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We have determined “effective” Bethe coefficients and the mean excitation energy of stopping
theory �I-value� for multiwalled carbon nanotubes �MWCNTs� and single-walled carbon nanotube
�SWCNT� bundles based on a sum-rule constrained optical-data model energy loss function with
improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and
the three allotropes of carbon �diamond, graphite, glassy carbon� are found. By means of Bethe’s
asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and
the average energy transfer to target electrons in a single inelastic collision, are calculated
analytically for a broad range of electron and proton beam energies using realistic excitation
parameters. © 2010 American Institute of Physics. �doi:10.1063/1.3463405�

I. INTRODUCTION

Beams of charged particles �i.e., electrons, protons, or
heavier ions� represent an established tool for the controlled
modification of materials and have already been used for
tailoring the physical and chemical properties of carbon
nanotubes �CNTs� �Refs. 1 and 2� representing, in effect,
another postsynthetic, “constructive destruction” sorting
approach.3 However, in order to optimize the use of charged-
particle beams and to predict radiation damage in space or
nuclear technology applications, it is important that their in-
teractions with CNTs are well understood and accurately
quantified. Most studies so far have concentrated on the
nuclear stopping of CNTs due to the elastic scattering of
charged particles by target atoms leading to knock-on dis-
placement of carbon atoms from the CNT lattice.4 This is the
dominant radiation damage mechanism for slow ions below
�10 keV /u and electrons above the CNT knock-on thresh-
old of �80 keV.5 In contrast, little is known on the elec-
tronic stopping of CNTs due to the inelastic scattering of
charged particles by target electrons, despite the fact that
electronic excitations can effectively mediate materials
modification and cause radiation damage through �mainly�
beam-stimulated local chemical reactions.2,5

There exist several recent theoretical studies of the elec-
tronic energy loss of charged particles in CNTs.6–15 The ap-
proaches can be divided to those using Bloch’s hydrody-
namic approximation6–9 and those employing the dielectric
response theory either in the Bohm–Pines
random-phase-approximation10,11 or in the semiclassical
Drude approximation.12–15 Both approaches have been suc-
cessfully applied to a variety of low-dimensional systems
and carbon nanostructures, in particular. Dielectric models
are known to be particularly effective in describing plasmon

excitations in an electron gas whereas hydrodynamic models,
although perhaps more qualitative in some respects, are ca-
pable of handling boundary effects due to the presence of
different dielectric media. However, due to the considerable
amount of numerical work involved, both approaches are
usually restricted to the study of individual CNTs �most often
isolated single-walled CNTs �SWCNTs��. Thus, for practical
calculations and data analysis concerning the irradiation of
bulk CNT systems �e.g., bundles� or macroscopic samples
�e.g., thin films� one would wish to have a simpler approach
of wider applicability valid over a broad energy range of the
incident charged particle. Due to the absence of such a
simple model, bulk graphite excitation properties are com-
monly used for describing the inelastic interaction between
the charged-particle beam and the CNT.

The aim of the present work is to provide realistic exci-
tation parameters for multiwalled CNTs �MWCNTs� and
SWCNT bundles in order to enable the inelastic scattering
cross section, the electronic stopping power, and the average
energy transfer to target electrons in a single inelastic colli-
sion to be calculated analytically as a function of charged-
particle beam energy. This is accomplished within the theo-
retical framework of the Bethe theory.16 Compared to
previously used methods,6–15 the main advantage of the Be-
the theory is that it offers the possibility of expressing the
above magnitudes in a strikingly simple analytic form appli-
cable over a wide range of beam energies within, of course,
the limits of validity of the plane-wave Born approximation
�PWBA�. Thus, it is feasible using a simple method to ad-
dress practical problems associated, for example, with irra-
diation experiments using kiloelectron volt electron beams
from scanning electron microscope or transmission electron
microscope and megaelectron volt protons relevant to space
applications. For economy of space all expressions are given
in their nonrelativistic form and, therefore, pertain to the lon-
gitudinal part of the interaction. In their present nonrelativ-a�Electronic mail: demfietz@cc.uoi.gr.
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istic form, they can be safely used up to a few tens of kilo-
electron volt �megaelectron volt� electron �proton� energies.
However, if needed, their relativistic extension is
straightforward.16

II. INELASTIC CROSS SECTIONS

The Bethe theory provides an asymptotic expansion for
the inelastic scattering cross section of PWBA in powers of
T−1 �T is proportional to the square of the charged-particle
velocity� with coefficients that depend solely on materials
properties. Hereafter the use of the Bethe asymptotic expan-
sion to T−1 order will be called the Bethe approximation.
Then, the probability per unit path length that a �nonrelativ-
istic� charged particle will transfer energy W to the target can
be expressed in the Bethe approximation as follows:

PW�eV−1 nm−1� = 3.01 Im�− 1/�W�T�eV�−1ln�cWT�eV�/Ry� ,

�1�

where Ry is the Rydberg constant, T=m�2 /2 with m being
the electron rest mass and � the projectile velocity, and �W is
the dielectric response function of the target at vanishing
momentum transfer or optical limit �q	0�. The value of the
constant on the right-hand-side of Eq. �1� comes from:
�2�a0�−1=3.01 nm−1 where a0 is the Bohr radius. Note that,
in the present units, the PW of Eq. �1� is equivalent to the
differential inverse inelastic mean free path. The Im�
−1 /�W� is the so-called energy loss-function �ELF�, also at
the optical limit, which describes the excitation spectrum of
the material by inelastic charged-particle scattering at nearly
forward angles. The Bethe coefficient cW is a complicated
function of W that depends on the value of ELF at finite q
and, generally, is of the order of unity.16 Evidently, the use of
Eq. �1� depends upon the evaluation of Im�−1 /�W� and cW

which are both excitation properties of the material indepen-
dent of the charge, velocity, or mass of the particle.

Although the dielectric response of individual CNTs is
anisotropic �like graphite�, for random �nonparaxial� charged
particle trajectories both the in-plane and out-of-plane exci-
tations are involved due to the cylindrical geometry. In this
case, the use of a macroscopic �continuum� dielectric re-
sponse function, as the one employed here, seems justified.
Obviously, this approximation will also suffice for bulk or
macroscopic samples containing nonaligned CNTs �e.g.,
bundles�. More generally, the present approach should be
reasonably valid for those cases where the contribution of
in-plane and out-of-plane excitations is comparable, e.g., as
in angle-integrated electron-energy loss spectroscopy
�EELS�.17 To determine the Im�−1 /�W� of the examined
CNT systems over the broad excitation range relevant to the
inelastic interaction of energetic charged-particle beams, we
proceed as follows. Due to the large energy difference be-
tween valence-electron and core-electron excitations, the to-
tal ELF �at q	0� can be approximated by the following
sum: Im�−1 /�W�	 Im�−1 /�W�v+Im��W�K, where “v” and
“K” denote the valence and K-shell contributions, respec-
tively. As first suggested by Powell,18 the valence contribu-
tion to the ELF, Im�−1 /�W�v, can be derived from experi-
mental optical data which ensure a realistic, material-specific

representation of the excitation spectrum. In the present work
we adopt our previously developed Drude parameterization19

of the experimental EELS data measured from relatively
thick MWCNTs ��21–44 walls and 13–34 nm in
diameter�20 and large SWCNT bundles21 over the valence
excitation range ��0–50 eV�. Ab initio time-dependent
density-functional-theory calculations22 of the ELF of
SWCNTs at vanishing momentum transfer �optical limit�
over the valence excitation range have confirmed the general
characteristics of the EELS data.21 In particular, it was
shown that at the long length scales associated with the op-
tical limit the position of the �+� plasmon peak, the main
energy-loss channel of the system, sensitively depends upon
screening effects due to intertube interactions. These screen-
ing effects lead to a shift of the peak to higher energy losses
and a pronounced difference between Im�−1 /�W�v and the
optical absorption spectrum, Im��W�v. As expected, this dif-
ference vanishes for nearly isolated tubes at large intertube
separations where Im�−1 /�W�v→ Im��W�v.

For the K-shell contribution which sets in at �285 eV
�approximately the carbon K-edge� and for which the ap-
proximation Im�−1 /�W�K	 Im��W�K safely holds, we im-
prove upon our previous calculation19 using the relation
Im��W�K=const.�N /Z�W−1��dfK

H /dW� where const.
=8�2a0

3Ry2, N ,Z are the target electronic density and atomic
number, respectively, dfK

H /dW is the optical limit of the
scaled hydrogenic generalized-oscillator-strength �GOS� of
carbon,23 and �=1.026 is a normalization factor deduced
from first-principles atomic calculations.24 In Fig. 1 it is
clearly shown that the present model for the K-shell signifi-
cantly improves the asymptotic behavior at large W of the
Drude K-shell model used previously,19 as judged from the
comparison with the x-ray data from the National Institute of
Standards and Technology �NIST�.25 We should note that any
variation in the shape of the carbon K-edge in different car-
bon structures26 is too small to be of any significance for the
present calculations where the magnitudes of interest depend
mainly upon integrals of the ELF over a broad excitation
range.

The overall internal consistency of our ELF model is
tested by two important sum rules,27 namely, the Kramers–

FIG. 1. �Color online� The carbon’s K-shell contribution to the ELF in the
optical limit under the approximation: Im�−1 /�W�K	 Im��W�K. Full-lines
correspond to the present hydrogenic GOS model, broken lines to the Drude
model of Ref. 19 and symbols to NIST data taken from Ref. 25.
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Krönig �KK� and f-sum rules that read, respectively, �ef f

= �2 /��
0
WW/−1

Im�−1 /�W/�dW/+Re�1 /�W=0�, where
Re�1 /�W=0��1 /�1 with �1 being the limiting value of �W as
W→0, and Zef f = �2Z /�Ep

2�
0
WW/ Im�−1 /�W/�dW/, where Ep

=��4�Ne2 /m is the free-electron plasmon energy of the ma-
terial. From the EELS data20,21 for the two systems examined
we deduce the values: Ep=27.8 eV and �1=4.88 for
MWCNTs, and Ep=24.4 eV and �1=4.09 for SWCNT
bundles. It is important that both sum rules are satisfied be-
cause, as it is apparent from their definition as well as from
Fig. 2, the value of �ef f is sensitive to small W �below
�50 eV� whereas that of Zef f to intermediate and large W�
�50–5000 eV�. Thus, in effect, the KK and f-sum rules are
complementary. As shown in Fig. 2, for W→	 we obtain �to
better than 1%� the correct limiting values Zef f 	6 and
�ef f 	1.

The form of Eq. �1� suggests that Im�−1 /�W� suffices at
the limit of large T where PW goes asymptotically as
T−1 ln�T�. To go beyond the optical approximation the coef-
ficient cW, associated with finite q features in the ELF, must
be determined. However, since an analytic expression for cW

is not feasible, we adopt an approximate procedure and de-
termine an “effective” Bethe coefficient ctot �independent of
W� from the relation Ptot=
PWdW, where Ptot is the total
inelastic scattering cross section in dimensions of inverse
length �equivalent to the inverse inelastic mean free path�.
The Ptot is calculated numerically within the PWBA where
the key material property is the momentum-dependent ELF.
The latter is calculated from the present Im�−1 /�W� extended
to arbitrary q values by semiempirical dispersion relations19

and the analytic properties of the GOS model.23 The use of
extended optical-data models is known to give reasonably
accurate results within the range of validity of PWBA, as
exemplified by the widespread usage28,29 of the Penn30 and
Ashley31 models �among others32,33�. In the present work,
however, we go beyond the standard dispersion approxima-
tions for unbound �infinite� media by accounting for finite-
size and linewidth broadening effects in CNTs as discussed
in Ref. 19. The values of ctot which provide the best overall
fit to the numerical Ptot data are ctot=0.80 for MWCNTs and
ctot=0.88 for SWCNT bundles. Both values are considerably
lower than the corresponding values found for the three al-
lotropes of carbon using Penn’s algorithm:34 ctot=1.415 for

diamond, ctot=1.59 for graphite, and ctot=1.59 for glassy car-
bon. Having determined ctot, it is then straightforward using
Eq. �1� to obtain an analytic expression for Ptot as a function
of beam energy in the Bethe approximation:

Ptot�nm−1� = 3.01T�eV�−1btot�eV�ln�ctotT�eV�/Ry� , �2�

where the Bethe coefficient btot=
0
	Im�−1 /�W�dW depends

upon an integral over the complete ELF at q	0. Using the
present Im�−1 /�W� we obtain btot=27.9 eV for MWCNTs
and btot=23.9 eV for SWCNT bundles. In terms of the per-
haps more familiar dipole-matrix-elements squared �for all
electronic excitations� Mtot

2 = �2RyZ /�Ep
2�btot, we obtain

Mtot
2 =1.88 for MWCNTs and Mtot

2 =2.09 for SWCNT
bundles. In comparison, the corresponding values for the
three allotropes of carbon determined also from experimental
optical data are:34 Mtot

2 =1.552 for diamond, Mtot
2 =2.038 for

graphite, and Mtot
2 =1.690 for glassy carbon. From inspection

of Eq. �2� it is seen that the magnitude of Ptot for T /Ry

ctot is determined primarily by the value of btot �or Mtot

2 �
while the details of its energy variation at not too large T will
depend upon ctot.

35

In Fig. 3 we compare the results obtained from the ana-
lytic Bethe expression, Eq. �2�, against the numerical calcu-
lations of Ptot in the PWBA as described above. It is clear
from Fig. 3 that the above determined values for the Bethe
coefficients, btot and ctot, render Eq. �2� in good agreement
with the numerical data almost down to the cross section
maximum. Specifically, for electrons the difference between
the analytic and numerical results is less than �3% above
500 eV rising to 10%–15% at 200 eV, whereas for protons it
is less than 3% above 100 keV. Thus, Eq. �2� with the present
Bethe coefficients can be safely used almost over the full
range of validity of the PWBA. For extending further the
application of Eq. �2� to even lower T one would need to
determine Ptot to the order T−2. However, due to the inherent
limitations of the PWBA, the uncertainty associated with the

FIG. 2. �Color online� The f-and KK-sum rules for the present ELFs,
Im�−1 /�W�, for MWCNTs and SWCNT bundles.

FIG. 3. �Color online� Comparison of total inelastic scattering cross section
�Ptot� calculations for electron �e� and proton �p� beam irradiation of
MWCNTs and SWCNT bundles: Full-lines correspond to Eq. �2� with the
values of the Bethe coefficients: btot=27.9 eV and ctot=0.80 for MWCNTs,
and btot=23.9 eV and ctot=0.88 for SWCNT bundles. Symbols correspond
to numerical results from PWBA using the optical-data model for the
momentum-dependent ELF of Ref. 19 and the present hydrogenic GOS
model for the K-shell.
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numerical Ptot values below the maximum increases rapidly
so the usefulness of such an effort is questionable. Also, it
should be pointed out that the conventional determination of
ctot through a Fano plot analysis of the high-energy
asymptotic Bethe region would have naturally restricted the
reliability of Eq. �2� to significantly higher beam energies. In
contrast, with the present approach, Eq. �2� is now useful
over a broader energy range. Although relativistic corrections
to the electron calculations can amount to �10%–20% in
the range 30–100 keV, the inclusion of such corrections is
inconsequential here since they will apply equally to both the
Bethe and PWBA calculations.

III. ELECTRONIC ENERGY LOSS

The Bethe asymptotic expansion holds for any momen-
tum integrated cross section. Then, in the Bethe approxima-
tion �i.e., to order T−1� the electronic stopping power, defined
as the mean energy loss per unit path length due to inelastic
collisions with target electrons, can be expressed in the fol-
lowing analytic form:

S�eV/nm� = 13.0N�e/nm3�T�eV�−1ln�aT�eV�/I�eV�� , �3�

where a=1.166 for electrons and a=4 for protons. The value
of the constant on the right-hand-side of Eq. �3� comes from:
8�a0

2Ry2=13.0�nm eV�2. The I-value or mean excitation en-
ergy of the material is the only nontrivial parameter in Eq.
�3� defined by an energy-weighted integral over the ELF as
follows:

I � lim
W→	

exp
0
WW/ ln�W/�Im�− 1/�W/�dW/


0
WW/ Im�− 1/�W/�dW/ � . �4�

A plot of the exponential on the right-hand-side of Eq. �4�, or
cumulative mean excitation energy, IW, is presented in Fig. 4.
Clearly, as found for other materials, the limiting value of IW

is reached at relatively high W �at least approximately ten
times the K-edge� with the K-shell having the dominant con-
tribution due to its large binding energy.36 This realization
has two effects: first, it makes the I-value particularly sensi-
tive to the model used for Im��W�K and, second, restricts the
reliability of Eq. �3� to values of T much larger than the
K-edge, unless it is supplemented by a so-called shell-
correction term �of order T−2� related to the q-dependence of
ELF

For W→	 we obtain I=85.8 eV for MWCNTs and I
=78.4 eV for SWCNT bundles. Since the I-value depends

upon the spectral distribution of Im�−1 /�W�, the larger
I-value for MWCNT is consistent with the observation of a
blueshift in the plasmon energy with increasing number of
walls.37 In comparison, the ICRU �Ref. 38� recommended
value for graphite is I=78 eV while recent estimates for the
three allotropes of carbon based on experimental optical data
give:39 I=89.4 eV for diamond, I=76.5 eV for graphite,
and I=102.5 eV for glassy carbon. Although a difference in
the I-value of the order of 10 eV has a relatively small in-
fluence on the magnitude of S �for T
 I� it can still have
important practical consequences due to its impact on the
absolute magnitude of the penetration range and, accord-
ingly, on the depth-dose profile �and the Bragg peak position
in proton beam irradiation� over distances comparable to the
dimensions of the irradiated CNT systems.

The average energy transfer, Wav, to the electronic sub-
system of CNTs in a single inelastic collision can also be
calculated analytically within the Bethe approximation from:

Wav =
S

P
, �5�

where P� Ptot and S are obtained from Eqs. �2� and �3�,
respectively. Recently, Wav has been shown to be an impor-
tant parameter for understanding the role of electronic exci-
tations in the microscopic mechanism of defect production in
CNTs by charged-particle beams.40 A plot of Wav as a func-
tion of beam energy is presented in Fig. 5.

Interestingly, the observed difference of 5–10 eV be-
tween MWCNTs and SWCNT bundles is comparable to the
postulated threshold for “direct” inelastic damage to
CNTs.41,42 A difference of several electron volts can also
have important consequences to secondary electron emission
applications.43–45

IV. CONCLUSION

In the present work, we have determined “effective” Be-
the coefficients �btot, ctot� and the mean excitation energy
�I-value� of stopping power theory for MWCNTs and
SWCNT bundles based on an improved ELF model deduced
from experimental optical data for valence-electron excita-
tions and atomic properties for core-electron excitations. No-
ticeable differences between MWCNTs, SWCNT bundles,
and the three allotropes of carbon �diamond, graphite, glassy

FIG. 4. �Color online� Cumulative mean excitation energy of MWCNTs and
SWCNT bundles calculated by Eq. �4�.

FIG. 5. �Color online� Average energy transfer in a single inelastic collision
to the electronic subsystem of MWCNTs and SWCNT bundles as a function
of electron �e� and proton �p� beam energy calculated from Eq. �5�.
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carbon� are found. The above excitation parameters enable,
within Bethe’s asymptotic approximation, the inelastic scat-
tering cross section, the electronic stopping power, and the
average energy transfer to the electronic subsystem in a
single inelastic collision to be calculated analytically for a
broad range of electron and proton beam energies. Using the
simple z2-scaling �where z is the charge of the particle� of the
PWBA, the expressions can also be used for other light ions
�e.g., �-particles�. Moreover, due to their simplicity and ana-
lytic properties they can be directly usable for Monte Carlo
simulation of the inelastic interactions of kiloelectron volt
electron and megaelectron volt proton beams in bulk, mac-
roscopic samples containing MWCNTs or SWCNT bundles.
It is also envisioned that, by employing excitation parameters
specific to CNTs, the present expressions would provide a
more realistic model for the inelastic interaction of charged-
particle beams with CNTs and thus, improve upon the widely
used practice of using beam-bulk graphite interaction mod-
els.
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