7 , definida en el terreno de las
fórmulas de lenprop y la noción de interpretación proposicional.

§ 9.2. UTILIDAD Y DIFICULTADES DE LA FORMALIZA-
CIÓN

La formalización es, sin duda, el gran talón de Aquiles de la lógica: ah́ı
es donde las distintas teoŕıas de la lógica presentan más fallas.
Ello se debe principalmente a tres razones, que son las siguientes.

En primer lugar, no existe un método que nos indique cómo
debemos formalizar las proposiciones del lenguaje natural: aprendemos
a formalizar de manera intuitiva, a través de ejemplos y explicaciones
dispersas.

En segundo lugar, cualquiera que sea el lenguaje lógico escogido,
siempre encontramos desajustes respecto al área del lenguaje na-
tural que queremos representar. Es decir, siempre acaban apareciendo
matices o atributos lógicos de las proposiciones del lenguaje natural,
que el lenguaje formal escogido no puede captar. Todo ello convierte
la tarea de formalización en un terreno discutible y resbaladizo.
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Pero además, hay una tercera limitación a la formalización lógica,
que es la más profunda, y afecta al ámbito de las matemáticas. La
explicaremos — muy por encima — en la sección siguiente.

§ 9.3. LÍMITES DE LA FORMALIZACIÓN EN MATEMÁTI-
CAS

Como dijimos en §3.8 , las matemáticas se presentan habitualmente
en un lenguaje semi-formal, esto es: con profusión de śımbolos y térmi-
nos técnicos, pero no en un lenguaje completamente formalizado.

De hecho, cualquier texto de matemáticas tiene a la base un len-
guaje natural, ya sea el castellano, el inglés, el ruso, etc. Y es mediante
ese lenguaje natural que se va explicando el significado de los śımbolos
y términos técnicos que se van introduciendo. A veces, se utilizan tam-
bién figuras, diagramas y otros recursos gráficos, que a su vez se van
comentando y explicando mediante el lenguaje natural en cuestión.

Sin embargo, es notorio que las matemáticas hacen un uso del len-
guaje natural bastante limitado, restringido a un registro lingǘıstico
más bien reducido y repetitivo. Por eso, formalizar matemáticas re-
sulta más fácil, aparentemente, que formalizar cualquier otra área del
discurso humano — en matemáticas parece haber menos desajustes
expresivos, en principio, respecto a los lenguajes formales.

Sin embargo, incluso en ese ámbito del discurso humano tan ase-
quible, aparentemente, a la formalización, existen limitaciones infran-
queables a dicha tarea.

En concreto, el primer teorema de incompletitud de Gödel (demos-
trado en 1931) establece que ni siquiera la aritmética elemental
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— es decir, la teoŕıa matemática que trata de los números naturales
y las relaciones de orden entre ellos — es completamente formali-
zable. En efecto, para cualquier teoŕıa formal que intente representar
la aritmética, existe una proposición aritmética verdadera, que esa
teoŕıa no contiene. Volveremos sobre este resultado, con un poco más
de detalle, en logfor2.

En cualquier caso, aun asumiendo las dificultades y limitaciones de
la formalización lógica, lo cierto es que, a fecha de hoy, sigue siendo
nuestra mejor herramienta disponible para analizar el razonamiento
deductivo. Y es por ello que debemos aprender a manejarla.

§ 9.4. FORMALIZACIÓN MEDIANTE SÍMBOLOS PRO-
POSICIONALES

El uso de śımbolos proposicionales para formalizar proposiciones del
lenguaje natural es relativamente sencillo. Consiste en identificar una
proposición concreta (es decir, una oración enunciativa, en la que in-
terpretamos que se está haciendo una determinada afirmación), y asig-
narle un śımbolo proposicional que la represente.

Por ejemplo:

p : Llueve.

q : Hace fŕıo.

r : Ana lleva paraguas.

s : 2 + 2 = 4
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t : Madrid está en España.

A este emparejamiento entre śımbolos de lenprop y proposiciones
del lenguaje natural (en nuestro caso, el castellano) lo llamamos “ta-
bla de convenciones simbólicas”. Toda formalización lógica pre-
supone una tabla de estas caracteŕısticas, aunque a veces no se hace
expĺıcita, porque solo con ver la fórmula ya entendemos a qué corres-
ponde cada cosa.

§ 9.5. ESTRUCTURA DE LAS PROPOSICIONES FORMA-
LIZADAS

A continuación, vamos a dar orientaciones respecto a la formalización
mediante cada una de las conectivas de lenprop.

Al hacerlo, trasladaremos a las proposiciones del lenguaje natural,
la estructura y terminoloǵıa correspondiente a aquellas fórmulas de
lenprop que tienen esa conectiva como conectiva principal.

En particular, si representamos una proposición del lenguaje na-

tural como una negación  A , diremos que la proposición que co-

rresponde a A es la “proposición negada”. Si representamos una

proposición del lenguaje natural como un condicional AÑ B , dire-

mos que la proposición que corresponde a A es el “antecedente”, y

la que corresponde a B es “el consecuente”. Y análogamente para
el resto de conectivas de lenprop.
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§ 9.6. FORMALIZACIÓN DE NEGACIONES

No es dif́ıcil imaginar que con el śımbolo de negación vamos a forma-
lizar aquella operación lógica que consiste en negar una determinada
proposición. Aśı por ejemplo, manteniendo las convenciones anterio-
res, tenemos:

 p : No llueve.

 q : No hace fŕıo.

 r : Ana no lleva paraguas.

 s : 2 + 2 ‰ 4

 t : Madrid no está en España.

§ 9.7. MATICES DE LAS NEGACIONES QUE ESCAPAN
A LENPROP

El śımbolo de negación es bastante tosco, deja fuera muchos matices.
Aśı por ejemplo, si alguien dice:

Tajantemente no llueve, estamos en las ant́ıpodas del llover (1)

está expresando un hecho distinto a quien afirma:

Está que casi llueve, aunque todav́ıa no. (2)

Sin embargo, en lenprop no hay varios śımbolos de negación,
que nos permitieran reflejar la diferencia entre negar algo categórica-
mente, como hace (1), y negarlo de forma vacilante (“por la mı́nima”),
como hace (2).
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La única forma que tenemos de formalizar la negación de Llueve
es mediante  p , que significa genéricamente No llueve. Y ello no

recoge los matices adicionales que puedan acompañar esa negación en
el lenguaje natural.

§ 9.8. FORMALIZACIÓN DE CONJUNCIONES

Por su parte, utilizaremos el śımbolo de conjunción para formalizar
aquellas proposiciones del lenguaje natural en la que se combinan dos
afirmaciones en una sola. Estas afirmaciones combinadas vienen a
corresponder a lo que en el análisis sintáctico-gramatical se denominan
“conjunciones copulativas”.

Aśı por ejemplo, manteniendo las convenciones simbólicas anterio-
res, tenemos:

p ^ q : Llueve y hace fŕıo.

p ^  r : Llueve y Ana no lleva paraguas.

s ^ t : 2 + 2 = 4 y Madrid está en España.

§ 9.9. MATICES DE LAS CONJUNCIONES QUE ESCA-
PAN A LENPROP

También el śımbolo de conjunción es muy tosco, en relación a la can-
tidad de matices que se pueden expresar al combinar afirmaciones en
el lenguaje natural. Aśı por ejemplo:

Llueve, pero no hace fŕıo. (3)
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da a entender que hay un contraste entre una cosa y otra (algo aśı
como que lloviendo, seŕıa de esperar que hiciera fŕıo, aunque de hecho
no haga fŕıo en ese momento).

Sin embargo, en lenprop solo hay un śımbolo de conjunción,
por lo que (3) se ha de formalizar mediante p^ q , que significa

genéricamente Llueve y no hace fŕıo, sin recoger matices adicionales.

Por otra parte, casi siempre que emitimos dos afirmaciones com-
binadas en el lenguaje natural (ya sea mediante “y”, “pero” u otras
part́ıculas gramaticales), damos a entender que una es relevante para
la otra. Aśı, saber si llueve y hace fŕıo, nos ayuda a equiparnos para
salir a la calle. Y si Ana no lleva paraguas, el hecho de que llueva es
obviamente relevante.

Sin embargo, decir:

2 + 2 = 4 y Madrid está en España

suena raro, porque no se adivina la relación que se quiere apuntar
entre una cosa y otra.

Pues bien, todos esos matices del lenguaje natural quedan tam-
bién fuera de la correspondiente formalización de la conjunción. La
formalización s^ t no entraña ni presupone que tenga que haber
relación alguna entre esos dos conyuntos, a pesar de que se afirmen
juntos. Tampoco implica que no pueda haber relación: simplemente es
independiente de si hay relación o no.
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§ 9.10. FORMALIZACIÓN DE CONJUNCIONES ITERA-
DAS

Por último, al formalizar conjunciones del lenguaje natural, aplicare-
mos el sentido común para representar conjunciones iteradas, y utili-
zaremos las reglas de supresión de paréntesis alĺı donde sea posible.

Aśı por ejemplo, supongamos que queremos formalizar la siguiente
proposición en lenprop, haciendo visible su estructura como conjun-
ción:

Lorca está en Murcia, en España y en Europa. (4)

Pues bien, en este caso aplicaŕıamos una tabla de convenciones como
la siguiente:

p1 : Lorca está en Murcia.

p2 : Lorca está en España.

p3 : Lorca está en Europa.

Como vemos, la tabla de convenciones de la formalización nos obliga
a explicitar el sujeto, verbo y predicado de cada proposición. Esto
contrasta con la formulación del lenguaje natural de (4), más fluida
y abreviada, en la que se omiten el sujeto y verbo de p2 y p3 (los

cuales quedan “eĺıpticos”).

Y una vez hecho esto, formalizaŕıamos (4) sencillamente como:

p1 ^ p2 ^ p3



LÓGICA FORMAL 1 (LÓGICA PROPOSICIONAL) 89

§ 9.11. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Pon un ejemplo de negación en el lenguaje natural y su formali-
zación en lenprop, especificando la correspondiente tabla de con-
venciones simbólicas.

2. Pon dos ejemplos de proposiciones en el lenguaje natural que
nieguen lo mismo, pero con diferentes grados de fuerza, y for-
maĺızalas en lenprop.

3. Pon un ejemplo de conjunción en el lenguaje natural y su for-
malización en lenprop, especificando la correspondiente tabla de
convenciones simbólicas.

4. Pon un ejempo de conjunción en el lenguaje natural, que contenga
matices que lenprop no es capaz de expresar. Explica por qué, en
pocas palabras.

5. Pon un ejemplo de conjunción iterada en el lenguaje natural, y
su formalización en lenprop.

6. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

b) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

c) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 10

Formalización en lenprop:
disyunciones, condicionales y

bicondicionales

§ 10.1. FORMALIZACIÓN DE DISYUNCIONES INCLUSI-
VAS

En cuanto al śımbolo de disyunción, tampoco es dif́ıcil de imaginar que
lo vamos a utilizar para formalizar proposiciones del lenguaje natural
en las que se presentan distintas alternativas, de las cuales al
menos una ha de ser verdadera.

También aqúı hay que hacer una advertencia importante, y es que
el śımbolo de disyunción de lenprop corresponde a una disyunción
inclusiva. Aśı se desprende de la regla de valoración 4 que vimos en
§7.2 .

En efecto, para que una intprop I satisfaga una fórmula A_B ,

basta con que satisfaga A o satisfaga B . Si satisface las dos, tam-
bién cumple con la condición, y por tanto I satisfará la disyunción

A_B .

90
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Por consiguiente, el śımbolo de disyunción se puede utilizar para
formalizar proposiciones del lenguaje natural en las que se admite la
posibilidad de que las dos opciones puestas en disyunción sean ver-
daderas al mismo tiempo. Aśı por ejemplo, imaginemos que alguien
dice:

Mañana voy a verte o te llamo. (1)

En este caso, la persona se está comprometiendo a hacer una de las dos
cosas: visitar o llamar a la otra persona. Pero también podŕıa hacer
las dos, y estaŕıa cumpliendo su promesa.

Por consiguiente, la proposición (1) se puede formalizar como una
disyunción de lenprop, sin más:

p_ q

donde:

p : Mañana voy a verte.

q : Mañana te llamo.

§ 10.2. FORMALIZACIÓN DE DISYUNCIONES EXCLU-
SIVAS

Hay ocasiones, sin embargo, en que las disyuntivas que se presentan
en el lenguaje natural conllevan un sentido exclusivo. Es decir, que
se sobrentiende que solo una de las alternativas propuestas puede ser
verdadera.
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Aśı por ejemplo, supongamos que alguien afirma:

O se sigue protegiendo al lince ibérico,

o se acabará extinguiendo.
(2)

Pues bien, esa persona está queriendo decir que solo una de las alter-
nativas puede ser verdadera: si de hecho se protege al lince, entonces
no se extinguirá; y si se acaba extinguiendo, es porque no se le ha pro-
tegido. Por consiguiente, estamos ante una disyunción exclusiva.

Pues bien, en este caso, lenprop śı tiene recursos para expresar
este tipo de disyunción, pero para ello hay que recurrir a una fórmula
un poco más compleja.

Concretamente, lo que hacemos es combinar la disyunción con una
conjunción negada, que bloquea la posibilidad de que los dos disyuntos
sean verdaderos al mismo tiempo.

En particular, la proposición (2) se formalizaŕıa mediante:

ps_ tq ^  ps^ tq

donde:

s : Se sigue protegiendo al lince ibérico.

t : El lince ibérico se acabará extinguiendo.

Obviamente, esta formalización implica que o se sigue protegiendo al
lince ibérico, o este se extinguirá (es decir, que una de las dos opciones
es verdadera); pero además, esta formalización implica también que
no van a suceder las dos cosas.
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§ 10.3. FORMALIZACIÓN DE DISYUNCIONES ITERA-
DAS

Las disyunciones iteradas inclusivas son también muy fáciles de for-
malizar, aplicando la correspondiente supresión de paréntesis.

Aśı por ejemplo:

Mañana voy a verte, o te llamo, o te pongo un wassap.

se formalizaŕıa mediante

p _ q _ r

donde:

p : Mañana voy a verte.

q : Mañana te llamo.

r : Mañana te pongo un wassap.

Las disyunciones iteradas exclusivas no las vamos a analizar aqúı,
porque son menos frecuentes (y más complejas, porque hay que espe-
cificar si la exclusión afecta a cualesquiera dos disyuntos, o al conjunto
de todos ellos, etc).

§ 10.4. FORMALIZACIÓN DE CONDICIONALES: EL CON-
DICIONAL MATERIAL

Sin duda, la conectiva que más problemas plantea en la formalización
es el śımbolo condicional. Ello es debido a la regla de valoración 5 que
vimos en §7.2 .
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En efecto, se sigue de dicha regla que para que una intprop I satis-

faga una fórmula AÑ B , basta con que satisfaga B o no satisfaga

A. Puesto en otras palabras: para que un condicional AÑ B sea
verdadero bajo una interpretación, basta con que esa interpretación

haga falso al antecedente ( A ) o haga verdadero al consecuente ( B ).

A este tipo de condicional se le llama “condicional material” o
“condicional veritativo-funcional”. Lo más caracteŕıstico de este
condicional, y a la vez lo más paradójico, es que no entraña ninguna

relación de relevancia (causal o del tipo que sea) entre A y

B . En efecto, el condicional AÑ B será verdadero si sucede, de

hecho, que A es falso, o que B es verdadero, con independencia de
todo lo demás.

Por ejemplo, imaginemos que alguien me dice que es esṕıa de la
CIA. Y yo, para mostrar mi incredulidad, le respondo:

Si tú eres esṕıa de la CIA, entonces yo soy el Papa. (3)

Es evidente que no hay ninguna relación entre que esa persona sea
esṕıa de la CIA y que yo sea el Papa. Por consiguiente, si el condicional
(3) es verdadero, ello se debe al hecho de que esa persona no es esṕıa
de la CIA, contrariamente a lo que afirma.

Por consiguiente, cabe interpretar (3) como un condicional mate-
rial, y formalizarlo como:

p1 Ñ p2

donde:

p1 : Tú eres esṕıa de la CIA.

p2 : Yo soy el Papa.
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En efecto, como el antecedente ( p1 ) es falso, el condicional resulta

automáticamente verdadero, con independencia de lo que ocurra con
el consecuente. En este caso, el consecuente ( p2 ) es también falso,

porque obviamente yo no soy el Papa.

§ 10.5. LOS CONDICIONALES EN MATEMÁTICAS Y FUE-
RA DE ELLAS

Curiosamente, el condicional material es el condicional habitual en
matemáticas. Aśı por ejemplo,

Si n ą 4, entonces 2n ą n2

es trivialmente verdadero para n “ 3, porque no cumple el anteceden-
te. En efecto, como 3 č 4, da igual que el consecuente se cumpla o no
(de hecho no se cumple, porque 23 ă 32).

Ahora bien, cuando estamos fuera de las matemáticas, o de un
contexto irónico como (3), tenemos que pensarlo muy bien antes de
formalizar una proposición mediante Ñ .

En efecto, al formalizar una proposición mediante Ñ , la estamos
codificando como un condicional material, es decir, como una mera
función de verdad entre antecedente y consecuente. Y al hacerlo, es-
tamos dejando fuera cualquier implicación de causalidad o relevancia
que conlleve esa proposición en el lenguaje natural.

Aśı por ejemplo, supongamos que alguien dice:

Si ahora mismo me llevo las manos a la cabeza,

saldré volando como un pájaro.
(4)

Y supongamos que a continuación no se lleva las manos a la cabeza.
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En ese contexto, pongamos:

p3 : Ahora mismo me llevo las manos a la cabeza.

p4 : Saldré volando como un pájaro.

Pues bien, si formalizamos (4) mediante

p3 Ñ p4

entonces la hemos reducido a un condicional material. Y por consi-
guiente, como esa persona no se ha llevado las manos a la
cabeza, tendremos que admitir que p3 Ñ p4 es verdadero (!).

Ello es aśı, sencillamente, porque tratándose de un condicional ma-
terial — y aplicando una vez más lo que venimos diciendo —, basta
con que el antecedente sea falso para que el condicional resulte ver-
dadero. Y por consiguiente, si de hecho esa persona no se ha llevado
las manos a la cabeza, entonces (4), al ser un condicional material, no
tiene más remedio que ser verdadero, por muy anti-intuitivo que esto
nos resulte.

Por último, conviene señalar que śı hay un aspecto en el cual el
condicional material coincide con todas las demás formas de condicio-
nales, y es que si el antecedente es verdadero y el consecuente
es falso, entonces el condicional queda falsado.
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§ 10.6. LOCUCIONES VARIADAS PARA EXPRESAR CON-
DICIONALES EN EL LENGUAJE NATURAL

Además de la dificultad que acabamos de señalar, también hay que
tener en cuenta que las proposiciones condicionales se expresan en el
lenguaje natural mediante locuciones muy diversas. Y por esa razón,
conviene prestar atención a la hora de identificar antecedente y con-
secuente, a fin de evitar deslices.

En particular, debemos advertir que, con frecuencia, se suprime el
“entonces”, dejando en su lugar una simple coma:

Si tú eres esṕıa de la CIA, yo soy el Papa.

Además, hay veces en las que el consecuente se enuncia primero, y
la cláusula “si”, junto con el antecedente, aparecen detrás:

Yo soy el Papa, si tú eres esṕıa de la CIA.

Y por último, hay veces en que se usa la locución “solo si”, y
entonces lo que sigue a esa locución es el consecuente:

Tú eres esṕıa de la CIA solo si yo soy el Papa.

Cualquiera de esas tres oraciones corresponden a la proposición,
(3), que hemos formalizado como p1 Ñ p2 .

En este sentido, hay dos reglas que nos interesa recordar:

1. Cuando aparece “si” a secas, lo que va justo después es el ante-
cedente.

2. Cuando aparece “solo si” (a secas), lo que va justo después es el
consecuente.
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§ 10.7. EJEMPLOS DE FORMALIZACIÓN DE CONDICIO-
NALES Y BICONDICIONALES

Por §7.3 , sabemos que un bicondicional AØ B viene a ser como
una conjunción de condicionales en los dos sentidos:

pAÑ Bq ^ pB Ñ Aq

Por consiguiente, el śımbolo bicondicional nos ha de servir para forma-
lizar aquellas proposiciones del lenguaje natural que expresan condi-
ciones materiales (es decir, condiciones veritativo-funcionales) en los
dos sentidos.

Dicho esto, el bicondicional es menos complicado de formalizar que
el condicional, porque no hay que identificar antecedente y consecuen-
te, con roles separados: basta con señalizar el primer término y el
segundo término del bicondicional, en cualquier orden en el que se
presenten.

A continuación, vamos a examinar algunos ejemplos de formali-
zación de proposiciones condicionales y bicondicionales del lenguaje
natural. Al hacerlo, tenemos que ser conscientes — una vez más — de
que estamos dejando fuera cualquier implicación de relevancia (causal
o del tipo que sea) entre las condiciones expresadas.

Empezaremos estableciendo la siguiente tabla de convenciones simbóli-
cas:

p5 : Madrid está en España.

p10 : Paŕıs está en Francia.

Y entonces tenemos, por ejemplo:
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Si Madrid está en España, Paŕıs está en Francia: p5 Ñ p10

Madrid está en España si Paŕıs está en Francia: p10 Ñ p5

Madrid está en España solo si Paŕıs está en Francia: p5 Ñ p10

Solo si Madrid está en España, Paŕıs está en Francia: p10 Ñ p5

Madrid está en España si y solo si Paŕıs está en Francia: p5 Ø p10

§ 10.8. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Pon un ejemplo de disyunción en el lenguaje natural que sea
inclusiva, y formaĺızala.

2. Pon un ejemplo de disyunción en el lenguaje natural que sea
exclusiva, y formaĺızala.

3. Explica con tus propias palabras por qué p3 Ñ p4 (de §10.5 )

resulta verdadero, si de hecho la persona no se lleva las manos a
la cabeza.

4. Pon 5 ejemplos de condicionales y bicondicionales variados, al
estilo de los que aparecen al final de §10.7 , y formaĺızalos

5. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.
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b) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

c) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 11

Dednatprop con primitivas: regla de
premisas, modus ponens y modus

tollens

§ 11.1. CÁLCULOS DEDUCTIVOS

Llegados a este punto del curso, vamos a empezar a representar en
lenprop cadenas de razonamientos, que imitarán de alguna mane-
ra — aunque con notables diferencias — el razonamiento deductivo
humano en el lenguaje natural.

A tal fin, introduciremos varios cálculos deductivos (también lla-
mados “sistemas formales”, “sistemas deductivos” o “cálculos
lógicos”). Se trata de conjuntos de reglas sintácticas, asociadas
a un lenguaje lógico-formal, que nos permitirán derivar unas
fórmulas a partir de otras.

Al igual que ocurre con los lenguajes formales, los cálculos deduc-
tivos tienen que poder describirse completamente sin hacer referencia
a ninguna interpretación suya. Por eso son puramente sintácticos, es
decir, meras manipulaciones de śımbolos.
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A veces, al hecho de proporcionar un cálculo deductivo para un
sistema de lógica se le llama “axiomatizar” ese sistema. Esta pala-
bra procede de los llamados “cálculos axiomáticos”, aunque de hecho,
ninguno de los cálculos que vamos a presentar aqúı utilizan axiomas.

§ 11.2. EL CÁLCULO DE DEDUCCIÓN NATURAL PARA
LA LÓGICA PROPOSICIONAL CLÁSICA

El primer cálculo deductivo que vamos a estudiar es el llamado “cálcu-
lo de deducción natural para la lógica proposicional clásica”
(abreviadamente, “dednatprop”).

Este cálculo, en la versión que vamos a manejar aqúı, consta de 17
reglas primitivas y otras tantas reglas derivadas. En este tema
veremos tres reglas primitivas, las más sencillas. El resto de reglas
irán apareciendo a lo largo de los temas siguientes.

Mediante dichas reglas, construiremos lo que vamos a llamar “de-
ducciones formales” o “derivaciones formales” (abreviadamen-
te, “deriv”). En otros cálculos lógicos, en vez de derivaciones se usan
tablas, árboles o construcciones de otro tipo.

En dednatprop, las deducciones constan de ĺıneas separadas, cada
una de las cuales contiene una fórmula, y se van colocando vertical-
mente, una encima de otra.

Además, a la izquierda de cada fórmula debe aparecer el número
de ĺınea, y a la derecha debe estar indicada la regla del cálculo que
nos permite introducir esa fórmula (aśı como las ĺıneas a las que se ha
aplicado dicha regla, si procede).
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A este respecto, es importante tener en cuenta que, en una de-
rivación formal, no se puede introducir a capricho una nueva
fórmula, sino solo en virtud de una regla del cálculo que lo
permita.

A las fórmulas introducidas mediante la llamada “regla de premi-
sas”, si las hay, las llamaremos “premisas de la derivación”. En-
seguida explicaremos en qué consiste dicha regla. Y a la fórmula que
ocupa la última ĺınea de la derivación, independientemente de la re-
gla por la que se haya introducido, la llamaremos “conclusión de la
derivación”.

Por último, a todo esto se añade la llamada “notación de ban-
deras”, que nos servirá para acotar subderivaciones transitorias, co-
mo piezas separadas de la derivación principal. Más adelante veremos
cómo funciona.

§ 11.3. DERIVABILIDAD EN DEDNATPROP

Pues bien, dadas dos fórmulas de lenprop, A y B , diremos que B

es “derivable de A en dednatprop”, cuando exista una deducción

cuya única premisa sea A , y cuya conclusión sea B .

Para abreviar esto, utilizaremos la “puerta giratoria sencilla” con
el sub́ındice “dnp” (por “dednatprop”), poniendo:

A |
DNP

B

Más en general, diremos que B es “derivable de un conjunto
de fórmulas D en dednatprop”, cuando exista una deducción cuyas

premisas sean fórmulas de D, y cuya conclusión sea la fórmula B .
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Esto lo abreviaremos poniendo:

D |
DNP

B

Y por último, diremos que B es un “teorema formal de ded-
natprop”, cuando exista una deducción que no use ninguna pre-

misa, y que termine con la fórmula B como conclusión.

Esto último lo abreviaremos poniendo:

|
DNP

B

§ 11.4. LA REGLA DE PREMISAS

La primera regla de dednatprop que vamos a estudiar es la regla de
premisas (abreviadamente, “Pr”). Se trata de una regla muy impor-
tante, porque las derivaciones solo pueden empezar de dos maneras, y
esta regla es una de ellas.

Pues bien, como su propio nombre indica, la regla de premisas es la
que nos permite introducir las premisas de la derivación. Y para
hacerlo, solo tenemos que tomar la precaución de escribir a la derecha
de cada ĺınea el código Pr, que es el que identifica a esta regla, sin
más indicación.

Esquemáticamente:
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Pr

(1) A Pr

(2) B Pr
. . .

§ 11.5. EJEMPLO DE DERIV CON LA REGLA DE PRE-
MISAS

Aśı por ejemplo, si queremos derivar un argumento a partir de las
premisas p y pÑ q , empezaremos la derivación poniendo:

(1) p Pr

(2) pÑ q Pr

Nótese que aqúı tenemos ya una derivación completa, aunque poco
significativa. La última fórmula de dicha derivación es pÑ q , lo cual

convierte a esta fórmula en la conclusión de la derivación, aunque sea
también, simultáneamente, una premisa.

Por consiguiente, mediante dicha derivación hemos establecido que:

p , pÑ q |
DNP

pÑ q

Este ejemplo ilustra el hecho de que colocar premisas en una deriv,
no obliga necesariamente a que estas sean relevantes para la misma.
En particular, en la derivación anterior, la premisa p es irrelevante

para introducir la conclusión.

En este aspecto, nuestro cálculo se parece al lenguaje natural: nues-
tro cálculo admite la presencia de premisas irrelevantes en las deriva-
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ciones formales, al igual que algunos razonamientos en el lenguaje
natural empiezan con premisas que luego resultan ser irrelevantes.

§ 11.6. EL MODUS PONENS

La siguiente regla que vamos a introducir se llama “modus ponens”
(abreviadamente MP), y su funcionamiento es el siguiente.

Sean A y B dos flas cualesquiera de lenprop. Y supongamos que

en una ĺınea de una deducción tenemos la fla AÑ B , y en otra ĺınea

tenemos la fla A . El hecho de que una de estas flas aparezca antes o
después de la otra es indiferente.

Pues bien, en ese caso podemos añadir una nueva ĺınea a la deduc-

ción, con la fla B . Al hacerlo, pondremos a la derecha de esta ĺınea

la inscripción “MP”, seguida por los números de ĺınea de las flas A

y AÑ B .

Esquemáticamente:

MP

(. . . ) AÑ B

(. . . ) A

B MP núms. de ĺınea de AÑ B y A
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§ 11.7. PREMISAS Y CONCLUSIÓN DE UNA REGLA

En este contexto, a las fórmulas AÑ B y A las llamamos “pre-

misas del modus ponens”. Y a la fórmula B la llamamos “con-
clusión del modus ponens”.

Y lo otro tanto haremos con el resto de reglas que vienen a conti-
nuación: llamaremos “premisas de la regla” a las fórmulas a las que
aplica la regla, y “conclusión de la regla” a la fórmula que se obtiene
de dicha aplicación.

Naturalmente, en cualquier derivación habrá que poner atención
para diferenciar entre las premisas y conclusión de cada regla que se
ha ido aplicando, y las premisas y conclusión de la derivación en su
conjunto. Son cosas distintas.

§ 11.8. EJEMPLO DE DERIV CON EL MODUS PONENS

El modus ponens nos permite continuar la derivación del ejemplo an-
terior, construyendo otra deriv más larga a partir de ella.

Para ello, ponemos:

(1) p Pr

(2) pÑ q Pr

(3) q MP 1,2

Obviamente, la última fórmula de esta nueva derivación es q . Por

consiguiente, mediante esta derivación hemos establecido que:

p , pÑ q $
DNP

q
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§ 11.9. EL MODUS TOLLENS

La siguiente regla que vamos a introducir se llama “modus tollens”
(abreviadamente, “MT”), y es contrapuesta a la anterior.

En efecto, sean A y B dos flas cualesquiera de lenprop. Y su-

pongamos que en una ĺınea de la deducción tenemos la fla AÑ B ,

y en otra ĺınea tenemos la fla  B .

Al igual que con MP, el hecho de que aparezca una de estas dos flas
antes o después que la otra, es indiferente. Y lo mismo se aplica al resto
de reglas de dednatprop que veamos después, tanto primitivas como
derivadas: el orden en que aparezcan las premisas de una regla
es indiferente, siempre que aparezcan antes del momento en
que aplicamos esa regla.

Pues bien, cuando sucede todo eso, podemos añadir una nueva ĺınea

a la deducción, con la fla  A . Y al hacerlo, pondremos a la derecha
de esta ĺınea la inscripción “MT”, seguida por los números de ĺınea

de las flas AÑ B y  B .

Esquemáticamente:
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MT

(. . . ) AÑ B

(. . . )  B

 A MT núms. de ĺınea de AÑ B y  B

§ 11.10. EL MODUS TOLLENS COMO MECANISMO DE
FALSACIÓN

El modus tollens se ha vindicado como herramienta especialmente im-
portante en filosof́ıa de la ciencia, a modo de mecanismo de falsación.
La razón es que, en apariencia, una sola instancia en contra de una
hipótesis condicional sirve para “falsarla”, mientras que la verificación
por medio de casos favorables nunca es definitiva del todo.

Sin embargo, hay que tener en cuenta que las hipótesis cient́ıficas
se contrastan siempre en conjunción con muchos supuestos. Y en con-
secuencia, ningún resultado observacional, favorable o adverso a una
hipótesis, constituye una confirmación o una falsación definitiva a esa
hipótesis espećıficamente.

Más bien hay que decir que el resultado observacional será una con-
firmación, o una falsación, del bloque que forma esa hipótesis junto
con todos los supuestos involucrados en la interpretación del resulta-
do. Esto vale tanto para hipótesis que tengan forma de condicional,
como para cualquier otra forma lógica.
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§ 11.11. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Siguiendo el ejemplo de §11.5 , elabora una derivación formal
que demuestre:

q _ r ,  q |
DNP

 q

2. Siguiendo el ejemplo de §11.6 , elabora una derivación formal
que demuestre:

q _ r , q _ r Ñ s $
DNP

s

3. Pon un ejemplo de derivación que utilize el modus tollens.

4. Basándote en el ejemplo de §11.5 , construye una derivación que
sea todav́ıa más corta que ese ejemplo. Indica cuáles son las pre-
misas y la conclusión de tu derivación.

5. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Expresa tu opinión sobre lo que se explica en §11.10 , apor-
tando lo que se te ocurra al respecto.

b) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

c) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

d) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 12

Dednatprop con primitivas: doble
negación, supuestos y prueba

condicional

§ 12.1. LA DOBLE NEGACIÓN

En este tema vamos a introducir otras cuatro reglas primitivas de
dednat. Las dos primeras afectan a la llamada “doble negación”.

Normalmente, en el lenguaje ordinario, negar algo dos veces equi-
vale a afirmarlo. En efecto, supongamos que alguien dice “No estuve
alĺı” y se demuestra que miente. Entonces es que śı estuvo.

Por consiguiente, la proposición, doblemente negativa:

No es cierto que no estuvo alĺı.

equivale a la afirmación (simple):

Estuvo alĺı.

Pues bien, en las derivaciones formales también aparecen a veces
dobles negaciones, y nos interesa eliminarlas de la misma manera.
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Como también hay veces en las que nos puede interesar, en el trans-
curso de una derivación, introducir la doble negación de una fórmula,
si es que ello nos ayuda a acercarnos a la conclusión que buscamos.

§ 12.2. INTRODUCCIÓN DE LA DOBLE NEGACIÓN

Pues bien, para realizar estas operaciones en las derivaciones, vamos a
introducir una pareja de reglas: la regla de introducción de la doble
negación y la regla de eliminación de la doble negación.

El funcionamiento de estas dos reglas es tan similar, que las llama-
remos a ambas, genéricamente, “reglas de doble negación” (y las
abreviaremos como “DN”), aunque estrictamente hablando se trata
de dos reglas distintas.

Vamos a explicar, en primer lugar, la regla de introducción.

Supongamos que A es una fórmula cualquiera que aparece en una
ĺınea de una deducción. Pues bien, entonces podemos añadir una nueva

ĺınea a esa deducción, con la fórmula   A . Al hacerlo, pondremos
a la derecha de esa ĺınea la inscripción “DN”, seguida por el número

de ĺınea de la fla A .

Esquemáticamente:
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DN (introducción)

(. . . ) A

  A DN núm. de ĺınea de A

Es importante advertir que, para poder aplicar la introducción de

la doble negación a una fórmula A , es necesario que esta fórmula
aparezca como ĺınea en una derivación.

En particular, la regla DN no permite introducir dobles ne-
gaciones a las subfórmulas que están en el interior de una
fórmula. Solamente se puede aplicar a la fórmula entera que aparez-
ca en una ĺınea de una derivación.

Lo mismo ocurre con la regla de eliminación de la doble negación,
que vamos a ver a continuación, y con otras reglas similares.

§ 12.3. ELIMINACIÓN DE LA DOBLE NEGACIÓN

Por su parte, la regla de eliminación de la doble negación procede
de forma parecida a la regla de introducción, pero a la inversa.

En efecto, sea A una fórmula cualquiera de lenprop, y supongamos

que la fórmula   A aparece en una ĺınea de una deducción. Pues
bien, entonces podemos añadir una nueva ĺınea a esa deducción, con

la fórmula A . Al hacerlo, pondremos a la derecha de esta ĺınea la

inscripción “DN”, seguida por el número de ĺınea de la fla   A .
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Esquemáticamente:

DN (eliminación)

(. . . )   A

A DN núm. de ĺınea de   A

§ 12.4. EJEMPLOS DE DERIVACIONES CON LAS RE-
GLAS DE DOBLE NEGACIÓN

Un ejemplo muy sencillo de derivación que utiliza las dos reglas de
doble negación, es el siguiente:

(1) p Pr

(2)   p DN 1

(3) p DN 2

En este caso, la conclusión de la deriv es la misma que la premisa, con
lo que no se puede decir que hayamos llegado muy lejos; pero valga
como ejemplo de derivación formal en la que se utilizan las dos reglas
DN que acabamos de introducir.

Otro ejemplo, un poco más sofisticado, es:
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(1)  pÑ q Pr

(2)  q Pr

(3)   p MT 1,2

(4) p DN 3

Esa derivación es más interesante que la anterior. Mediante ella,
hemos establecido que:

 pÑ q ,  q $
DNP

p

§ 12.5. LA REGLA DE SUPUESTOS

A veces, cuando razonamos en el lenguaje natural, nos detenemos a
considerar una hipótesis de forma transitoria, por mor del argumento,
para ver a qué conclusión nos lleva. Y a continuación, volvemos al ra-
zonamiento principal, teniendo en cuenta las consecuencias que hemos
extráıdo a partir de esa hipótesis transitoria, en nuestra exploración
colateral.

Pues bien, la siguiente la regla que vamos a estudiar es un correlato
formal de esa estrategia de razonamiento. Se trata de la regla de
supuestos (o regla S).

La regla de supuestos nos permite introducir una fórmula cualquie-

ra A como supuesto provisional, del cual esperamos extraer una

fórmula B como conclusión transitoria. A la conclusión transito-
ria la llamamos también el “objetivo” del supuesto provisional.
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El supuesto provisional se recuadra, como si fuera una bandera. Y
a la derecha del mismo escribimos la letra “S”, seguida de la palabra
“hacia”, y el objetivo al que queremos llegar. Opcionalmente, por
abreviar, en vez de “objetivo” podemos poner “target”, y en vez de
escribir “hacia” podemos poner “to”.

A partir de ese momento, comienza una subderivación transito-
ria, que terminará cuando consigamos derivar la conclusión (o target)
que buscamos. Y el “asta” de la bandera acompañará la subderivación
a la izquierda, señalizándola hasta que se introduzca esa conclusión.

Esquemáticamente:

S

(. . . ) A S hacia B

(. . . ) . . .

(. . . ) B

. . .

Para llegar al target deseado (es decir, a la fórmula B , en este
esquema), nos las tenemos que ingeniar. Eso significa que tenemos
que barajar las distintas reglas de dednatprop, hasta encontrar una
ruta que nos permita derivar esa fórmula. Y solo si lo conseguimos,

podemos decir que “tenemos una bandera que nos lleva de A a B ”.

La regla de supuestos es bastante más compleja que las anteriores.
Se entenderá mejor su dinámica a partir de los ejemplos de uso que
vayamos viendo.
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§ 12.6. ENGRANAJE DE LA REGLA DE SUPUESTOS CON
OTRAS REGLAS Y CON LA DERIVACIÓN PRINCIPAL

Hay que subrayar que, cuando se abre una bandera mediante la regla
de supuestos, lo que comienza a continuación es una subderivación
transitoria, y como tal no forma parte de la derivación principal.

También conviene advertir que algunas derivaciones complicadas
contienen una subderivación dentro de otra (es decir, “subderivaciones
anidadas”). Veremos ejemplos de ello más adelante.

En todo caso, ninguna derivación que contenga banderas
puede terminar hasta que estas se hayan cerrado, y haya apa-
recido alguna fórmula que esté fuera de todas ellas.

Y por último, hay que tener en cuenta que para que las conclusiones
transitorias (o targets) resulten de utilidad en la derivación principal,
necesitamos reglas que nos permitan sacar otras conclusiones a partir
de ellas (necesitamos “hacer caja” de esas conclusiones transitorias,
por aśı decirlo). Pues bien, en dednatprop hay 3 reglas que se en-
granan con la regla de supuestos, para hacer justamente eso. Y a
continuación vamos a estudiar la primera de ellas.

§ 12.7. PRUEBA CONDICIONAL

Para aplicar la llamada “prueba condicional” (abreviadamente,
“PCo”), tenemos que dar los siguientes pasos.

Sean A y B dos fórmulas cualesquiera, e imaginemos que, en el

transcurso de una derivación, necesitamos obtener la fórmula AÑ B .
Pues bien, el procedimiento para obtener esta fórmula mediante la re-
gla PCo, es el siguiente.
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En primer lugar, introducimos la fórmula A mediante la regla

de supuestos, indicando que se introduce para llegar al target B . Y

a continuación, intentaremos derivar la fórmula B a partir de ese
supuesto inicial, utilizando el conjunto de todas las reglas, aśı como
las fórmulas previas de esa derivación.

Si conseguimos derivar B , habremos terminado la subderivación
transitoria. Es decir, tendremos una bandera que empieza por la fórmu-

la A y termina con la fórmula B .

Pues bien, en ese caso, la regla PCo nos permite introducir a conti-

nuación la ĺınea AÑ B , por debajo de esa bandera, y fuera de ella.

A la derecha de esa nueva ĺınea, colocaremos la indicación “PCo”,

junto con los números de ĺınea de A y B (es decir, la primera y
última ĺınea de la bandera que acabamos de cerrar).

Esquemáticamente:
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PCo

(. . . ) A S hacia B

(. . . ) . . .

(. . . ) B

(. . . ) AÑ B PCo núms. de ĺınea de A y B

§ 12.8. EJEMPLOS DE DERIVACIÓN CON LA PRUEBA
CONDICIONAL

Como primer ejemplo de deriv con PCo, vamos a elaborar una deri-
vación para demostrar que:

$
DNP

p Ñ   p

Obsérvese que se trata de una derivación sin premisas. Por lo tanto,
este será el primer teorema formal de dednatprop que vamos a derivar
(es decir, nuestro primer argumento formal sin premisas).

Pues bien, para derivar este teorema, basta con poner:

(1) p S hacia   p

(2)   p DN 1

(3) pÑ   p PCo 1,2

Como vemos, esta bandera consta de dos únicos pasos: el supuesto
provisional (es decir, la ĺınea 1 que aparece recuadrada), y la conclusión
transitoria, que obtenemos en la ĺınea 2, mediante la regla DN. Y con
esto, se cierra la bandera y continúa la derivación principal.
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A continuación, observamos que se ha aplicado la regla PCo, obte-
niendo un condicional que tiene como antecedente al supuesto provisio-
nal (es decir, la fla p ), y como consecuente a la conclusión transitoria

(es decir, la fla   p ).

Y dado que ese condicional se encuentra ya fuera de la bandera, y
forma parte de la derivación principal, la derivación puede terminar
ah́ı.

Como segundo ejemplo de deriv con PCo, vamos a elaborar una
derivación para demostrar que:

pÑ q $
DNP

 q Ñ  p

Pues bien, para derivar esto, ponemos:

(1) pÑ q Pr

(2)  q S hacia  p

(3)  p MT 1,2

(4)  q Ñ  p PCo 2,3

§ 12.9. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Siguiendo los ejemplos de §12.4 , construye una derivación para
demostrar que:

p $
DNP

  p
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2. Siguiendo los ejemplos de §12.4 , construye una derivación para
demostrar que:

pÑ q ,   p $
DNP

  q

3. Siguiendo los ejemplos de §12.8 , construye una derivación para
demostrar que:

pÑ  q $
DNP

q Ñ  p

4. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Construye una derivación, lo más compleja que se te ocurra,
con las reglas de dednatprop vistas hasta ahora.

b) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

c) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

d) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 13

Dednatprop con primitivas: reglas de
intro y elim de conjunción y

disyunción

§ 13.1. INTRODUCCIÓN DE LA CONJUNCIÓN

En este tema, vamos a exponer seis nuevas reglas del cálculo. Tres de
ellas serán relativas a la introducción y eliminación del śımbolo de con-
junción; y las otras tres serán relativas a la introducción y eliminación
del śımbolo de disyunción.

Empezaremos por la regla de introducción de la conjunción
(abreviadamente, “intro de la conjunción”, o “I^̂̂”). Esta regla es
sumamente sencilla.

Supongamos que las fórmulas A y B aparecen en dos ĺıneas de
una derivación. Como dijimos en §11.9 , en estos casos no importa el
orden (no importa cuál de las dos fórmulas aparezca primero).

Pues bien, entonces podemos introducir una nueva ĺınea en la deri-

vación, con la fórmula A^B , colocando a su derecha la inscripción

122
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“I^”, seguida de los números de ĺıneas de las fórmulas A y B .

Esquemáticamente:

I^̂̂

(. . . ) A

(. . . ) B

A^B I^ núms. de ĺınea de A y B

Aśı por ejemplo, resulta sumamente sencillo elaborar una derivación
para demostrar que:

p , q $
DNP

p^ q

En efecto, basta con poner:

(1) p Pr

(2) q Pr

(3) p^ q I^ 1,2

§ 13.2. ELIMINACIÓN DE LA CONJUNCIÓN

A continuación, vamos a formular dos reglas para la eliminación de la
conjunción: la eliminación del primer conyunto y la eliminación
del segundo conyunto.
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Aunque se trata de dos reglas distintas, su funcionamiento es tan
similar que las llamaremos a ambas, genéricamente, “eliminación
de la conjunción” (abreviadamente, “elim de la conjunción”, o
“E^̂̂”).

Pues bien, supongamos que tenemos la fórmula A^B en una
ĺınea de una derivación. Entonces, la regla de eliminación del segundo
conyunto nos permite añadir una nueva ĺınea que contenga la fórmula

A .

A la derecha de esa nueva ĺınea, colocaremos la inscripción “E^”,

seguida del número de la ĺınea de la fórmula A^B .

Esquemáticamente:

E^̂̂, segundo conyunto

(. . . ) A^B

A E^ núm. de ĺınea de A^B

Por su parte, la regla de eliminación del primer conyunto es total-
mente análoga, excepto que en la ĺınea añadida, en lugar de aparecer
el primer conyunto de la conjunción, aparece el segundo.

Esquemáticamente:
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E^̂̂, primer conyunto

(. . . ) A^B

B E^ núm. de ĺınea de A^B

§ 13.3. EJEMPLOS DE DERIVACIONES CON LAS RE-
GLAS DE ELIM DE LA CONJUNCIÓN

Empezamos elaborando una derivación para demostrar que:

p^ q , $
DNP

p

Esto es realmente sencillo:

(1) p^ q Pr

(2) p E^ 1

A continuación, veremos un ejemplo de derivación ligeramente más
sofisticada, en la que también interviene la regla E^. Es la derivación
que nos permite demostrar que:

pÑ q ^ r , p $
DNP

q

La derivación en cuestión es la siguiente:

(1) pÑ q ^ r Pr

(2) p Pr

(3) q ^ r MP 1,2

(4) q E^ 1
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§ 13.4. INTRODUCCIÓN DE LA DISYUNCIÓN POR LA
DERECHA

A continuación, vamos a formular dos reglas para la introducción de
la disyunción: la introducción de la disyunción por la derecha
y la introducción de la disyunción por la izquierda.

Aqúı también tenemos dos reglas distintas, pero con un funciona-
miento muy similar. Por eso, una vez más, les vamos a dar un solo
nombre a las dos: las vamos a llamar a ambas, genéricamente, “in-
troducción de la disyunción” (abreviadamente, “intro de la dis-
yunción”, o “I___”).

Pues bien, supongamos que tenemos la fórmula A en una ĺınea de

una derivación. Y sea B cualquier fórmula. Pues bien, la regla I_

por la derecha nos permite añadir una ĺınea que contenga la fórmula

A_B . A la derecha de esa nueva ĺınea, colocaremos la inscripción

“I_”, seguida del número de la ĺınea de la fórmula A .

Esquemáticamente:

I_ por la derecha

(. . . ) A

A_B I_ núm. de ĺınea de A
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§ 13.5. INTRODUCCIÓN DE LA DISYUNCIÓN POR LA
IZQUIERDA

Por su parte, la regla I_ por la izquierda consiste en lo siguiente.

Supongamos que tenemos la fórmula A en una ĺınea de una de-

rivación. Y sea B cualquier fórmula. Pues bien, la regla I_ por
la izquierda nos permite añadir una ĺınea que contenga la fórmula

B _ A . A la derecha de la nueva ĺınea, colocaremos la inscripción

“I_”, seguida del número de la ĺınea de la fórmula A .

Esquemáticamente:

I_ por la izquierda

(. . . ) A

B _ A I_ núm. de ĺınea de A

§ 13.6. EJEMPLOS DE DERIVACIONES CON LAS RE-
GLAS INTRO DE LA DISYUNCIÓN

Vamos a empezar elaborando una derivación para demostrar que:

p $
DNP

p_ q

Esto es sumamente sencillo:

(1) p Pr

(2) p_ q I_ 1
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Un ejemplo un poquito más sofisticado es el que nos permite de-
mostrar que:

p , p_ q Ñ r $
DNP

r

Pues bien, la deducción correspondiente es:

(1) p Pr

(2) p_ q Ñ r Pr

(3) p_ q I_ 1

(4) r MP 2,3

§ 13.7. LA PRUEBA DE CASOS: PRELIMINARES

Finalmente, a la regla de eliminación de la disyunción la vamos
a llamar por un nombre especial, que describe muy bien su funciona-
miento: “prueba de casos” (abreviadamente, PCa).

De todas las reglas de dednatprop, esta es la más dif́ıcil de usar.
Al igual que la prueba condicional, la regla de casos engarza con la
regla de supuestos. Pero en esta ocasión, tendremos que usar la regla
de supuestos dos veces seguidas, lo cual dará lugar a dos subderiva-
ciones transitorias consecutivas, antes de continuar con la derivación
principal.

La prueba de casos mimetiza cierta forma de razonamiento en el
lenguaje natural, en la cual examinamos dos opciones o alternativas,
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y concluimos que de las dos se sigue una misma cosa. Por ejemplo:

Esta tarde voy a pasear o a meditar.

Pasear es gratis, y meditar también.

Por lo tanto, esta tarde no gastaré dinero.

En el razonamiento precedente, se parte de una disyunción entre dos
opciones. A continuación, se examinan cada una de esas dos opciones,
y de las dos se extrae una misma conclusión. Finalmente, se afirma
esa conclusión, sobre la base de la disyunción inicial.

Pues bien, este tipo de estrategia es la que viene a representar la
prueba de casos, pero en el contexto de las derivaciones formales.

§ 13.8. LA PRUEBA DE CASOS: DINÁMICA DE LA PRUE-
BA

Sean entonces A y B fórmulas cualesquiera, y supongamos que en

una ĺınea de una derivación tenemos la fórmula A_B .

En estas condiciones, para poder aplicar la regla PCa, tenemos dar
los siguientes pasos.

En primer lugar, tenemos que pensar en una fórmula C que po-

damos derivar tanto de A como de B , y que nos ayude a completar
la derivación que tenemos entre manos. Esta fórmula será el objetivo
(o target) de esa aplicación de la PCa.

La propia regla PCa no nos dice qué fórmula tenemos que esco-
ger como target. Dependiendo del resultado final que busquemos en
la derivación, y dependiendo de nuestra experiencia con dednatprop,
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tendremos que hacer diferentes ensayos hasta dar con la fórmula ade-
cuada en cada caso.

Una vez elegido el target (digamos, C ), introducimos A como

supuesto, indicando que va “hacia” C . A continuación, trataremos

de derivar C , usando el supuesto A junto con el resto de reglas a
nuestro alcance.

Cuando hayamos conseguido derivar C en dependencia del su-

puesto A , cerraremos la primera bandera.

A continuación, repetiremos la operación con el segundo disyunto.

Es decir, introduciremos la fla B como supuesto, indicando que va

“hacia” el target C (tiene que ser el mismo que en la primera ban-

dera). Y entonces, trataremos de derivar C , usando el supuesto B
junto con el resto de reglas a nuestro alcance.

Cuando hayamos conseguido derivar C en dependencia del su-

puesto B , cerraremos la segunda bandera.

Y por último, tras cerrar la segunda bandera, introduciremos una

nueva ĺınea en la que repetiremos por tercera vez la fórmula C . Pero
esta vez, pondremos a la derecha de esa fórmula que la hemos obtenido

por la regla E_, e indicaremos los números de ĺınea de A_B , aśı
como de inicio y fin de cada una de las dos banderas que acabamos de
cerrar.

Esquemáticamente, el funcionamiento de esta regla se describe aśı:
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PCa

(. . . ) A_B

(. . . ) A S hacia C

(. . . ) . . .

(. . . ) C

(. . . ) B S hacia C

(. . . ) . . .

(. . . ) C

(. . . ) C PCa núms. de ĺınea de A^B y las dos banderas

§ 13.9. EJEMPLO DE DERIVACIÓN MEDIANTE LA PRUE-
BA DE CASOS

Un ejemplo sencillo de derivación mediante PCa, es la que nos permite
probar que:

p_ q $
DNP

q _ p

En efecto, para ello ponemos:
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(1) p_ q Pr

(2) p S hacia q _ p

(3) q _ p I_ 2

(4) q S hacia q _ p

(5) q _ p I_ 4

(6) q _ p PCa 1,2–3,4–5

§ 13.10. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Construye una derivación para demostrar que:

p , q , p^ q Ñ r ^ s |
DNP

s

2. Construye una derivación para demostrar que:

pÑ q ,  q |
DNP

r _ p

3. Construye una derivación para demostrar que:

p_ q , pÑ r , q Ñ r |
DNP

r

4. Construye una derivación para demostrar que:

p_ q |
DNP

  p_  q
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5. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Construye una o dos derivaciones adicionales que usen la re-
gla PCa, tan complicadas como se te ocurran.

b) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

c) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

d) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 14

Dednatprop con primitivas: intro y
elim de bicondic y reducción al

absurdo

§ 14.1. INTRODUCCIÓN DEL BICONDICIONAL

Supongamos que tenemos las fórmulas AÑ B y B Ñ A como
ĺıneas separadas en una deducción (nuevamente, sin importar el or-
den).

Pues bien, en ese caso, la regla de introducción del bicondi-
cional (abreviadamente, intro de bicondic, o “IØØØ”) nos permite

introducir una ĺınea nueva con el bicondicional AØ B . A la dere-
cha de la nueva ĺınea introducida pondremos la inscripción “IØ”, y el
número de las dos ĺıneas en las que se ha basado la aplicación de esta
regla.

Esquemáticamente:

134
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IØ

(. . . ) AÑ B

(. . . ) B Ñ A

AØ B IØ núms. de ĺınea de A y B

Por ejemplo, es inmediato elaborar una derivación para demostrar
que:

pÑ q , q Ñ p $
DNP

pØ q

En efecto, basta con poner:

(1) pÑ q Pr

(2) q Ñ p Pr

(3) pØ q IØ 1,2

§ 14.2. ELIMINACIÓN DEL BICONDICIONAL

A continuación, vamos a formular dos reglas para la eliminación del
bicondicional : la eliminación del bicondicional de izquierda a
derecha, y la eliminación del bicondicional de derecha a iz-
quierda.

Como ocurŕıa anteriormente con las reglas DN , E_, etc, las re-
glas de eliminación del bicondicional constituyen una pareja de reglas
distintas. Pero su funcionamiento es tan similar, que las llamaremos
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a ambas genéricamente ”eliminación del bicondicional” (abrevia-
damente, “elim de bicondic”, o “EØØØ”).

Pues bien, supongamos que tenemos la fórmula AØ B en una
ĺınea de una derivación. Entonces, la regla de E Ø de izda a dcha

nos permite añadir una ĺınea que contenga la fórmula AÑ B . A la
derecha de esa fórmula colocaremos la inscripción “EØ”, seguida del

número de la ĺınea de la fórmula AØ B .

Esquemáticamente:

EØ de izda a dcha

(. . . ) AØ B

AÑ B EØ núm. de ĺınea de AØ B

Y por su parte, la regla E Ø de dcha a izda es enteramente análoga,
excepto por la fla que se obtienen como conclusión.

Esquemáticamente:

EØ de dcha a izda

(. . . ) AØ B

B Ñ A EØ núm. de ĺınea de AØ B
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§ 14.3. EJEMPLOS DE DERIVACIONES CON LA REGLA
DE ELIMINACIÓN DEL BICONDICIONAL

Vamos a empezar elaborando una derivación para demostrar que:

pØ q $
DNP

pÑ q

Esto es sumamente sencillo:

(1) pØ q Pr

(2) pÑ q EØ 1

A continuación, veremos un ejemplo ligeramente más complejo: una
derivación para demostrar que:

pØ q , p , r Ø q $
DNP

r

Pues bien, la derivación correspondiente seŕıa:

(1) pØ q Pr

(2) p Pr

(3) r Ø q Pr

(4) pÑ q EØ 1

(5) q MP 2,4

(6) q Ñ r EØ 3

(7) r MP 5,6
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§ 14.4. LA REGLA DE REDUCCIÓN AL ABSURDO

Cuando una suposición lleva a un absurdo, esa suposición no puede
ser cierta.

Por ejemplo: se busca a alguien por asesinato, pero luego se descu-
bre que esa persona hab́ıa muerto un año antes de que se produjera
el crimen. Pues bien, en ese momento se desecha la hipótesis inicial.
Esa persona no cometió el crimen, porque seŕıa absurdo pensar que lo
hizo después de muerta.

La regla de reducción al absurdo (abreviadamente, RA) es un
reflejo de esta forma de razonamiento, adaptada a las derivaciones
formales.

En la versión de dednatprop que estamos estudiando aqúı, RA es
la tercera y última regla que engarza con la regla de supuestos.

Su funcionamiento es el siguiente.

Para empezar, introducimos una fórmula A mediante la regla de

supuestos, poniendo como target una contradicción, B ^ B (siendo

B cualquier fórmula).

Pues bien, si conseguimos obtener dicha contradicción, cerramos
la bandera. Y a continuación, introducimos una nueva ĺınea, ya en la

derivación principal, con la fórmula  A . A la derecha de esta última
fórmula indicamos que la hemos obtenido por la regla RA, y colocamos
los números de inicio y fin de la bandera en cuestión.

Esquemáticamente:
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RA

(. . . ) A S hacia B ^ B

(. . . ) . . .

(. . . ) B ^ B

(. . . )  A RA núms. de ĺınea de A y B ^ B

§ 14.5. EJEMPLOS DE DERIVACIONES MEDIANTE RE-
DUCCIÓN AL ABSURDO

Como primer ejemplo, vamos a elaborar una derivación para demostrar
que:

p_ q Ñ r ,  r $
DNP

 p

Pues bien, basta con poner:

(1) p_ q Ñ r Pr

(2)  r Pr

(3) p S hacia r ^ r

(4) p_ q I_ 3

(5) r MP 1,4

(6) r ^ r I^ 2,5

(7)  p RA 3,6
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A continuación, vamos a elaborar una derivación para demostrar
que:

pÑ q , pÑ  q $
DNP

 p

Pues bien, basta con poner:

(1) pÑ q Pr

(2) pÑ  q Pr

(3) p S hacia q ^ q

(4) q MP 1,3

(5)  q MP 2,3

(6) q ^ q I^ 4,5

(7)  p RA 3,6

Y por último, vamos a elaborar una derivación para demostrar que:

p^ q Ñ r , p ,  r $
DNP

 q

Pues bien, basta con poner:
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(1) p^ q Ñ r Pr

(2) p Pr

(3)  r Pr

(4) q S hacia r ^ r

(5) p^ q I^ 2,4

(6) r MP 1,5

(7) r ^ r I^ 3,6

(8)  q RA 4,7

§ 14.6. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Siguiendo el ejemplo de §14.1 , construye una derivación para
demostrar que:

  ppÑ qq ,   pq Ñ pq |
DNP

pØ q

2. Siguiendo los ejemplos de §14.3 , construye una derivación para
demostrar que:

pØ q ,   p |
DNP

  q

3. Siguiendo los ejemplos de §14.5 , construye una derivación para
demostrar que:

pÑ q , q Ñ r ,  r |
DNP

 p
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4. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Elabora una o dos derivaciones adicionales que usen la regla
RA, tan complicadas como se te ocurran.

b) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

c) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

d) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 15

Más ejemplos de formalización y
derivación en dednatprop con

primitivas

§ 15.1. EJEMPLO ADICIONAL DE FORMALIZACIÓN Y
DERIVACIÓN EN DEDNATPROP CON REGLAS PRIMI-
TIVAS

Como primer ejemplo, vamos a empezar formalizando el siguiente ar-
gumento, y a continuación demostraremos que es derivable en dednat-
prop con reglas primitivas

Si Juan fue a la fiesta, entonces no fue Pedro.

Pedro fue a la fiesta.

Por lo tanto, Juan no fue.

Empezamos estableciendo la correspondiente tabla de convenciones
simbólicas:

143
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p : Juan fue a la fiesta.

q : Pedro fue a la fiesta.

A continuación, procedemos a la formalización del argumento:

pÑ  q , q |
DNP

 p

Y por último, procedemos a construir una derivación de dicho ar-
gumento en dednatprop:

(1) pÑ  q Pr

(2) q Pr

(3)   q DN 2

(4)  p MT 1,3

§ 15.2. OTRO EJEMPLO DE FORMALIZACIÓN Y DERI-
VACIÓN EN DEDNATPROP CON REGLAS PRIMITIVAS

A continuación, vamos a formalizar y derivar este otro argumento:

Si Juan fue a la fiesta, entonces no fue Pedro.

Por lo tanto, si Pedro fue a la fiesta, entonces no fue Juan.

Como convenciones simbólicas, mantenemos las mismas que en el
ejemplo anterior. Sin embargo, en este caso la formalización es ligera-
mente distinta:

pÑ  q |
DNP

q Ñ  p
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Por consiguiente, la derivación también será algo diferente:

(1) pÑ  q Pr

(2) q S hacia  p

(3)   q DN 2

(4)  p MT 1,3

(5) q Ñ  p PCo 2,4

§ 15.3. OTRO EJEMPLO DE FORMALIZACIÓN Y DERI-
VACIÓN EN DEDNATPROP CON REGLAS PRIMITIVAS

A continuación, vamos a hacer lo mismo con este otro argumento

Si Juan y Pedro fueron a la fiesta, también fue Ana.

Por lo tanto, si Juan fue a la fiesta, entonces,

si fue Pedro, Ana también fue.

Como convenciones simbólicas, mantenemos las mismas que en el
ejemplo anterior, añadiendo:

r : Ana fue a la fiesta.

Pues bien, la formalización resultante seŕıa:

p^ q Ñ r |
DNP

pÑ pq Ñ rq

Y una derivación de este argumento formal en dednatprop seŕıa la
siguiente:
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(1) p^ q Ñ r Pr

(2) p S hacia q Ñ r

(3) q S hacia r

(4) p^ q I^ 2

(5) r MP 1,4

(6) q Ñ r PCo 3,5

(7) pÑ pq Ñ rq PCo 2,6

Nótese que aqúı tenemos dos banderas anidadas, es decir, una ban-
dera dentro de otra (una subderivación dentro de otra subderivación).
Es la única forma de obtener el condicional complejo que constituye
la conclusión de este argumento.

§ 15.4. OTRO EJEMPLO DE FORMALIZACIÓN Y DERI-
VACIÓN EN DEDNATPROP CON REGLAS PRIMITIVAS

Ahora nos vamos a plantear la formalización y derivación de este otro
argumento:

O llueve, o llueve y hace fŕıo.

Por lo tanto, llueve.

Aqúı tenemos que cambiar de convenciones simbólicas, aśı que pon-
dremos:

s : Llueve.

t : Hace fŕıo.
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A continuación, procedemos a la formalización del argumento:

s_ ps^ tq |
DNP

s

Y finalmente, procedemos a su derivación en dednatprop con pri-
mitivas:

(1) s_ ps^ tq Pr

(2) s S hacia s

(3) s^ t S hacia s

(4) s E^ 3

(5) s PCa 1,2 –2, 3 –4

Como vemos, la primera bandera de esta derivación no tiene asta,
dado que su target es idéntico al supuesto provisional.

§ 15.5. OTRO EJEMPLO DE FORMALIZACIÓN Y DERI-
VACIÓN EN DEDNATPROP CON REGLAS PRIMITIVAS

Por último, veremos este otro ejemplo:

Si llueve, no hace fŕıo.

Por lo tanto, no es cierto que llueva y haga fŕıo.

Mantenemos las mismas convenciones simbólicas que en el ejemplo
anterior, y procedemos a formalizar el argumento:

sÑ  t |
DNP

 ps^ tq

Y sobre ese contexto, procedemos a la derivación del argumento:
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(1) sÑ  t Pr

(2) s^ t S hacia t^ t

(3) s E^ 2

(4)  t MP 1,2

(5) t E^ 2

(6) t^ t I^ 4,5

(7)  ps^ tq RA 2–6

§ 15.6. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Siguiendo el ejemplo de §15.1 , formaliza y construye una deri-
vación en dednatprop con primitivas para el siguiente argumento:

Si Marta no estaba, Álex śı.

Álex no estaba.

Por lo tanto, Marta śı estaba.

2. Siguiendo el ejemplo de §15.2 , haz lo mismo con el siguiente
argumento:

Si Marta no estaba, Álex śı.

Por lo tanto, si Álex no estaba, śı estaba Marta.
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3. Siguiendo el ejemplo de §15.5 , haz lo mismo con el siguiente
argumento:

Marta no estaba.

Álex śı estaba.

Por lo tanto, no es cierto que

si estaba Álex, entonces estaba Marta.

4. Si te sobra tiempo, inventa más ejercicios similares, y resuélvelos.



Tema 16

Dednatprop con derivadas:
conmutativas, transitiva,
contradicciones y PTE

§ 16.1. ESQUEMAS DE DERIVACIONES

Al introducir cada una de las reglas primitivas, hemos hecho uso de

un “esquema”, en el cual aparecen letras como A y B , en repre-
sentación de fórmulas cualesquiera de lenprop.

Pues bien, lo mismo se puede hacer con derivaciones enteras, dando
lugar a esquemas de derivaciones. Estos esquemas se pueden usar
después en otras derivaciones más complejas, a modo de abreviaturas.
Es como si estuviéramos abreviando una secuencia de pasos, que se
pueden repetir en distintas derivaciones con otras fórmulas, aunque
siempre con una misma estructura.

En concreto, en este tema vamos a introducir 7 de esos esquemas.
Conforme los presentemos, les vamos a dar un nombre y un código a
cada uno. Y a partir del momento en que introduzcamos cada
uno, podremos utilizar ese esquema como una nueva regla
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derivada del cálculo dednatprop.

Ello facilitará sustancialmente las deducciones posteriores, ya que
en cualquier momento podremos apoyarnos en la secuencia de pasos
que están condensados en cada una de estas reglas derivadas.

§ 16.2. REGLA CONMUTATIVA DE LA CONJUNCIÓN

Si en una ĺınea de una derivación tenemos una conjunción, A^B ,
entonces podemos introducir una nueva ĺınea en la que se revierta el

orden de los conyuntos, poniendo: B ^ A .

A esta regla la llamaremos “conmutativa de la conjunción”
(abreviadamente, Cm^̂̂). Y a la derecha de su utilización, anotaremos
el número de la ĺınea en la que aparećıa la conjunción original.

A continuación, damos el esquema argumentativo de esta regla y
su demostración:

A^B , $
DNP

B ^ A

(1) A^B Pr

(2) A E^ 1

(3) B E^ 1

(4) B ^ A I^ 2,3
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§ 16.3. EJEMPLO DE DERIVACIÓN QUE USA LA REGLA
Cm^̂̂

Un ejemplo sumamente sencillo de uso de dicha regla lo tenemos en la
derivación para demostrar que:

pÑ q ^ r , p $
DNP

r ^ q

En efecto, basta con poner:

(1) pÑ q ^ r Pr

(2) p Pr

(3) q ^ r MP 1,2

(4) r ^ q Cm^ 3

§ 16.4. REGLA CONMUTATIVA DE LA DISYUNCIÓN

Si en una ĺınea de una derivación tenemos una disyunción, A_B ,
entonces podemos introducir una nueva ĺınea en la que se revierta el

orden de los disyuntos, poniendo: B _ A .

A esta regla la llamaremos “conmutativa de la disyunción”
(abreviadamente, Cm___). Y a la derecha de su utilización, anotaremos
el número de la ĺınea en la que aparećıa la disyunción original.

El correspondiente esquema argumentativo es:

A_B $
DNP

B _ A
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En este caso, la derivación es idéntica a la que vimos en §13.9 ,
con una sola diferencia: alĺı se aplicaba a una fórmula en concreto de
lenprop ( p_ q ), mientras que aqúı se aplica a cualquier disyunción

de lenprop (es decir, a cualquier fla de la forma A_B , donde A y

B son cualesquiera flas).

§ 16.5. REGLA TRANSITIVA DEL CONDICIONAL

Si en una ĺınea de una derivación aparece un condicional AÑ B ,

y en otra ĺınea aparece un condicional B Ñ C , entonces podemos

introducir una nueva ĺınea con el condicional AÑ C .

A esta regla la llamaremos “transitiva del condicional” (abre-
viadamente, “TrÑÑÑ”). Y a la derecha de su utilización, anotaremos
los números de las dos ĺıneas en las que aparećıan los condicionales

AÑ B y B Ñ C .

A continuación, damos el esquema argumentativo de esta regla y
su demostración:

AÑ B , B Ñ C $
DNP

AÑ C

(1) AÑ B Pr

(2) B Ñ C Pr

(3) A S hacia C

(4) B MP 1,3

(5) C MP 2,4

(6) AÑ C PCo 3,5
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§ 16.6. EL PRINCIPIO DE NO CONTRADICCIÓN

El principio de no contradicción (abreviadamente, “PNC”) es
una regla derivada especial, porque no recoge una derivación con pre-
misas, sino un teorema formal. Como vimos en §11.3 , los teoremas
del cálculo son fórmulas derivables sin premisas:

$
DNP

 pA^ Aq

La derivación de esta fórmula, sin usar premisa alguna, es muy
sencilla:

(1) A^ A S hacia A^ A

(2)  pA^ Aq RA 1,1

Aqúı tenemos un nuevo caso de bandera sin asta, puesto que la
suposición provisional coincide con el target de la RA.

Pues bien, a partir de ahora, en cualquier momento de una deri-

vación, y para cualquier fórmula A , podemos introducir como una

nueva ĺınea la fórmula  pA^ Aq . A su derecha, colocaremos la ins-

cripción “PNC” (sin indicación numérica, pues esta regla no se aplica
a ĺıneas anteriores de la derivación, sino que se introduce sin más).
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§ 16.7. EJEMPLO DE DERIVACIÓN QUE USA LAS RE-
GLAS DERIVADAS Cm___, TrÑÑÑ y PNC

Un ejemplo de uso de estas tres reglas derivadas lo tenemos en la
demostración de que:

 pp_ qq Ñ r , r Ñ q ^ q $
DNP

q _ p

En efecto, usando estas reglas derivadas, basta con poner:

(1)  pp_ qq Ñ r Pr

(2) r Ñ q ^ q Pr

(3)  pp_ qq Ñ pq ^ qq TrÑ 1,2

(4)  pq ^ qq PNC

(5)   pp_ qq MT 3,4

(6) p_ q DN 5

(7) q _ p Cm_ 6

§ 16.8. EX CONTRADICTIONE QUODLIBET, PRIMERA
REGLA

A continuación vamos a introducir dos reglas derivadas, a las que
denominaremos “ex contradictione quodlibet” (abreviadamente,
“ECQ”). El significado de dicha frase latina es: “de una contradic-
ción, lo que se quiera. Y efectivamente, estas dos reglas encapsulan el
principio de razonamiento según el cual de una contradicción se sigue
cualquier cosa.
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Por eso, a este principio de razonamiento se le conoce también como
“principio de explosión”.

Como acabamos de señalar, vamos a desglosar este principio en dos
reglas distintas, aunque son tan parecidas que las simbolizaremos de la
misma manera, como hemos hecho anteriormente en casos similares.

Pues bien, la primera regla ECQ consiste en lo siguiente. Suponga-

mos que en una derivación tenemos una ĺınea con la fórmula A^ A .
Pues bien, en cualquier momento posterior podemos introducir una

ĺınea nueva con la fórmula B , siendo B cualquier fórmula de len-
prop que escojamos, sin ninguna restricción.

A la derecha de la nueva fórmula introducida, colocaremos la ins-

cripción “ECQ”, seguida por el número de ĺınea de la fórmula A^ A .

A continuación, damos el esquema argumentativo de esta regla y
su demostración:

A^ A $
DNP

B

(1) A^ A Pr

(2)  B S hacia A^ A

(3)  B ^ pA^ Aq I^ 1,2

(4) A^ A E^ 3

(5)   B RA 2,4

(6) B DN 5
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§ 16.9. EX CONTRADICTIONE QUODLIBET, SEGUNDA
REGLA

La segunda regla se aplica al caso en que A y  A aparecen en
premisas separadas:

A ,  A $
DNP

B

Naturalmente, en este caso, a la derecha de la fórmula introducida
colocaremos la inscripción “ECQ”, seguida por los números de ĺınea

de las dos fórmulas, A y  A .

La prueba es muy sencilla también:

(1) A Pr

(2)  A Pr

(3)  B S hacia A^ A

(4) A^ A I^ 1,2

(5)   B RA 3,4

(6) B DN 5

§ 16.10. EL PRINCIPIO DE TERCERO EXCLUIDO

El principio de tercero excluido (o tercio excluso, abreviada-

mente “PTE”) nos permite introducir la fórmula A_ A , para

cualquier fórmula A , en cualquier ĺınea de una derivación.

De nuevo, estamos ante un teorema, cuyo esquema y demostración
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damos a continuación:
$

DNP
A_ A

Derivación:

(1)  pA_ Aq S hacia pA_ Aq ^  pA_ Aq

(2) A S hacia pA_ Aq ^  pA_ Aq

(3) A_ A I_ 2

(4) pA_ Aq ^  pA_ Aq I^ 1,3

(5)  A RA 2,4

(6) A_ A I_ 5

(7) pA_ Aq ^  pA_ Aq I^ 1,6

(8)   pA_ Aq RA 1,7

(9) A_ A DN 8

Esta prueba es un poquito “enrevesada”, y en ella vuelven a apa-
recer dos banderas “anidadas”, es decir, una dentro de la otra. Pero
es la más sencilla posible, en dednatprop, para derivar este resultado.

§ 16.11. EJEMPLO DE DERIVACIÓN QUE USA LAS RE-
GLAS DERIVADAS ECQ y PTE

Un ejemplo de derivación que usa estas dos reglas derivadas lo tenemos
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en la demostración de que:

p_ pÑ q ^ q $
DNP

r

En efecto, usando estas reglas derivadas, basta con poner:

(1) p_ pÑ q ^ q Pr

(2) p_ p PTE

(3) q ^ q MP 1,2

(4) r ECQ 3

§ 16.12. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Construye una derivación, apoyándote en Cm^, para demostrar
que:

p^ q Ñ r $
DNP

q ^ pÑ r

2. Construye una derivación con reglas primitivas que demuestre
que:

ppÑ qq _ pr ^ sq $
DNP

pr ^ sq _ ppÑ qq

3. Construye una derivación con reglas primitivas que demuestre
que:

A_B ,  B $
DNP

A

4. Siguiendo los ejemplos de §16.3 , §16.7 y §16.11 , construye
una derivación que demuestre:

pÑ q , q Ñ  r ^ r , p $
DNP

t
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5. Si te sobra tiempo, inventa más ejercicios similares y resuélvelos.



Tema 17

Dednatprop con derivadas: silogismo
disyuntivo, interdefinición y De

Morgan

§ 17.1. SILOGISMO DISYUNTIVO

Bajo el rótulo “silogismo disyuntivo” y la abreviatura “SD”, en-
capsulamos dos reglas derivadas distintas, pero muy similares (al igual
que hemos venido haciendo en ocasiones anteriores).

Contando con la experiencia acumulada, nos limitaremos a mostrar
simplemente el esquema argumentativo y la derivación de cada una de
estas reglas.

La primera regla SD es:

A_B ,  A $
DNP

B

Y su derivación es:
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(1) A_B Pr

(2)  A Pr

(3) A S hacia B

(4) A^ A I^ 2,3

(5) B ECQ 4

(6) B S hacia B

(7) B PCa 1, 3–5, 6–6

La segunda regla SD, es la siguente:

A_B ,  B $
DNP

A

En este caso, la derivación la dejamos para las preguntas del final.

§ 17.2. INTERDEFINICIÓN DE CONJUNCIÓN A CONDI-
CIONAL

La regla de interdefinición de conjunción a condicional (abrevia-
damente, Id^ Ñ^ Ñ^ Ñ) se define por el siguiente esquema argumentativo y
derivación:

A^B $
DNP

 pAÑ  Bq



LÓGICA FORMAL 1 (LÓGICA PROPOSICIONAL) 163

(1) A^B Pr

(2) AÑ  B S hacia B ^ B

(3) A E^ 1

(4) B E^ 1

(5)  B MP 2,3

(6) B ^ B I^ 4,5

(7)  pAÑ  Bq RA 2,6

§ 17.3. INTERDEFINICIÓN DE CONDICIONAL A CON-
JUNCIÓN

A su vez, la regla de interdefinición de condicional a conjunción
(abreviadamente, IdÑ ^Ñ ^Ñ ^) se define por el siguiente esquema argumen-
tativo y derivación:

AÑ B $
DNP

 pA^ Bq

(1) AÑ B Pr

(2) A^ B S hacia B ^ B

(3) A E^ 2

(4) B MP 1,3

(5)  B E^ 2

(6) B ^ B I^ 4,5

(7)  pA^ Bq RA 2,6
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§ 17.4. INTERDEFINICIÓN DE DISYUNCIÓN A CONDI-
CIONAL

A continuación, la regla de interdefinición de disyunción a con-
dicional (abreviadamente, Id_ Ñ_ Ñ_ Ñ) se define por el siguiente esquema
argumentativo y derivación:

A_B $
DNP

 AÑ B

(1) A_B Pr

(2)  A S hacia B

(3) B SD 1,2

(4)  AÑ B PCo 2,3

§ 17.5. INTERDEFINICIÓN DE CONDICIONAL A DIS-
YUNCIÓN

Por último, la regla de interdefinición de condicional a disyun-
ción (abreviadamente, IdÑ _Ñ _Ñ _) se define por el siguiente esquema ar-
gumentativo y derivación:
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AÑ B $
DNP

 A_B

(1) AÑ B Pr

(2) A_ A PTE

(3) A S hacia  A_B

(4) B MP 1,3

(5)  A_B I_ 4

(6)  A S hacia  A_B

(7)  A_B I_ 6

(8)  A_B PCa 2, 3–5, 6–7

§ 17.6. EJEMPLO DE DERIVACIÓN QUE USA LAS RE-
GLAS DERIVADAS SD Y DE INTERDEFINICIÓN

Un ejemplo de derivación que usa las reglas derivadas SD y de inter-
definición es la demostración de que:

p_ pq Ñ rq ,  p $
DNP

 pq ^ rq

En efecto, usando estas reglas derivadas, basta con poner:
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(1) p_ pq Ñ rq Pr

(2)  p Pr

(3) q Ñ r SD 1,2

(4)  pq ^ rq IdÑ ^ 3

§ 17.7. DE MORGAN

Finalmente, tras las reglas de interdefinición, vamos a introducir nues-
tras últimas cuatro reglas derivadas. Las llamaremos “leyes de De
Morgan”, y asignaremos un código distinto a cada una de ellas.

De nuevo, nos limitamos a poner el esquema argumentativo y su
demostración, para cada una de estas reglas.
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DM111:

A^B $
DNP

 p A_ Bq

(1) A^B Pr

(2)  A_ B S hacia B ^ B

(3)   AÑ  B Id_ Ñ 2

(4) A E^ 1

(5)   A DN 4

(6)  B MP 3,5

(7) B E^ 1

(8) B ^ B I^ 6,7

(9)  p A_ Bq RA 2,8
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DM222:

A_B $
DNP

 p A^ Bq

(1) A_B Pr

(2)  A^ B S hacia B ^ B

(3)  AÑ B Id_ Ñ 2

(4)  A E^ 2

(5) B MP 3,4

(6)  B E^ 2

(7) B ^ B I^ 5,6

(8)  p A^ Bq RA 2,7
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DM333:

 pA^Bq $
DNP

 A_ B

(1)  pA^Bq Pr

(2) A S hacia  B

(3) B S hacia B ^ B

(4) A^B I^ 2,3

(5) B ^ B ECQ 1,4

(6)  B RA 3,5

(7) AÑ  B PCo 2,6

(8)  A_ B IdÑ _ 7
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DM444:

 pA_Bq $
DNP

 A^ B

(1)  pA_Bq Pr

(2) A S hacia A^ A

(3) A_B I_ 2

(4) A^ A ECQ 1,3

(5)  A RA 2, 4

(6) B S hacia B ^ B

(7) A_B I_ 6

(8) B ^ B ECQ 1,6

(9)  B RA 6,8

(10)  A^ B I^ 5,9

§ 17.8. EJEMPLO DE DERIVACIÓN QUE USA LAS LE-
YES DE DE MORGAN

Un ejemplo de derivación que usa las leyes de De Morgan es la demos-
tración de que:

 p p_ qq Ñ r _ s $
DNP

p^ q Ñ  p r ^ sq

En efecto, usando estas reglas derivadas, basta con poner:
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(1)  p p_ qq Ñ r _ s Pr

(2) p^ q S hacia  p r ^ sq

(3)  p p_ qq DM1 2

(4) r _ s MP 1,3

(5)  p r ^ sq DM2 4

(6) p^ q Ñ  p r ^ sq PCo 2,5

§ 17.9. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. (Cuestión eliminada — era repetición de una anterior.)

2. Siguiendo los ejemplos de §17.6 y §17.8 , construye una deri-
vación que demuestre que:

p_ pr ^ sq , r Ñ s $
DNP

p

3. Siguiendo los ejemplos de §17.6 y §17.8 , construye una deri-
vación que demuestre que:

p $
DNP

 p p^ qq

4. Siguiendo los ejemplos de §17.6 y §17.8 , construye una deri-
vación que demuestre que:

pp_ qq ^ pr ^ sq $
DNP

p pÑ qq ^  pr Ñ  sq

5. Si te sobra tiempo, inventa más ejercicios similares, y resuélvelos.



Tema 18

Metateoŕıa de dednatprop

§ 18.1. NIVELES DE ANÁLISIS DE LAS HABILIDADES
COGNITIVAS SUPERIORES

Una vez que hemos definido nuestro primer cálculo lógico y nos hemos
familiarizado con él, cabe preguntarse hasta qué punto “describe”,
“modela” o “nos ayuda a entender” esa capacidad humana a la que
llamamos “razonamiento deductivo”.

El razonamiento deductivo es una de las habilidades cognitivas su-
periores del ser humano. Y está dentro de ese grupo por la sencilla
razón de que involucra el uso del lenguaje.

Pues bien, en cualquier aproximación a una habilidad cognitiva
superior (ya sea el razonamiento deductivo o cualquier otra), cabe
distinguir tres niveles de análisis:

1. El nivel input-output.

2. La realidad psicológica del algoritmo.

3. La implementación material.
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§ 18.2. EL NIVEL INPUT-OUTPUT

El nivel 1 (es decir, el nivel input-output, o “entrada-salida”) intenta
proporcionar una caracterización expĺıcita y sistemática de los
inputs y outputs simbólicos que corresponden a la habilidad
en cuestión.

Los inputs son las expresiones simbólicas que dicha habilidad puede
recibir y procesar. Los outputs son las expresiones que se generan como
resultado, al procesar los inputs. Y además, nos interesa encontrar un
modo sistemático de relacionar cada input con el output que le podŕıa
corresponder como respuesta (o con los outputs, si hay más de una
respuesta posible).

En definitiva, en el nivel 1 comprende tres tareas:

(a) la caracterización de todos los posibles inputs que corresponden
a esa habilidad;

(b) la caracterización de todos sus posibles outputs;

(c) la búsqueda de un mecanismo que nos permita determinar — o
“calcular” — qué output o outputs corresponden a cada input
(aunque sea aproximadamente, o con un margen de error).

§ 18.3. LOS NIVELES 2 Y 3: REALIDAD PSICOLÓGICA
E IMPLEMENTACIÓN MATERIAL

El nivel 2 va un paso más allá, puesto que busca un mecanismo de
cálculo (o “algoritmo”) que sea similar al modo en que opera de
hecho nuestra mente, o nuestro cerebro, cuando ejercemos
esa habilidad. Puesto en otras palabras: el nivel 2 intenta encontrar
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una descripción de la estructura y los pasos del cálculo, que se asemeje
al modo como operamos las personas, en la práctica, cuando ejercemos
esa habilidad.

Aśı por ejemplo, imaginemos que en un determinado algoritmo, el
paso de un input X a un output Y exige una computación especial-
mente complicada, que pasa por calcular un valor intermedio, Z.

Pues bien, si ese algoritmo tiene realidad psicológica, entonces es
de esperar que el tiempo de respuesta de X a Y sea más largo de lo
normal, puesto que la computación es especialmente complicada. Y
además, es de esperar que si después de que una persona proporcione
el output Y , a continuación le proponemos otra tarea que involucre
el valor Z, responderá más rápidamente que en condiciones normales,
porque se supone que ya ha tenido que calcular ese valor.

Por último, el nivel 3 aborda la implementación material de la
habilidad en cuestión, es decir, la fisioloǵıa que la hace posible a
nivel f́ısico, qúımico y biológico.

§ 18.4. DEDNATPROP Y EL RAZONAMIENTO HUMANO

Dicho todo esto, es bastante claro que dednatprop está muy lejos del
primero de estos tres objetivos, y por lo tanto, también de los otros
dos.

En efecto, dednatprop está muy lejos del nivel 1 (input-
output), por la sencilla razón de que el razonamiento humano
se produce en el seno del lenguaje natural, y dednatprop se
aplica únicamente a fórmulas de un lenguaje formal.
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Además, como dijimos en §9.2 , la traducción de las proposiciones
del lenguaje natural al lenguaje formal (es decir, la formalización) es
una operación asistemática y plagada de dificultades.

Aun aśı, cabe preguntarse si dednatprop pudiera representar algún
“sustrato estructural” del razonamiento humano. Es decir, si pudiera
representar “algo” de lo que hacemos cuando razonamos (aunque sea
lejanamente, a grandes rasgos).

Esa es la pregunta que nos vamos a hacer a continuación.

§ 18.5. DEDNATPROP Y EL RAZONAMIENTO EN LEN-
PROP

Para tratar de dilucidar si dednatprop pudiera representar algún sus-
trato del razonamiento humano, vamos dejar al margen el lenguaje
natural, y vamos a restringir nuestra atención hacia el lenguaje for-
mal lenprop, y a su interpretación mediante la semántica veritativo-
funcional.

En ese contexto, nos preguntaremos hasta qué punto se ajusta
dednatprop a la habilidad de razonar deductivamente con las
fórmulas de lenprop, interpretadas bajo la semántica vf. Pues
bien, esto śı ha sido objeto de estudio, y en profundidad, por parte de
la lógica formal.

En efecto, la lógica formal se ha ocupado de investigar con esmero
el nivel 1 (input-output), en lo que se refiere al razonamiento humano
en lenprop y otros lenguaje formales.

Por el contrario, la lógica formal no se ha ocupado del nivel 2 (ni
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mucho menos del 3), ni siquiera en esos contextos restringidos.

Aqúı conviene aclarar, en relación al nivel 2, que ciertamente ded-
natprop tiene un aire mucho más “natural” que el resto de sistemas
deductivos. De ah́ı le viene su nombre (“cálculo de deducción natu-
ral”), y por eso es el cálculo deductivo que se suele enseñar en primer
lugar en los cursos introductorios, como hemos hecho aqúı.

Y también es verdad que las reglas de dednatprop corresponden
a “principios de razonamiento” que se explicitan con cierta frecuen-
cia, como pautas o modelos a seguir (aśı por ejemplo, la reducción al
absurdo, el modus tollens, etc).

Sin embargo, hay que subrayar que no existe ningún estudio que
muestre que las reglas de dednatprop se correspondan con el modo
en que nuestro cerebro está operando internamente, en la práctica,
cuando “captamos” que un razonamiento formal es correcto.

De hecho, la secuencia de pasos (o “flujo computacional”) que sigue
nuestro cerebro cuando razonamos mentalmente en lenprop, si es que
se puede hablar en esos términos, continúa siendo a fecha de hoy un
misterio.

§ 18.6. METATEORÍA DE LOS SISTEMAS FORMALES

Como acabamos de señalar, la lógica formal investiga el nivel input-
output de los sistemas deductivos, en relación a los lenguajes formales
y las interpretaciones definidas para ellos.

Y al hacerlo, nos centramos en ciertas propiedades matemáticas de
estos sistemas, que se conocen como “propiedades metateóricas
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de los sistemas formales”. Pues bien, las tres más importantes de
esas propiedades son las siguientes:

1. Corrección: un cálculo es correcto cuando cualquier derivación
formal corresponde a un argumento formal válido (es decir, cuan-
do cualquier derivación corresponde a un argumento formal cuya
conclusión es consecuencia lógica de las premisas).

2. Completitud: un cálculo es completo cuando para cualquier ar-
gumento formal válido (es decir, un argumento formal cuya con-
clusión sea consecuencia lógica de las premisas), existe una deri-
vación que parte de dichas premisas y llega a esa conclusión.

3. Decidibilidad: un cálculo es decidible cuando proporciona ins-
trucciones mecánicas que nos permiten decidir, en un número
finito de pasos, si una fórmula es o no derivable de un conjunto
finito de fórmulas.

En el caso de los cálculos que no proceden mediante derivaciones,
sino mediante tablas, árboles o lo que sea, la definición de corrección
y completitud se referirá a la existencia de la correspondiente tablas,
árboles, etc.

La combinación de las dos primeras propiedades (corrección y com-
pletitud) nos proporciona la “adecuación input-output” del cálculo de-
ductivo en cuestión, en relación al lenguaje formal y al tipo de inter-
pretación que estemos examinando. En efecto, un cálculo deductivo
es correcto y completo si la relación de derivabilidad en ese
cálculo coincide con la relación de consecuencia lógica .
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§ 18.7. PROPIEDADES METATEÓRICAS DE DEDNAT-
PROP: CORRECCIÓN Y COMPLETITUD

En el caso de dednatprop, es bastante sencillo demostrar que se trata

de un cálculo correcto. En efecto, para cualquier fórmula A y
conjunto de fórmulas D, ocurre que:

Si D $
DNP

A entonces D |ù
PROP

A

Para demostrar esto, hay que examinar una a una las reglas pri-
mitivas del cálculo, hasta asegurarnos de que cualquier derivación ba-
sada en ellas corresponderá a un argumento válido de acuerdo con la
semántica veritativo-funcional. Ello garantizará a su vez la validez de
las reglas derivadas, puesto que no son más que fragmentos abreviados
de derivaciones con reglas primitivas.

Todo esto es bastante sencillo de hacer, pero aqúı no nos vamos a
detener en ello.

Además, el cálculo dednatprop también es un cálculo completo.

Es decir, que para cualquier fórmula A y conjunto de fórmulas D,
tenemos:

Si D |ù
PROP

A entonces D $
DNP

A

En este caso, la prueba es sustancialmente más compleja. Se puede
consultar en internet y en infinidad de manuales, respecto a cálculos
similares a dednatprop.

§ 18.8. PROPIEDADES METATEÓRICAS DE DEDNAT-
PROP: CARENCIA DE DECIDIBILIDAD

Por último, es obvio que dednatprop no es un cálculo decidible.
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Para entender esto, tenemos que empezar por constatar que las re-
glas de dednatprop establecen claramente qué se puede hacer y qué no
se puede hacer, en cada momento de una derivación; es decir, qué ma-
nipulaciones simbólicas están permitidas y cuáles no, en ese momento
de la derivación. Por eso es un cálculo deductivo, esto es, un cálculo
meramente sintáctico.

Sin embargo, dednatprop no especifica qué se debe hacer en cada
momento de una derivación, es decir: no especifica qué manipulacio-
nes simbólicas tenemos que realizar en ese momento, para llegar a
obtener la conclusión que buscamos.

De hecho, al confeccionar derivaciones, nos encontramos a cada
paso con muchas opciones disponibles, entre las cuales tenemos que
elegir. Y la elección la hacemos mediante ensayo y error, y entrenando
nuestro ingenio, hasta encontrar una ruta que nos permita derivar
la conclusión deseada. El método nos dice qué pasos podemos dar,
pero no nos dice qué pasos debemos dar, para llegar a la conclusión
deseada.

Por esta razón, dednatprop no es un cálculo decidible: no es lo que
se llama “procedimiento mecánico”, “algoritmo mecánico” o “procedi-
miento de decisión”. Y ello es aśı — como venimos diciendo — porque
dednatprop no nos permite decidir, de una manera mecánica y en un
número finito de pasos, si una fórmula es o no derivable de otra, o de
un conjunto finito de fórmulas.

El siguiente cálculo lógico que vamos a ver śı es decidible, además de
ser correcto y completo. Aunque tiene el inconveniente de ser bastante
más “pesado” que dednatprop (es decir, que ocupa bastante más es-
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pacio y śımbolos para validar un argumento). Son las llamadas “tablas
de verdad”.

§ 18.9. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr.

1. Explica con tus propias palabras la diferencia entre los tres nive-
les apuntada en §18.1 , §18.2 y §18.3 . Al hacerlo, utiliza un
ejemplo, como pueda ser sumar, jugar al ajedrez o cualquier otra
habilidad intelectual que se te ocurra.

2. ¿Cómo se conjugan, en tu opinión, las limitaciones señaladas en
§18.4 y §18.5 con lo que se dijo en su momento en §9.3 , res-
pecto a que “la formalización lógica . . . sigue siendo nuestra mejor
herramienta disponible para analizar el razonamiento deductivo”?

3. Indica sucintamente qué tendŕıa que suceder para que dednatprop
fuera un cálculo incorrecto (es decir, no correcto).

4. Indica sucintamente qué tendŕıa que suceder para que dednatprop
fuera un cálculo incompleto (es decir, no completo).

5. Indica sucintamente qué tendŕıa que suceder para que dednatprop
fuera un cálculo decidible.

6. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

b) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.
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c) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 19

Tablas de verdad: instrucciones de
confección

§ 19.1. LAS TABLAS DE VERDAD

El siguiente sistema deductivo que vamos a estudiar son las tablas
de verdad (abreviadamente, “tv”). Como su propio nombre indica,
en estas tablas juega un papel muy importante la verdad, aśı como la
falsedad, las cuales seguiremos abreviando mediante las letras “V” y
“F”.

Sin embargo, para hacer ver que estamos ante un mero cálculo
deductivo, debemos ignorar lo que significan esas letras, y centrarnos
únicamente en el procedimiento de transformación de śımbolos que
vamos a describir. A estos efectos, V y F serán simplemente dos letras
distintas, que iremos asignando a las flas de lengprop mediante unas
instrucciones bien definidas.

De hecho, podŕıamos usar “1” y “0” en puesto de “V” y “F” (como
se hace en algunos manuales), y podŕıamos llamarlas “tablas de veri-
ficar”, en puesto de “tablas de verdad”. Con ello, despareceŕıa toda
referencia a la verdad en la descripción del método.

182
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De ese modo, ponemos de manifiesto que estamos ante un cálculo
sintáctico, porque se puede describir ı́ntegramente como un
conjunto de reglas de manipulación de śımbolos, sin hacer
ninguna referencia al significado de los mismos.

§ 19.2. LA TABLA DE LA NEGACIÓN

Sea A cualquier fórmula de lenprop. Entonces, la tabla de verdad

para la fórmula  A consiste en poner:

A  A

V F
F V

Esto requiere poca explicación, pero aun aśı la vamos a dar.

La primera columna contiene los dos posibles valores de verdad de

la fórmula A , que son V y F. A continuación del valor V para la

fórmula A , viene el valor F para la fórmula  A , que aparece en
rojo, debajo del śımbolo de negación (que es la conectiva principal de

 A ).

Al hacer la tabla a mano, no hace falta utilizar el color rojo: basta
con rodear la columna de la conectiva principal con una elipse alarga-
da, en vertical.

Sinópticamente, podemos decir que, en cada fila, si le ponemos V a

la fórmula A , entonces le ponemos F a la fórmula  A ; y viceversa.

Es decir, que la letra asignada a  A , en cada fila, es justamente la

contraria a la que tenga asignada la fórmula A en esa misma fila.
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Aśı por ejemplo, la tabla de verdad para la fórmula  p será:

p  p

V F
F V

§ 19.3. LA TABLA DE LA CONJUNCIÓN

Sean ahora A y B cualesquiera fórmulas de lenprop. Entonces, la

tabla de verdad para la fórmula A^B consiste en poner:

A B A ^ B

V V V
V F F
F V F
F F F

En este caso, naturalmente, la conectiva principal es ^ . Y lo que
hace la tabla, sinópticamente, es asignarle a esta conectiva la letra V
en la única fila en la que tanto A como B son V. Y en el resto de
filas, la tabla le asigna a la conectiva ^ la letra F.

La tabla resulta algo más grande que la anterior, porque en este
caso tenemos que cubrir todas las combinaciones posibles de las dos

fórmulas A y B . Pero por lo demás, el procedimiento es bastante
obvio.
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§ 19.4. LA TABLA DE LA DISYUNCIÓN

Sean de nuevo A y B cualesquiera fórmulas de lenprop. Entonces,

la tabla de verdad para la fórmula A_B consiste en poner:

A B A _ B

V V V
V F V
F V V
F F F

Como vemos, la conectiva principal en este caso es _ . Y lo que hace
la tabla, sinópticamente, es asignarle a esta conectiva la letra F en la

única fila en la que tanto A como B son F. Y en el resto de filas,
la tabla le asigna a la conectiva _ la letra V.

§ 19.5. LA TABLA DEL CONDICIONAL

Sean de nuevo A y B cualesquiera fórmulas de lenprop. Entonces,

la tabla de verdad para la fórmula AÑ B consiste en poner:

A B A Ñ B

V V V
V F F
F V V
F F V

Como vemos, la conectiva principal en este caso es Ñ . Y lo que hace
la tabla, sinópticamente, es asignarle a esta conectiva la letra F en la

única fila en la que A es V y B es F. Y en el resto de filas, la tabla
le asigna a la conectiva Ñ la letra V.
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§ 19.6. LA TABLA DEL BICONDICIONAL

Por último, sean una vez más A y B cualesquiera fórmulas de len-

prop. Entonces, la tabla de verdad para la fórmula AØ B consiste
en poner:

A B A Ø B

V V V
V F F
F V F
F F V

Como vemos, la conectiva principal en este caso es Ø . Y lo que hace
la tabla, sinópticamente, es asignarle a esta conectiva la letra V en las

dos filas en las que A y B reciben el mismo valor (sea V o F). Y
en las dos filas restantes, la tabla le asigna a la conectiva Ø la letra
F.

§ 19.7. EJEMPLOS DE TABLAS DE VERDAD

Utilizando estos patrones, es fácil hacer tablas de verdad para fórmu-
las diversas. El primer paso es identificar la conectiva principal y la
estructura de la fórmula en subfórmulas, según explicamos en §5.8 y
§6.1 . Y a continuación, vamos rellenando las columnas de la tabla
poco a poco, con paciencia.

En cada tabla, lo que más interesa es la columna que corresponde
a la conectiva principal de la fórmula entera. Esa es la columna que
aparece en rojo en el manual (y que podemos rodear con una elipse
vertical, al hacer las tablas a mano). En cada fila, el valor que aparece
en esa columna es “el valor de la fórmula” en esa fila.

Un ejemplo sencillo es la tabla para la fórmula   p :
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p   p

V V F
F F V

Otro ejemplo es la tabla para la fórmula    p :

p    p

V F V F
F V F V

Y otro ejemplo es la tabla de verdad para la fórmula  pq Ø p5q :

q p5  ( q Ø p5 )

V V F V
V F V F
F V V F
F F F V

§ 19.8. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Haz la tabla de verdad para la fórmula: pÑ q .

2. ” pØ q .

3. ” q _ q .

4. ”  pq _ qq .
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5. ”  p5 ^ pq _ qq .

6. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Propón tus propios ejemplos de fórmulas, con dos śımbolos
proposicionales, y haz tablas de verdad para las mismas.

b) Haz un resumen muy sinóptico de este tema, con tus propias
palabras.

c) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

d) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 20

Tablas de verdad: derivabilidad y
metateoŕıa

§ 20.1. TABLAS PARA UN CONJUNTO DE FÓRMULAS

Dado un conjunto de fórmulas de lenprop, una tabla de verdad
conjunta es una gran tabla de verdad, en cuyas columnas iniciales
están todos los śımbolos proposicionales que aparecen en esas fórmulas
(es decir, p , o q , etc), o en su defecto, las subfórmulas más pequeñas

que tenemos a la vista (es decir, A , B , etc).

Aśı por ejemplo, vamos a ver una tabla conjunta para las fórmulas

   p p_ q  pq Ø p5q

Pues bien, en este caso, los śımbolos proposicionales involucrados son
tres: p , q y p5 . Por consiguiente, esos śımbolos irán en las co-

lumnas iniciales. Y a continuación aparecerán las tres fórmulas, en
bloques separados. En definitiva, la tabla de verdad conjunta para
esas tres fórmulas es la siguiente:

189
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p q r    p p _ q  ( q Ø r )

V V V F V F V F V
V V F F V F V V F
V F V F V F V V F
V F F F V F V F V
F V V V F V V F V
F V F V F V V V F
F F V V F V F V F
F F F V F V F F V

Y a continuación vamos a ver una tabla conjunta para las fórmu-

las A^B y A_B (siendo A y B cualesquiera fórmulas de
lenprop):

A B A ^ B A _ B

V V V V
V F F V
F V F V
F F F F

§ 20.2. DERIVABILIDAD DE UNA FÓRMULA A PARTIR
DE OTRA EN TABLAS DE VERDAD

Dadas dos fórmulas de lenprop, A y B , diremos que B es “deri-

vable de A mediante tablas de verdad” (abreviadamente, “de-
riv tv”), cuando en cualquier tabla conjunta para esas dos fórmulas,

sucede que en todas las filas en las que la fórmula A sale V, la fórmula

B también sale V.
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O dicho de otro modo: B es deriv tv de A , cuando no hay nin-

guna fila en la cual A sea V y B sea F.

Para abreviar esto, utilizaremos la “puerta giratoria sencilla”, con
el sub́ındice correspondiente:

A |
TV

B

Y al hacer la tabla, trazaremos un rectángulo en aquellas filas en

las que la fórmula A sale V, si las hay.

Aśı por ejemplo, la siguiente tabla muestra que, para cualesquiera

fórmulas de lenprop A y B , la fórmula AÑ B es deriv tv de

A^B :

A B A ^ B A Ñ B

V V V V
V F F F
F V F V
F F F V

Efectivamente, vemos que en la única fila en la cual la fórmula A^B
recibe la letra V (que es la 1ª fila de la tabla), también la fórmu-

la AÑ B recibe esa letra. Por consiguiente, mediante dicha tabla
hemos demostrado que:

A^B $
TV

AÑ B

Veamos otro ejemplo. La siguiente tabla muestra que la fórmula p

es deriv tv de la fórmula p^ q :
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p q p ^ q p

V V V V
V F F V
F V F F
F F F F

En efecto, también aqúı vemos que en la única fila en la cual la fórmula
p^ q recibe la letra V (nuevamente la 1ª fila de la tabla), la fórmula

p recibe esa misma letra. Por consiguiente, mediante dicha tabla

hemos demostrado que:

p^ q $
TV

p

§ 20.3. DERIVABILIDAD TV DE UNA FÓRMULA A PAR-
TIR DE UN CONJUNTO DE FÓRMULAS

Más en general, diremos que una fórmula B es “derivable me-
diante tablas de verdad” (abreviadamente, “deriv tv”) de un
conjunto de fórmulas D, cuando al hacer la tabla conjunta para D

y B , en todas las filas en las que todas las fórmulas de D salgan V,

la fórmula B también salga V.

O dicho de otro modo: B es deriv tv de D, cuando no hay ninguna

fila en la cual todas las fórmulas de D salgan V, y la fórmula B salga
F.

Eso lo abreviaremos poniendo:

D |
TV

B
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Y al hacer la tabla correspondiente, trazaremos de nuevo un rectángu-
lo en aquellas filas en las que todas las premisas sean V, si las hay.

Aśı por ejemplo, la siguiente tabla muestra que la fórmula q es

deriv tv del conjunto de fórmulas    p , p_ q :

p q    p p _ q q

V V F V F V V
V F F V F V F
F V V F V V V
F F V F V F F

Efectivamente, en este caso vemos que la única fila en la que las
dos premisas son V es la 3ª fila de la tabla. Y en esa fila, la conclusión
(es decir, la fórmula q ) también es V. Por consiguiente, a la vista de

esta tabla, podemos afirmar que:

   p , p_ q |
TV

q

§ 20.4. TEOREMA DEL CÁLCULO TV

Por último, diremos que B es un “teorema formal” del cálculo de
tablas (abreviadamente, “teor tv”) cuando, al hacer la tabla de verdad

para B , esta fórmula salga V en todas las filas.

Esto lo abreviaremos poniendo:

|
TV

B

Un ejemplo de ello es la fla:
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|
TV

p_ p

lo cual se demuestra mediante la siguiente tabla:

p p _  p

V V F
F V V

Otro ejemplo es:

|
TV

AÑ A_B

lo cual se demuestra mediante la siguiente tabla:

A B A Ñ A _ B

V V V V
V F V V
F V V V
F F V F

§ 20.5. METATEORÍA DEL CÁLCULO DE TABLAS DE
VERDAD

Si comparamos la definición de las tablas de verdad (§19.2 –§19.6 )
con las reglas de valoración semántica (§7.2 ), es bastante obvio que
las tablas de verdad proporcionan un método de comprobación co-
rrecto y completo de la relación de consecuencia en lógica proposi-
cional.

El argumento que lo demuestra es sencillo de detallar, pero tampoco
nos vamos a detener a hacerlo aqúı.
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Por otro lado, es aún más obvio que las tablas de verdad constitu-
yen un cálculo puramente mecánico. Ello es aśı porque, a diferencia
de lo que ocurŕıa con el cálculo de deducción natural, al rellenar las
tablas no “elegimos” nada: nos limitamos a seguir las instrucciones
ciegamente, sin más. Por consiguiente, se trata de un cálculo decidi-
ble.

En contrapartida, las tablas suelen resultar bastante más engorrosas
que la deducción natural: no requieren ingenio, pero śı requieren más
espacio (y más śımbolos) para su realización.

Aśı por ejemplo, la derivación

   p , p_ q |
DED NAT PROP

q

es notablemente más escueta que su análoga mediante tabla de verdad
(vista en §20.3 ):

(1)    p Pr

(2) p_ q Pr

(3)  p DN 1

(4) q SD 2,3

§ 20.6. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Da ejemplos de tres fórmulas de lenprop en las que aparezcan tres
śımbolos proposicionales distintos, como en el primer ejemplo de
§20.1 . Haz su tabla de verdad conjunta.
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2. Da ejemplos de dos fórmulas de lenprop en las que aparezcan
dos śımbolos proposicionales. Haz su tabla de verdad conjunta, e
indica si alguna de ellas es deriv tv de la otra.

3. Da un ejemplo de fórmula de lenprop en la que aparezcan dos
śımbolos proposicionales, los mismos que en los ejemplos de 2.
Verifica mediante tablas de verdad si dicha fórmula es deriv tv de
las fórmulas de 2.

4. Utilizando los mismos śımb props que en 2 y 3, da un ejemplo de
teorema del cálculo tv y demuestra que lo es mediante la corres-
pondiente tabla de verdad.

5. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Explica con tus propias palabras por qué el cálculo de tablas
de verdad es decidible, mientras que el cálculo de deducción
natural no lo era.

b) Demuestra la derivabilidad del ejemplo 3 mediante deducción
natural, de la forma más corta que se te ocurra. Indica si
consideras que, a simple vista, esta derivación ha ocupado
más o menos espacio que la tabla de verdad que construiste
en la cuestión 3.

c) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

d) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 21

Árboles para lógica proposicional:
nociones iniciales y reglas básicas

§ 21.7. INTRODUCCIÓN A LOS ÁRBOLES LÓGICOS

El tercer y último cálculo deductivo que vamos a estudiar en este curso
es también completamente mecánico, al igual que las tablas. Pero tiene
la ventaja de ser mucho más elegante.

Se trata de los árboles lógicos (o “método de árboles”) para
la lógica proposicional (abreviadamente, arprop). De hecho, es-
te método constituye el cálculo más eficiente, es decir, el que mejor
optimiza los recursos de procesamiento de la información.

La única pega que tiene es que es menos intuitivo que los dos pri-
meros. Pero con un poco de práctica, nos acostumbraremos enseguida.

Para empezar, hay que decir que los árboles que vamos a construir
están en posición invertida, es decir: con la base del árbol arriba, y a
continuación, el tronco creciendo hacia abajo, y las ramas bifurcándose
hacia abajo.
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Dicho esto, el árbol está compuesto de nodos, cada uno de los cua-
les alberga una fórmula (más o menos como las ĺıneas de las deduccio-
nes en dednatprop). A la izquierda de cada nodo hay un número, que
indica el nivel de desarrollo del árbol. Y a la derecha hay que justificar
la introducción de la fórmula o fórmulas en ese nivel, dependiendo de
la regla que se haya utilizado para ello.

A continuación iremos presentando, una a una, las reglas de arprop.
En la versión que estudiaremos aqúı, este método consta de doce reglas
distintas. En este tema introduciremos tres de ellas — las más básicas
— y en el tema siguiente introduciremos las otras nueve.

§ 21.8. REGLA DE PREMISAS DE ARPROP

Aunque el método arprop se puede usar para varios propósitos, en
este curso nos vamos a limitar a su uso principal, que es como cálculo
para generar derivaciones, desde un conjunto de premisas hacia una
conclusión.

Pues bien, la primera regla que vamos a estudiar es la regla de
premisas. Esta regla se llama igual que su homóloga en dednatprop,
y su funcionamiento es muy similar — de hecho, son prácticamente
idénticas.

En efecto, esta regla establece que las premisas de la derivación
ocuparán el inicio del árbol: a cada premisa corresponderá un nodo
(desde el nivel 1 en adelante), y se irán colocando en vertical, una
debajo de otra.

Además, a la izquierdea de cada premisa pondremos su nivel, y a la
derecha pondremos la indicación “Pr” (premisa), tal y como haćıamos
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en dednatprop.

Ocasionalmente, veremos árboles con una sola premisa. Y también
veremos árboles sin premisas (es decir, árboles “desde el conjunto vaćıo
de premisas”). En este último caso, el árbol no tendrá ningún nodo
correspondiente a las premisas, por lo que comenzaremos directamente
con la regla de conclusión, de la que vamos a hablar ahora mismo.

§ 21.9. REGLA DE ARPROP PARA INTRODUCIR LA
CONCLUSIÓN

Efectivamente, una vez colocadas las premisas (si las hay), viene el
turno de la conclusión. Y aqúı es donde el método de árboles resulta un
poco anti-intuitivo, y puede jugarnos una mala pasada, si no prestamos
atención.

Pues bien, de acuerdo con la regla de conclusión de arprop:

LA CONCLUSIÓN HAY QUE INTRODUCIRLA
SIEMPRE CON UNA NEGACIÓN DELANTE.

Dicho en forma de eslogan: “antes de la conclusión, pon siempre una
negación”.

Además, a la izquierda de esta fórmula, colocaremos su nivel en
el desarrollo del árbol. Este número será el correlativo que le toque,
dependiendo de cuántas premisas tenga la derivación que vamos a
comprobar. Si se trata de un árbol sin premisas, entonces el nodo de
conclusión estará en el nivel 1.

Y a la derecha de este nodo, colocaremos la anotación “ C”, que
significa negación de la conclusión.
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Por último, al conjunto de estos primeros nodos (es decir, los nodos
con las premisas, si las hay, y el nodo de negación de la conclusión),
los llamaremos “la base del árbol” (aśı como “el tronco inicial
del árbol”, o su “lista inicial”).

§ 21.10. REGLA DE CIERRE

Una vez colocado el tronco inicial, procederemos a extender el árbol,
añadiendo nuevos nodos al mismo. Para ello, utilizaremos las restantes
reglas, que iremos presentando en las próximas secciones.

Algunas de esas reglas abrirán una bifurcación en dos ramas sepa-
radas. Otras reglas continuarán el tronco del árbol (o la rama a la que
se apliquen) en vertical, sin bifurcar.

Ahora bien, tras la introducción de cualquier nueva fórmula en el
árbol, tenemos una obligación especial: debemos recorrer la rama en
cuestión hacia atrás, hasta arriba del todo. Y debemos comprobar
si se da la circunstancia de que en algún nodo de esa rama

aparece una fórmula A (la que sea), y en otro aparece su

negación,  A .

Si detectamos eso, entonces diremos que esos dos nodos “chocan
entre śı”. Y en ese momento, colocaremos un ćırculo con una cruz
(“b”) debajo esa rama, y diremos que dicha rama “está cerrada”.

Asimismo, debajo de la cruz indicaremos los números de los nodos
que chocan. Y ya no nos ocuparemos de extender esa rama nunca más.
Es por ello que a esta tercera regla de arprop la llamamos “regla de
cierre”.
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§ 21.11. DINÁMICA GENERAL DEL MÉTODO DE ÁRBO-
LES

Mientras una rama no esté cerrada, diremos que “esa rama está
abierta”, y seguiremos ocupándonos de extenderla, mientras las re-
glas nos lo permitan.

Si llega un momento en que las reglas del método no nos permiten
extender más una rama abierta, entonces diremos que “esa rama
está terminada y abierta”.

En cuanto al árbol en su conjunto, si se llegan a cerrar todas sus
ramas, entonces diremos que “el árbol está cerrado” (o que “el
árbol está terminado y cerrado”, o que “el árbol ha terminado
cerrando”).

Ahora bien, mientras el árbol tenga una o más ramas abiertas, en-
tonces diremos que “el árbol está abierto”, y seguiremos ocupándo-
nos de extenderlo, mientras las reglas nos lo permitan.

Y finalmente, si llega un momento en que las reglas del método no
nos permiten extender más un árbol, aunque tenga ramas abiertas,
entonces diremos que “ese árbol está terminado y abierto” (o
que “el árbol ha terminado abierto”).

Por último, adoptaremos la siguiente pauta de actuación, por eco-
nomı́a del método: siempre que podamos, aplicaremos las reglas
que no bifurcan antes que las reglas que bifurcan. Esto no cam-
biará el hecho de que el árbol termine cerrado o abierto, pero śı hará
que los árboles sean más cortos — y por tanto, nos ayudará a optimizar
esfuerzos.
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§ 21.12. DERIVABILIDAD EN ARPROP A PARTIR DE
UNA FÓRMULA

Una vez asentado todo lo anterior, diremos que una fórmula B es

“derivable de otra fórmula A en arprop”, cuando cualquier

árbol que tenga como tronco inicial la premisa A y la conclusión

B , acabe cerrando.

Para abreviar esto, utilizaremos la “puerta giratoria sencilla” con
el sub́ındice “ap” (por “arprop”), poniendo:

A |
AP

B

Por otra parte, si a partir del tronco inicial formado por la premisa

A y la conclusión B , conseguimos construir un árbol terminado

y abierto, entonces diremos que B “no es derivable de A en
arprop”, lo cual representaremos mediante:

A �
�|

AP
B

§ 21.13. EJEMPLO DE DERIVABILIDAD EN ARPROP A
PARTIR DE UNA FÓRMULA

Para construir nuestro primer árbol, vamos a utilizar una sola fórmula,
p , y la vamos a colocar como premisa y como conclusión. En ese caso,

aplicando todo lo dicho hasta ahora, pondremos:

(1)
(2)

p
 p

b
1,2

Pr
 C
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Efectivamente, hemos colocado la única premisa (es decir, la fórmula
p ) en el nivel 1, avalada por la regla Pr. Y a continuación, en el nivel

2, hemos colocado la negación de la conclusión (es decir, la fórmula
 p), avalada por la regla  C.

Ahora bien, inmediatamente después de introducir el segundo no-
do, nos percatamos de que este choca con el primero. Por lo tanto,
procedemos a cerrar esa rama, indicando los niveles de los nodos que
chocan (el 1 y el 2).

Aśı pues, en este caso, el árbol termina cerrando. Con lo cual, hemos
demostrado que:

p |
AP

p

§ 21.14. DERIVABILIDAD EN ARPROP A PARTIR DE
UN CONJUNTO DE FÓRMULAS

Más en general, diremos que B es “derivable de un conjunto
de fórmulas D en arprop”, cuando exista un árbol cerrado cuyas

premisas sean fórmulas de D, y cuya conclusión sea la fórmula B .

Esto lo abreviaremos poniendo:

D |
AP

B

Por su parte, si ocurre que cualquier árbol que comience con pre-

misas de D y la conclusión B termina abierto, entonces diremos que

“ B no es derivable de D en arprop”. Y esto lo abreviaremos
poniendo:

D �
�|

AP
B
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§ 21.15. EJEMPLO DE NO DERIVABILIDAD EN ARPROP
A PARTIR DE UN CONJUNTO DE FÓRMULAS

Para construir nuestro segundo árbol, vamos a partir de las fórmulas
p , q y r como premisas, y de la fórmula s como conclusión. Por

consiguiente, empezaremos el árbol colocando una premisa en cada
uno de los nodos iniciales, y a continuación colocaremos la negación
de la conclusión:

(1)
(2)
(3)
(4)

p
q
r
 s

Pr
Pr
Pr
 C

Aunque todav́ıa nos quedan por introducir nueve reglas del método
de árboles, podemos anticipar que ninguna de ellas se aplica a simprops
o negaciones de simprops.

Por consiguiente, este árbol no se puede extender más: se trata de
un árbol terminado y abierto.

Con lo cual, hemos demostrado que:

p , q , r �
�|

AP
s

§ 21.16. TEOREMAS FORMALES DE ARPROP

A su vez, diremos que B es un “teorema formal de arprop”,

cuando cualquier árbol que comience con  B (sin incorporar ningu-
na premisa) acabe cerrando.
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Esto lo abreviaremos poniendo:

|
AP

B

Y diremos que B no es un “teorema formal de arprop”, cuan-

do cualquier árbol que comience con  B (sin incorporar ninguna
premisa) termine abierto.

Esto lo abreviaremos poniendo:

�
�|

AP
B

§ 21.17. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Indica brevemente qué pega tiene arprop, según §21.7 y §21.9 .

2. Indica brevemente en qué consiste el tronco inicial de un árbol, y
cómo hay que construirlo.

3. Explica, a partir de §21.11 , si es posible que un árbol cerrado
tenga una rama abierta.

4. Inspirándote en §21.10 y §21.13 , construye un árbol para de-
mostrar que:

  q |
AP

q

5. Inspirándote en §21.15 , construye un árbol para demostrar que:

 p ,  q ,  r �
�|

AP
s
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6. Inspirándote otra vez en §21.15 , construye un árbol para de-
mostrar que:

�
�|

AP
p

7. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

b) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 22

Árboles para lógica proposicional:
reglas dinámicas

§ 22.1. REGLAS BÁSICAS Y REGLAS DINÁMICAS

A las tres primeras reglas de arprop, que introdujimos en el tema
anterior (es decir, la regla de premisas, la regla de conclusión y la
regla de cierre), las vamos a llamar “reglas básicas de arprop”.

Y a las restantes nueve reglas, que irán apareciendo a lo largo de
este tema, las llamaremos “reglas dinámicas”. Este nombre está
justificado en cuanto que cada una de estas reglas extiende el árbol,
mediante la introducción de nodos nuevos a partir de los nodos ya
existentes.

§ 22.2. REGLA DE DOBLE NEGACIÓN DE ARPROP

La regla de doble negación de arprop consiste en lo siguiente.

Sea A cualquier fórmula de lenprop, y supongamos que un nodo

de un árbol consiste en la fórmula   A . Pues bien, en ese caso
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procederemos a extender todas las ramas abiertas que contengan ese

nodo, añadiendo la fórmula A . Al hacerlo, pondremos a la derecha

de A la indicación “   ”, seguida del nivel del nodo donde estaba
la fórmula inicial.

Además, procederemos a colocar la marca de cotejo (“X”) a la

derecha de   A , pegadita a la fórmula. Dicha marca nos servirá

como recordatorio de que la fórmula   A ha sido utilizada en
ese árbol, y ya no la volveremos a utilizar más.

En este contexto, decimos que la fórmula   A es la “premisa

de la regla   ”, mientras que la fórmula A es la “conclusión”
de esta regla.

Esquemáticamente, podemos representar la regla   poniendo:'

&

$

%

      

  A X
|

A   nivel de   A

§ 22.3. EJEMPLO DE ÁRBOL CON LA REGLA DE DO-
BLE NEGACIÓN

Un ejemplo de árbol sencillo que usa la regla de doble negación es el
que demuestra que:

    p |
AP

p

En efecto, construimos un árbol cerrado para esa derivación po-
niendo:
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(1)
(2)
(3)

    p
 p

  p
b
2,3

Pr
 C
  1

Como vemos, en el nodo 3 hemos introducido la fórmula que resulta
de eliminar la primera doble negación en el nodo 1. Y la fórmula que
resulta choca con el nodo 2, lo cual cierra el árbol.

§ 22.4. REGLA DE ARPROP PARA LA CONJUNCIÓN

La regla de arprop para la conjunción es también sumamente
sencilla, y consiste en lo siguiente.

Sean A y B fórmulas cualesquiera de lenprop, y supongamos que

un nodo de un árbol consiste en la fórmula A^B . Pues bien, en ese
caso procederemos a extender todas las ramas abiertas que contengan
ese nodo, añadiendo dos nuevos nodos en vertical, en niveles sucesivos:

en el primero de ellos colocaremos la fórmula A , y en el segundo

colocaremos la fórmula B .

A la izquierda de cada uno de estos dos nodos, indicaremos el nivel
correspondiente del árbol. Y a su derecha pondremos la indicación

“ ^ ”, seguida del número de nivel de la fórmula A^B .

Además, procederemos a colocar la marca de cotejo (“X”) a la

derecha de A^B , pegadita a la fórmula. Dicha marca nos servirá

como recordatorio de que la fórmula A^B ha sido utilizada en
ese árbol, y ya no la volveremos a utilizar más.
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En este contexto, decimos que la fórmula A^B es la “premi-

sa de la regla ^ ”, mientras que las fórmulas A y B son las
“conclusiones” de esta regla.

Esquemáticamente, podemos representar la regla ^ poniendo:

'

&

$

%

^̂̂

A^B X
|

A ^ nivel de A^B

B ^ nivel de A^B

§ 22.5. EJEMPLO DE ÁRBOL CON LA REGLA DE LA
CONJUNCIÓN

Un ejemplo sencillo de árbol que usa la regla de la conjunción es el
que demuestra que:

p^ q |
AP

q

En efecto, construimos un árbol cerrado para esa derivación po-
niendo:

(1)
(2)
(3)
(4)

p^ q
 q
p
q
b
2,4

Pr
 C
^ 1
^ 1
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§ 22.6. REGLA DE ARPROP PARA LA CONJUNCIÓN
NEGADA

La regla de arprop para la conjunción negada es la primera de
las reglas que vamos a ver que bifurca las ramas. Y lo hace de la
manera siguiente.

Sean A y B fórmulas cualesquiera de lenprop, y supongamos

que un nodo de un árbol consiste en la fórmula  pA^Bq .

Pues bien, en ese caso procederemos a extender todas las ramas
abiertas que contengan ese nodo, mediante una bifurcación en dos

nodos nuevos: en el nodo de la izquierda colocaremos la fórmula  A ,

y en el nodo de la derecha colocaremos la fórmula  B .

A la izquierda de estos dos nodos, indicaremos el número del nue-
vo nivel del árbol. Y a la derecha, pondremos la indicación “  ^ ”,

seguida del número de nivel de la fórmula  pA^Bq .

Además, procederemos a colocar la marca de cotejo (“X”) a la

derecha de  pA^Bq , pegadita a la fórmula. Dicha marca nos servirá

como recordatorio de que la fórmula  pA^Bq ha sido utilizada

en ese árbol, y ya no la volveremos a utilizar más.

En este contexto, decimos que la fórmula  pA^Bq es la “pre-

misa de la regla  ^ ”, mientras que las fórmulas  A y  B son
las “conclusiones” de esta regla.

Esquemáticamente, podemos representar la regla  ^ poniendo:
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'

&

$

%

 ^ ^ ^

 pA^Bq X

 A  B  ^ nivel de  pA^Bq

§ 22.7. EJEMPLO DE ÁRBOL CON LA REGLA DE LA
CONJUNCIÓN NEGADA

Como ejemplo sencillo de árbol que usa la regla de la conjunción ne-
gada, vamos a construir un árbol para mostrar que:

r �
�|

AP
r ^ s

Es decir, vamos a demostrar que r ^ s no es derivable desde r , en
arprop.

Para demostrar esto, construimos un árbol a partir de la premisa r
y la conclusión r ^ s , y comprobamos que el árbol termina abierto:

(1)
(2)

(3)

r

 pr ^ sq X

 r
b
1,3

 s

Pr
 C

 ^ 2

Efectivamente, vemos que la rama de la izquierda cierra, pero que la
rama de la derecha termina abierta, y ya no quedan más nodos a los
que aplicarles nuevas reglas.
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Por lo tanto, el árbol termina abierto, lo cual demuestra que r ^ s

no es derivable de la premisa r en arprop.

§ 22.8. REGLA DE ARPROP PARA LA DISYUNCIÓN

El resto de reglas de arprop son similares a las anteriores.

Y por ello, contando con el trabajo que ya hemos hecho con estas
primeras reglas, y con el bagaje adquirido a lo largo del curso, nos
vamos a limitar a dar el esquema de cada una.'

&

$

%

___

A_B X

A B _ nivel de A_B

§ 22.9. REGLA DE ARPROP PARA LA DISYUNCIÓN NE-
GADA

'

&

$

%

 _ _ _

 pA_Bq X

|

 A  _ nivel de  pA_Bq

 B  _ nivel de  pA_Bq
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§ 22.10. REGLA DE ARPROP PARA EL CONDICIONAL'

&

$

%

ÑÑÑ

AÑ B X

 A B Ñ nivel de AÑ B

§ 22.11. REGLA DE ARPROP PARA EL CONDICIONAL
NEGADO'

&

$

%

 Ñ Ñ Ñ

 pAÑ Bq X

|

A  Ñ nivel de  pAÑ Bq

 B  Ñ nivel de  pAÑ Bq

§ 22.12. REGLA DE ARPROP PARA EL BICONDICIO-
NAL '

&

$

%

ØØØ

AØ B X

A
B

 A
 B

Ø nivel de AØ B
Ø nivel de AØ B
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§ 22.13. REGLA DE ARPROP PARA EL BICONDICIO-
NAL NEGADO'

&

$

%

 Ø Ø Ø

 pAØ Bq X

A
 B

 A
B

 Ø nivel de AØ B
 Ø nivel de AØ B

§ 22.14. EJEMPLOS DE ÁRBOLES CON DIVERSAS RE-
GLAS

Vamos a empezar construyendo un árbol para demostrar:

p_ pq Ñ rq ,  p $
AP

 pq ^ rq

(1)
(2)
(3)
(4)
(5)
(6)

(7)

(8)

p_ pq Ñ rq X
 p

  pq ^ rq X
q ^ r X

q
 r

p
b
2,7

q Ñ r X

 q
b
5,8

r
b
6,8

Pr
Pr
 C
  3
^ 4
^ 4

_ 1

Ñ 7
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Y por último, construiremos otro árbol para demostrar:

pØ q ,  pp_ rq ��$AP
q

(1)
(2)
(3)
(4)
(5)

(6)
(7)

pØ q X
 pp_ rq X

 q
 p
 r

p
q

b
3,7 — 4,6

 p
 q

Pr
Pr
 C
 _ 2
 _ 2

Ø 1
Ø 1

Como vemos, una de las ramas de este último árbol termina cerran-
do, pero la otra no. Por lo tanto, el árbol termina abierto, lo cual
demuestra que no existe una derivación desde las premisas pØ q y

 pp_ rq hacia la conclusión q , en arprop.

§ 22.15. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Inspirándote en §22.4 y §22.6 , construye un árbol para demos-
trar:

p^ q , r ^ s $
AP

p^ s

2. Usando las reglas   , _ y  Ñ , construye un árbol para
demostrar:

   p_ q $
AP

pÑ q



LÓGICA FORMAL 1 (LÓGICA PROPOSICIONAL) 217

3. Construye un árbol terminado y abierto, para demostrar:

pØ q , p_ r ��$AP
pÑ r

4. Pon un ejemplo de argumento formal que se pueda derivar en
arprop, y construye un árbol para demostrarlo.

5. Pon un ejemplo de argumento formal que no se pueda derivar en
arprop, y construye un árbol para demostrarlo.

6. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Pon más ejemplos similares a los pedidos en 4 y 5, tan com-
plejos como te sea posible.

b) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

c) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 23

Metateoŕıa del método de árboles
para la lógica proposicional

§ 23.1. DECIDIBILIDAD DE ARPROP Y METATEORÍA
DE LA LÓGICA PROPOSICIONAL

A la vista de las reglas del método, es evidente que arprop es decidi-
ble. En efecto, la construcción de los árboles es puramente mecánica:
basta con ir aplicando las reglas una tras otra, hasta que no quede nin-
guna por aplicar. Y es obvio que todos los árboles terminan, abiertos
o cerrados, tras un número finito de pasos.

Por consiguiente, ya conocemos dos cálculos deductivos deducibles
para la lógica proposicional (las tablas de verdad y arprop). Y por
el hecho de existir cálculos deductivos decidibles para la lógica pro-
posicional, decimos genéricamente que “la lógica proposicional es
decidible”.

A continuación, vamos a probar que arprop es también un cálculo
correcto y completo, en el sentido en que definimos estos términos en
§18.6 .

218
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Por consiguiente, los tres cálculos deductivos para la lógica propo-
sicional que hemos presentado este curso (dednatprop, las tablas de
verdad y arprop), han resultado ser correctos y completos. Y en el
caso de arprop, lo vamos a demostrar detalladamente.

Pues bien, por el hecho de que existir sistemas deductivos correctos
y completos para la lógica proposicional, decimos genéricamente que
“la lógica proposicional es axiomatizable”.

§ 23.2. LEMA DE CORRECCIÓN DE LAS REGLAS DINÁMI-
CAS DE ARPROP

Si una interpretación satisface la premisa de una regla dinámi-
ca, entonces también satisface sus conclusiones (en el caso en
que la regla no bifurque), o al menos una de la ramas de
conclusiones (en el caso en que la regla bifurque).

Prueba. La prueba de este resultado es muy sencilla: basta con ins-
peccionar las reglas dinámicas de arprop, una a una, y cotejarlas con
las reglas de valoración semántica que vimos en §7.2 .

Empecemos con las reglas que no bifurcan, y concretamente con la
primera de ellas,   . Pues bien, si una intprop I satisface la fórmula

  A (es decir, si Ip   A q “ V), es obvio que también satisfará

la fórmula A (es decir, Ip A q “ V). En definitiva: si I satisface la
premisa de la regla, también satisfará su conclusión.

La siguiente regla que no bifurca es ^ . En este caso, la regla

tiene dos conclusiones: A y B . Ahora bien, resulta obvio que si

Ip A^B q “ V, entonces tendremos necesariamente Ip A q “ V y
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Ip B q “ V. Es decir, que si I satisface la premisa de la regla, enton-
ces satisfará también sus dos conclusiones.

Lo mismo ocurre con las otras dos reglas que no bifurcan,  _
y  Ñ . Pero en este caso, vamos a dejar su explicación para las
Cuestiones del final.

En cuanto a las reglas de arprop que bifurcan, son cinco:  ^ , _ ,
Ñ , Ø y  Ø . Empezaremos examinando la primera de ellas,  ^ .

Pues bien, supongamos que Ip  pA^Bq q “ V. Como sabemos

por §22.6 , esta regla bifurca en dos: por una parte,  A , y por la

otra,  B .

Ahora bien, es obvio que si Ip  pA^Bq q “ V, entonces necesaria-

mente tiene que ocurrir Ip A q “ F o Ip B q “ F. Y por consiguiente,

tendremos Ip  A q “ V o Ip  B q “ V. Es decir, que I tiene que
satisfacer una de las dos bifurcaciones, como se queŕıa demostrar.

Las reglas _ y Ñ se resuelven de forma similar, aśı que las deja-
remos para las Cuestiones del final.

En cuanto a la regla Ø , supongamos que Ip AØ Bq “ V. Pues

bien, aplicando la valoración semántica de esta conectiva, es obvio que
tendremos necesariamente, o bien:

Ip A q “ V y Ip B q “ V

o bien:
Ip A q “ F y Ip B q “ F
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En el primer caso, serán V bajo I las conclusiones de la rama iz-
quierda de esta regla. Y en el segundo caso, lo serán las conclusiones
de la rama derecha. Por consiguiente, I satisface al menos una de las
bifurcaciones, como se queŕıa demostrar.

La regla  Ø , por último, es similar a esta, y la dejaremos también
para las Cuestiones del final.

§ 23.3. LEMA DE CORRECCIÓN DEL MÉTODO DE ÁRBO-
LES PARA LA LÓGICA PROPOSICIONAL

En arprop, si la lista inicial de un árbol es satisfacible, en-
tonces el árbol terminará abierto.

Prueba. Supongamos que la lista inicial de un árbol es satisfacible.
Por consiguiente, habrá una intprop, digamos I, que hará V a todas
las fórmulas de esa lista.

El tronco inicial del árbol tiene que estar abierto, puesto que de
otro modo tendŕıa que contener una fórmula y su negación, y en tal
caso la lista inicial no seŕıa satisfacible.

Ahora bien, del lema que acabamos de demostrar se sigue que, al
extender el tronco inicial mediante la aplicación de una regla dinámi-
ca, puesto que la premisa es V bajo I, al menos una de las ramas
obtenidas seguirá siendo V bajo I. Esto ocurrirá con una de las dos
ramas de la bifurcación, si se trata de una regla que bifurca, o bien
con la continuación de la rama, si se trata de una regla que no bifurca.

En cualquier caso, la extensión del tronco inicial mediante cualquier
regla, siempre contendrá una rama cuyas fórmulas son V bajo I.
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A su vez, cuando esta rama se extienda por la aplicación de otra
regla dinámica, al menos una rama obtenida de ella seguirá siendo V
bajo I. Y aśı sucesivamente.

Ello implica que dicha rama estará siempre abierta, necesariamente,
porque de otro modo tendŕıa que contener una fórmula y su negación,
y sus fórmulas no podŕıan ser (todas ellas) V bajo I.

Por consiguiente, este árbol no puede cerrar nunca, por lo que ter-
minará abierto, como queŕıamos demostrar.
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§ 23.4. TEOREMA DE CORRECCIÓN DEL MÉTODO DE
ÁRBOLES PARA LA LÓGICA PROPOSICIONAL

Si una fórmula es derivable en arprop de un conjunto de
fórmulas, entonces es una consecuencia lógica suya:

Si D $
AP

A entonces D |ù
PROP

A

Prueba. Si D $
AP

A , ello significa que habrá un árbol cerrado, cuyo
tronco inicial contendrá fórmulas de D como premisas, y la fórmula

 A como negación de la conclusión.

Ahora bien, en virtud del lema anterior, eso implica que no hay
ninguna intprop que satisfaga simultáneamente todas las fórmulas de

D y  A (puesto que si la hubiera, el árbol tendŕıa que terminar
abierto).

Por consiguiente, cualquier intprop que satisfaga las fórmulas de

D, tiene que satisfacer también a A . Es decir, que A es conse-

cuencia lógica de D (en otras palabras, D |ù
PROP

A ), como se queŕıa
demostrar.

Una vez concluida la demostración del teorema de corrección, pasa-
mos a la del teorema de completitud. También en este caso, la prueba
procede a partir de dos lemas previos.

§ 23.5. LEMA DE COMPLETITUD DE LAS REGLAS DINÁMI-
CAS DE ARPROP

Si una interpretación satisface las conclusiones de una regla
dinámica (en el caso de que la regla no bifurque), o al menos
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una de las ramas de conclusiones (en el caso de que la regla
bifurque), entonces también satisface la premisa de esa regla.

Prueba. Este lema es rećıproco al lema de corrección de las reglas
dinámicas, y su prueba es similar. En efecto, también aqúı basta con
ir inspeccionando las reglas dinámicas de arprop una por una, y cote-
jarlas con las reglas de valoración semántica que vimos en §7.2 . La
única diferencia es que en este caso iremos “de abajo a arriba”, por
aśı decirlo.

Para esta prueba también empezaremos con las reglas que no bi-
furcan, y concretamente con   .

Pues bien, partimos de la hipótesis de que una intprop I satisface

la conclusión de esta regla, es decir, A . Dicho en otras palabras,

partimos de la hipótesis de que Ip A q “ V.

Pero entonces, resulta obvio que I también tiene que satisfacer la

premisa de esta regla, y por consiguiente Ip   A q “ V.

La siguiente regla que no bifurca es ^ , y la prueba del lema en
este caso es igual de sencilla.

En efecto, partimos ahora de la hipótesis de que una intprop I satis-

face las dos conclusiones de esta regla, es decir, A y B (siendo A y

B flas cualesquiera de lenprop). Pero en ese caso, resulta igualmente
obvio que I tiene que satisfacer también la premisa de esta regla, es

decir, la fla A^B .

Otro tanto ocurre con las otras dos reglas que no bifurcan (  _ y
Ñ ), cuya explicación dejamos para las Cuestiones.
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En cuanto a las reglas que bifurcan, empezaremos una vez más por
la primera de ellas,  ^ .

Pues bien, la premisa de dicha regla es la fórmula  pA^Bq , y la

aplicación de la regla bifurca la rama en dos conclusiones separadas:

en la rama izquierda aparece la fórmula  A , y en la rama derecha

aparece la fórmula  B .

Ahora bien, es obvio que si cualquiera de estas dos fórmulas (  A

o  B ) es V bajo I, también lo va a ser la fórmula  pA^Bq . Por

consiguiente, el lema se cumple también en este caso.

Con el resto de reglas que bifurcan ( _ , Ñ , Ø y  Ø ) el razo-
namiento es igual de fácil, aśı que volveremos a dejar su explicación
para las Cuestiones del final.

§ 23.6. LEMA DE COMPLETITUD DEL MÉTODO DE ÁRBO-
LES PARA LA LÓGICA PROPOSICIONAL

En arprop, si un árbol termina abierto, entonces la lista inicial
es satisfacible.

Prueba. Para que un árbol termine abierto, tiene que tener al menos
una rama abierta y terminada. Sea R dicha rama.

A continuación, vamos a definir una intprop I, que hará verdaderas
a todas las fórmulas de R. Como la lista inicial del árbol (es decir, la
base del tronco) pertenece a esta rama, se seguirá que dicha rama es
satisfacible.
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La definición de dicha interpretación es muy sencilla: I asignará
el valor V a cada simprop que aparezca como nodo en la rama R. Y
asignará el valor F a todos los demás.

Apoyándonos en el lema previo, es fácil ver que I tiene que hacer
verdaderas, necesariamente, a todas las flas de la rama R.

Para comprobarlo, lo primero que tenemos que observar es que cada
regla dinámica va descomponiendo las fórmulas a las que se aplica en
fórmulas más pequeñas. A su vez, si a estas fórmulas se le aplican
nuevas reglas, el resultado serán fórmulas aún más pequeñas. Y aśı
sucesivamente, hasta llegar a las fórmulas atómicas y negaciones de
atómicas, a las que ya no se puede aplicar ninguna regla.

Por hipótesis, todas las fórmulas atómicas de R (es decir, todos los
simprops que aparecen como nodos independientes de la rama) son V
bajo I.

Además, si R contiene la negación de una fórmula atómica, digamos
 p , entonces no puede contener la propia fórmula p , porque se trata

de una rama abierta. Y si R no contiene la fla p , eso significa que

Ip p q “ F, por definición de I. Y por consiguiente, Ip  p q “ V-

Ello significa que todas las fórmulas atómicas, y todas las negacio-
nes de fórmulas atómicas, que aparezcan en R, serán verdaderas bajo
la interpretación I.

Ahora bien, exceptuando las fórmulas que pertenezcan al tronco
inicial del árbol, el resto de fórmulas atómicas y negaciones de atómicas
que estén en R, tendrán que ser conclusiones de las distintas reglas que
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se hayan aplicado en esa rama. Por consiguiente, en virtud del lema
previo, también las premisas de esas reglas serán V bajo I.

A su vez, si esas premisas se han obtenido como conclusión de otras
reglas, por la misma razón se sigue que a su vez las premisas de esas
reglas serán V bajo I. Y aśı sucesivamente, hasta llegar a las fórmulas
que están más arriba en el árbol.

Y por último, como la rama está terminada, sabemos que a todas
sus fórmulas que no sean simprops o negaciones de simprops se le
habrán aplicado las correspondientes reglas. Por consiguiente, cada
una de esas fórmulas será premisa de alguna regla, y tendrá que ser V
bajo I, en virtud del razonamiento precedente.

En definitiva, podemos concluir que todas las fórmulas de la rama
R son verdaderas bajo I, como se queŕıa demostrar.

§ 23.7. TEOREMA DE COMPLETITUD DEL MÉTODO
DE ÁRBOLES PARA LA LÓGICA PROPOSICIONAL

Si una fórmula es consecuencia lógica de un conjunto de
fórmulas, entonces es derivable de dicho conjunto en arprop:

Si D |ù
PROP

A entonces D $
AP

A

Prueba (restringida). Para simplificar la prueba de este teorema,
vamos a suponer que D es un conjunto finito de fórmulas. Por con-
siguiente, no probaremos el resultado en su generalidad, sino en esta
versión restringida. El teorema en su generalidad también se puede
demostrar, pero la prueba es mucho más compleja.
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Pues bien, vamos a construir un árbol imaginario, en cuyo tron-
co inicial pondremos las fórmulas de D como premisas, junto con la

fórmula  A como negación de la conclusión.

A continuación, supondremos que hemos aplicado todas las reglas
correspondientes, hasta que ese árbol esté terminado.

Como partimos de la hipótesis de que D |ù
PROP

A , podemos dar
por sentado que cualquier interpretación que haga V a todas las flas

de D, también hará V a la fla A . Por consiguiente, no puede haber

ninguna intprop que haga V a todas las flas de D y a la fla  A al
mismo tiempo.

En consecuencia, en virtud del lema anterior, se sigue que el árbol

para D y  A tiene que terminar cerrando. Y de ello, se sigue a su

vez D $
AP

A , como queŕıamos demostrar.

§ 23.8. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr. Alĺı donde te pidan
ejemplos, usa los tuyos propios, distintos a los que aparecen en el tema.

1. Inspirándote en §23.2 , explica por qué las reglas  _ y  Ñ

cumplen el lema de corrección de las reglas de arprop.

2. Haz lo mismo que en el punto anterior, pero respecto de las reglas
_ y Ñ .

3. Inspirándote en §23.5 , explica por qué las reglas  _ y  Ñ

cumplen el lema de completitud de las reglas de arprop.

4. Haz lo mismo que en el punto anterior, pero respecto de las reglas
_ y Ñ .
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5. Siguiendo las instrucciones de §23.5 , especifica la interpretación
I que hace V a la rama abierta del segundo ejemplo de §22.14 .

6. Explica con tus propias palabras las consecuencias que se siguen
de §23.1 , §23.4 y §23.7 , sobre el trasfondo de lo indicado en
§18.6 .

7. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Haz un resumen sinóptico de este tema, con tus propias pa-
labras.

b) Escribe tu opinión razonada sobre cualquier aspecto de este
tema que haya llamado tu atención.

c) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.



Tema 24

Lógicas no clásicas e inteligencia
artificial

§ 24.1. ¿POR DÓNDE SEGUIR?

Estamos llegando al final de nuestro viaje, y es el momento de pre-
guntarnos qué hay más allá: ¿por dónde podemos seguir avanzando,
en nuestro estudio del razonamiento deductivo?

Una primera ruta que podemos tomar consiste en ahondar en los
mismos contenidos que hemos visto aqúı (es decir, la lógica proposi-
cional clásica), pero a un nivel más profundo, riguroso y sofisticado.
Para ello, podemos consultar un manual de lógica avanzada, como por
ejemplo el caṕıtulo 7 de:

Moshé Machover, Set theory, logic and their limitations

(libro que circula en pdf por internet).

Un segundo camino para ampliar los conocimientos adquiridos en
este curso es el que nos espera en el 2º cuatrimestre: la asignatura log-
for2, que nos introducirá en la llamada “lógica de predicados” (o más
exactamente, en la “lógica de predicados de primer orden clásica”).

230
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De hecho, la lógica proposicional no es más que una fracción — la
parte más básica — de la lógica de predicados. Y la lógica de predica-
dos clásica (incluyendo a la lógica proposicional como una parte suya)
constituye una teoŕıa unitaria, que viene siendo la principal referencia
en lógica formal desde hace más de un siglo.

Pero de esta teoŕıa hablaremos más por extenso en logfor2, aśı que
no adelantemos acontecimientos.

En este último tema del curso vamos a explorar otras dos v́ıas des-
tacadas, distintas a las anteriores, mediante las que podemos avanzar
en nuestro estudio del razonamiento deductivo. Se trata de las lógicas
no clásicas y la inteligencia artificial.

§ 24.2. LAS LÓGICAS NO CLÁSICAS: LÓGICAS EXTEN-
DIDAS Y LÓGICAS ALTERNATIVAS

Las lógicas no clásicas son propuestas de reforma sobre la lógica
clásica.

Algunas de estas lógicas pretenden ampliar la lógica clásica con
nuevos śımbolos lógicos, sustancialmente diferentes a los de la lógica
clásica, y extender las interpretaciones semánticas y los cálculos deduc-
tivos, en atención a esos nuevos śımbolos. Tales sistemas se conocen
como “extensiones de la lógica clásica” (o “lógicas extendi-
das”).

Además, hay otros sistemas que proponen modificar (o “refor-
mar”) aspectos esenciales de la lógica clásica. Ello obliga a reestruc-
turar las interpretaciones semánticas y los cálculos deductivos, de tal
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forma que algunas fórmulas que son leyes lógicas de la lógica clásica,
dejan de serlo en estos otros sistemas.

A los sistemas de lógica no clásica que proponen revisiones de este
tipo, se les llama “lógicas alternativas” (o “lógicas divergentes”).

En breve, vamos a comentar brevemente un ejemplo destacado de
cada uno de estos grupos: un ejemplo de lógica extendida (concreta-
mente, la lógica modal), y un ejemplo de lógica alternativa (concreta-
mente, la lógica intuicionista). Una introducción asequible a estos dos
sistemas se encuentra en las páginas 151–194 de:

Manuel Garrido (ed.), Lógica y lenguajes.

Una introducción mucho más exhaustiva y rigurosa a todos los sis-
temas de lógica no clásica dignos de atención es:

Graham Priest, An Introduction to Non-Classical Logic

(ambos libros circulan también en pdf por internet).

§ 24.3. LAS LÓGICAS NO CLÁSICAS FRENTE AL PARA-
DIGMA PRINCIPAL

Aunque muchas de las lógicas no clásicas son valorables, y se han
estudiado en profundidad, ninguna de ellas ha conseguido — ni de
lejos — desbancar a la lógica clásica como paradigma principal.

Las razones para ello son variadas: a veces, la motivación del nuevo
sistema se considera insuficiente; a veces, sus consecuencias se consi-
deran inaceptables; a veces, no hay consenso sobre cómo se debe axio-
matizar; a veces, hay dificultades técnicas en cuanto a su desarrollo.
Con frecuencia, se combinan varias de estas razones.
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En definitiva, aunque la comunidad académica de la lógica (tanto
en su vertiente matemática como en su vertiente filosófica) considera
importante explorar los sistemas no clásicos, ninguno de ellos se ha
impuesto sobre la lógica clásica: ninguno de ellos ha reemplazado
a la lógica clásica, como en su d́ıa se impuso la lógica formal sobre la
siloǵıstica aristotélica.

Por todo ello, la lógica clásica sigue siendo el sistema estándar
o paradigma dominante, es decir: la principal teoŕıa de referencia
en el campo de la lógica formal.

§ 24.4. LA LÓGICA MODAL: PRESENTACIÓN

La lógica modal es una ampliación de la lógica clásica que incorpora
dos nuevos śımbolos lógicos:

1. El operador de necesidad, que aqúı representaremos por: l

2. El operador de posibilidad, que aqúı representaremos por: ♦

En este contexto, si A es una fórmula de lenprop, entonces:

lA se lee “es necesario que A ”.

Mientras que:

♦A se lee “es posible que A ”.
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§ 24.5. LA LÓGICA MODAL: DIFICULTADES

Una de las aparentes “leyes” de la lógica modal es la siguiente:

lA |ù
MODAL

A

Esto viene a decir que si una proposición es necesaria, entonces pode-
mos concluir que es verdadera.

Otra aparente “ley” (equivalente, de hecho, a la anterior), es la
siguiente:

A |ù
MODAL

♦A

Esto viene a decir que si una proposición es verdadera, entonces po-
demos concluir que es posible.

Pues bien, estas dos leyes lógicas, aparentemente inocuas, no han si-
do aceptadas por todo el mundo (hay interpretaciones de lógica modal
en las que no son válidas).

Otra “candidata” a ley lógica de la lógica modal es la siguiente:

lA |ù
MODAL

l lA

Esto viene a decir que si una proposición es necesaria, entonces es
necesario que lo sea.

Esta última candidata ha sido todav́ıa más contestada que las dos
anteriores. Y aśı ha ocurrido en muchos otros casos, dando lugar a una
verdadera multitud de sistemas modales distintos, compitiendo entre
śı.

Por si esto fuera poco, las propias nociones de necesidad y posibili-
dad (aśı como la llamada “semántica de mundos posibles”, que se
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usa para interpretar estas nociones) han sido fuertemente criticadas,
por carecer de una base conceptual clara.

Todo ello explica que la lógica modal, aun siendo el principal sis-
tema de lógica no clásica, esté muy lejos de poder reemplazarla como
paradigma dominante.

Ahora hablaremos de la lógica intuicionista, y para ello haremos un
breve excursus previo.

§ 24.6. LA CONJETURA DE LOS PRIMOS GEMELOS

El número 10 es divisible por 2 y por 5, mientras que el número 11
solo es divisible por 1 y por śı mismo. Por eso, se dice que el 11 es un
“número primo”.

Lo mismo le pasa al número 13, que está situado solo dos unidades
por encima del 11.

A las parejas como 11 y 13 se les llama “primos gemelos”: números
primos situados a dos unidades, uno del otro.

A fecha de hoy, nadie ha podido demostrar que existan infinitas
parejas de primos gemelos. Pero tampoco se ha podido demostrar que
no existan, es decir, que a partir de un determinado número natural,
ya no aparezcan más parejas de números de este tipo.

Por consiguiente, la “conjetura de los primos gemelos” — que
aśı se llama este problema matemático — continúa siendo a fecha de
hoy un misterio.
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Sin embargo, si aplicamos el principio de bivalencia, se sigue que
esta conjetura tiene un valor predeterminado (verdadero o falso), aun-
que la comunidad matemática no lo conozca.

De igual manera, si aplicamos el principio de tercio excluso, enton-
ces podemos afirmar que:

O existen infinitos primos gemelos,

o no existen infinitos primos gemelos.

aunque nunca lleguemos a saber cuál de los dos disyuntos es cierto.

§ 24.7. LA LÓGICA INTUICIONISTA

Pues bien, supongamos por un momento que las entidades matemáti-
cas no tienen una existencia platónica, sino que son construccio-
nes de la propia comunidad matemática.

En ese caso, seŕıa razonable pensar que la conjetura de los primos
gemelos no es V ni F por śı misma. Y por lo tanto, seŕıa razonable
pensar que esta conjetura solo se convertirá en V o F, en el momento
en que encontremos una demostración o una refutación constructiva
de la misma.

Pues bien, la lógica intuicionista es lo que resulta de adoptar cohe-
rentemente ese punto de vista.

Ello obliga, sin embargo, a muchas renuncias. En efecto, la adop-
ción del prisma de visión que acabamos de describir, y de la lógica
subyacente al mismo, nos obliga a renunciar al principio de biva-
lencia, nos obliga a renunciar al principio de tercio excluso, y nos
obliga a renunciar a la semántica veritativo-funcional. Y también
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nos obliga a renunciar a grandes porciones de la matemática clási-
ca (la matemática “estándar”), que está basada en esos principios de
razonamiento.

Por esta y otras razones, la lógica intuicionista se considera un
sistema interesante y digno de atención, pero muy poca gente está
dispuesta a adoptarla como paradigma principal.

§ 24.8. NOCIONES DE INTELIGENCIA ARTIFICIAL

Finalmente, llega el momento de abordar la perspectiva de la inte-
ligencia artificial (abreviadamente, “ia”) respecto al razonamiento
deductivo humano. De hecho, la ia es hoy en d́ıa referencia obliga-
da, a la hora de abordar cualquiera de nuestras habilidades cognitivas
superiores.

Aqúı haremos una reflexión muy breve al respecto. Una visión más
completa se puede consultar en:

Carlos Madrid, Filosof́ıa de la inteligencia artificial

(libro que también circula en pdf por internet).

Vamos a empezar con un ejemplo que no tiene nada que ver con
el lenguaje, pero que nos ayudará a entender el mecanismo que está
detrás de Chat GPT, Gemini y plataformas similares.

Las redes neuronales están inspiradas en el funcionamiento de
las neuronas (de ah́ı les viene su nombre).

En efecto, las neuronas reciben y transmiten señales unas a otras,
de diferente naturaleza e intensidad. Y de un modo aproximadamente
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análogo, los nodos de una red neuronal intercambian valores numéri-
cos, de acuerdo con ciertas variables estad́ısticas llamadas “pesos”.

Pues bien, supongamos que queremos diseñar una red neuronal
que examine imágenes (codificadas como cuadŕıculas de ṕıxeles de
diferentes colores), e identifique los gatos que pueda haber en ellas.

Dicha red estará organizada en capas. Por ejemplo, puede haber
una primera capa que examine los ṕıxeles de la imagen y detecte bordes
(es decir, ĺıneas de ṕıxeles cuyo color destaca del resto). A continua-
ción, puede haber una capa posterior que detecte ángulos (es decir,
cambios bruscos en los bordes). Después, puede haber otra capa que
detecte formas reconocibles (como por ejemplo, un ojo). Y por último,
la capa final se aventurará a dictaminar si hay o no algún gato en la
imagen.

A continuación, la red está preparada para que le digamos si su
dictamen ha sido correcto o incorrecto. Y en función de ello, reajustará
sus pesos mediante unos algoritmos de aprendizaje, destinados a
mejorar progresivamente sus respuestas.

§ 24.9. PERSPECTIVA DEL RAZONAMIENTO DEDUC-
TIVO HUMANO DESDE LA IA

De un modo similar (pero con inputs lingǘısticos, y contando con
más de 100 capas dierenciadas, cuyo número va cambiando durante
el entrenamiento), es como procesa la ia el lenguaje natural. Aśı es
como logra responder a nuestras preguntas, chatear, escribir ensayos
y poemas, etc.

Y como parte de esas habilidades, la ia puede reconocer y producir
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razonamiento deductivo (y de forma correcta, la mayor parte de las
veces).

Sin embargo, no parece que eso pueda reemplazar el análisis del
razonamiento que llevamos a cabo en lógica formal (es decir, mediante
formalización, lenguajes formales y cálculos lógicos, como hemos hecho
en este curso). Y ello es aśı por las razones siguientes.

En primer lugar, aunque el diseño matemático de las redes neuro-
nales está inspirado en el cerebro humano, lo cierto es que para que
este mecanismo funcione bien, necesita ser entrenado con cantidades
masivas de datos (millones de veces más que lo que una persona puede
procesar en toda su vida).

Además, la ia consume much́ısima más enerǵıa que el cerebro hu-
mano (cientos de miles de vatios, frente a los 20 vatios con que funciona
el cerebro).

Por ello, aunque la ia modela muy bien el razonamiento humano al
nivel input-output que describimos en §18.2 , es altamente improba-
ble que su modo de procesamiento tenga realidad psicológica.

Pero el problema mayor, es que a pesar de que la ia proporciona
un algoritmo tecnológico eficaz, no está basado en una comprensión
previa de cómo funciona el lenguaje, ni el razonamiento deductivo. Y
tampoco sirve para proporcionar dicha comprensión.

Aśı por ejemplo, la lingǘıstica divide su explicación del lenguaje
natural en varios frentes: la morfoloǵıa (que analiza la composición de
las palabras), la sintaxis (que analiza la composición de las frases), la
semántica (que analiza el significado) y la pragmática (que analiza la
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intervención del contexto).

Sin embargo, la estructura de capas de los programas de ia (que
equivaldŕıa, salvando las distancias, a esos niveles de análisis en la
lingǘıstica tradicional) vaŕıa de unos programas a otros, es cambiante
conforme estos programas avanzan en su entrenamiento, y ni siquiera
es transparente a quienes han diseñado el programa.

En definitiva, la ia es una tecnoloǵıa muy potente para emular
el razonamiento humano, pero no nos dice cómo funciona.

De un modo similar, la humanidad ha utilizado embarcaciones de
madera (como tecnoloǵıa eficaz para viajar por agua de un sitio a
otro), miles de años antes de conocer el principio de Arqúımedes, que
es la explicación cient́ıfica de por qué flotan tales embarcaciones.

Por todo ello, cabe concluir que el análisis del razonamiento deduc-
tivo sigue necesitando hoy en d́ıa de la lógica formal, a pesar de las
muchas limitaciones de esta herramienta.

§ 24.10. CUESTIONES

Contesta solo a lo que te dé tiempo, sin correr.

1. Indica brevemente los cuatro caminos apuntados en §24.1 para
profundizar en los contenidos estudiados en este curso.

2. Explica en pocas palabras qué diferencia hay entre las lógicas
extendidas y las lógicas alternativas.

3. Explica, a tu mejor entender, en qué consiste que una teoŕıa
cient́ıfica sea el “paradigma dominante”.
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4. Indica brevemente las cuatro capas de la red neuronal que se
describe en §24.8 .

5. Indica brevemente las tres razones que se dan en §24.8 para
descartar que la ia reemplace a la lógica formal.

6. Si te sobra tiempo, responde a alguna/s de las siguientes cuestio-
nes, a tu elección:

a) Intenta definir la posibilidad en términos de necesidad. Para
ello, completa las siguientes expresiones, a tu mejor entender:

 ♦A ”
MODAL

l A

♦A ”
MODAL

l A

b) Expresa brevemente una opinión razonada sobre si las en-
tidades matemáticas existen de forma independiente de la
humanidad.

c) Escribe tu opinión razonada sobre cualquier otro aspecto de
este tema que haya llamado tu atención.

d) Escribe tu opinión razonada sobre cualquier aspecto de la
filosof́ıa que consideres importante resaltar, o sobre cualquier
otra cosa que quieras expresar.
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