
Contents lists available at ScienceDirect

International Journal of Information Management

journal homepage: www.elsevier.com/locate/ijinfomgt

A case analysis of enabling continuous software deployment through
knowledge management

Ricardo Colomo-Palaciosa, Eduardo Fernandesb, Pedro Soto-Acostac,⁎, Xabier Larrucead

a Department of Computer Science, Østfold University College, B R A Veien 4, 1783 Halden, Norway
bMeta4 Spain, Centro Europa Empresarial, Edificio Roma, C/. Rozabella, 8, 28290 Las Rozas Madrid, Spain
c Department of Management & Finance, University of Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
d Tecnalia, Parque Tecnológico de Bizkaia. Calle Geldo, Edificio 700, E-48160 Derio, Bizkaia, Spain

A R T I C L E I N F O

Keywords:
Knowledge management
Continuous deployment
Continuous software engineering
DevOps
Case study

A B S T R A C T

Continuous software engineering aims to accelerate software development by automating the whole software
development process. Knowledge management is a cornerstone for continuous integration between software
development and its operational deployment, which must be implemented using sound methodologies and solid
tools. In this paper, the authors present and analyse a case study on the adoption of such practices by a software
company. Results show that, beyond tools, knowledge management practices are the main enablers of con-
tinuous software engineering adoption and success.

1. Introduction

In order to preserve their competitive advantage, software produ-
cers need to deliver products and new features to customers as fast as
they can. It is generally accepted that important problems in software
delivery are rooted, among other aspects, in the disconnections among
software development activities, causing delays in software delivery
(Fitzgerald & Stol, 2017). This lack of connection lies not only on the
technical side, where human aspects and knowledge management fa-
cets are some of the main areas to be improved. Continuous software
engineering permits software features delivery at rates which a few
years ago would have been considered unachieveable (Colomo-
Palacios, Fernandes, Soto-Acosta, & Sabbagh, 2011, p. 4; O’Connor,
Elger, & Clarke, 2017). This approach is based heavily on applying
automation to the overall software development process (including
code collaboration tools, verification, version control system, deploy-
ment and release management…) by using several tools. These tools act
as structures in which different types of knowledge are coded and
shared among software practitioners.

Like any other approach, continuous deployment presents benefits
but also caveats. On the benefits side, the literature reports: Increased
customer satisfaction, shorter time-to-market, higher developer pro-
ductivity and efficiency, continuous rapid feedback and, finally, higher
quality and reliability. With regard to the challenges, researchers found
the wide panoply of tools available and their integration, organizational

culture to be a hindrance to the transformation process and increased
quality assurance efforts.

The continuous approach goes beyond the borders of traditional
software development to reach the operational side as well. In this
scenario, DevOps stands for a continuous integration between software
development (Dev) and its operational deployment (Ops). DevOps ef-
ficiently integrates development, delivery, and operations, thus facil-
itating a lean and fluid connection of these traditionally separated silos
(Ebert, Gallardo, Hernantes, & Serrano, 2016). Consequently, DevOps
implies a cultural shift toward collaboration between development,
quality assurance, and operations (Ebert et al., 2016). The success of
DevOps is based on four principles (Humble & Molesky, 2011):

• Culture. Joint responsibility for the delivery of high quality soft-
ware.

• Automation. Automation in all development and operation steps
towards rapid delivery and feedback from users.

• Measurement. All process must be quantified to understand delivery
capability and proposals of corrective actions should be formulated
for improving the process.

• Sharing. Sharing knowledge enabled by tools is crucial.

Accordingly, knowledge management is one of the pillars of DevOps
and must be implemented using sound methodologies and solid tools.
The literature has reported specific knowledge management systems

https://doi.org/10.1016/j.ijinfomgt.2017.11.005
Received 24 October 2017; Accepted 17 November 2017

⁎ Corresponding author.
E-mail addresses: ricardo.colomo-palacios@hiof.no (R. Colomo-Palacios), eduardofer@meta4.com (E. Fernandes), psoto@um.es (P. Soto-Acosta),

xabier.larrucea@tecnalia.com (X. Larrucea).

International Journal of Information Management 40 (2018) 186–189

Available online 26 November 2017
0268-4012/ © 2017 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/02684012
https://www.elsevier.com/locate/ijinfomgt
https://doi.org/10.1016/j.ijinfomgt.2017.11.005
https://doi.org/10.1016/j.ijinfomgt.2017.11.005
mailto:ricardo.colomo-palacios@hiof.no
mailto:eduardofer@meta4.com
mailto:psoto@um.es
mailto:xabier.larrucea@tecnalia.com
https://doi.org/10.1016/j.ijinfomgt.2017.11.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijinfomgt.2017.11.005&domain=pdf

