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The effect of bulk and surface excitations to inelastic scattering in low-energy electron beam

irradiation of multi-walled carbon nanotubes (MWNTs) is studied using the dielectric formalism.

Calculations are based on a semiempirical dielectric response function for MWCNTs determined

by means of a many-pole plasmon model with parameters adjusted to available experimental

spectroscopic data under theoretical sum-rule constrains. Finite-size effects are considered in the

context of electron gas theory via a boundary correction term in the plasmon dispersion relations,

thus, allowing a more realistic extrapolation of the electronic excitation spectrum over the whole

energy-momentum plane. Energy-loss differential and total inelastic scattering cross sections as a

function of electron energy and distance from the surface, valid over the energy range �50–30,000

eV, are calculated with the individual contribution of bulk and surface excitations separated and

analyzed for the case of normally incident and escaping electrons. The sensitivity of the results to

the various approximations for the spatial dispersion of the electronic excitations is quantified.

Surface excitations are shown to have a strong influence upon the shape and intensity of the

energy-loss differential cross section in the near surface region whereas the general notion of a

spatially invariant inelastic mean free path inside the material is found to be of good

approximation. VC 2011 American Institute of Physics. [doi:10.1063/1.3626460]

I. INTRODUCTION

Since the pioneering work of Iijima,1 carbon nanotubes

(CNTs) have become one of the most promising materials in

nanotechnology research.2 The study of charged particle

interactions with CNTs is important for at least two reasons.

First, for developing effective methodologies for the con-

trolled-modification of their structure via electron- or ion-

beam irradiation,3,4 and secondly, for predicting radiation

damage in CNT-based devices to be used in space5,6 or nu-

clear technology applications (including nuclear medicine

applications).7,8 For high-energy electron beams such as

those employed in transmission electron microscopy (TEM),

irradiation effects are mainly due to knock-on displacement

of carbon atoms following elastic electron-nucleus scatter-

ing.9 These effects are relatively well-understood and are

known to set in for electron beam energies above the so-

called “knock-on threshold” which for CNTs is �80 keV

(the exact value depends on the CNT diameter).10–12 On the

other hand, for low-energy electron beams (i.e., with ener-

gies below the knock-on threshold) irradiation effects in

CNTs are due to electronic excitations induced by inelastic

electron-electron scattering. It is now clear that low-energy

electron-beam irradiation in scanning electron microscopy

(SEM) or electron beam lithography (EBL), can efficiently

alter CNT properties as a result of local chemical reactions

mediated by the presence of gas radicals.13–17 Direct inelas-

tic effects in CNTs have also been reported (see Ref. 18, and

references therein) but the mechanism is still not clear19–21

given that CNTs are either metallic or narrow-gap semicon-

ductors with delocalized electronic excitations having rela-

tively short relaxation times. On the other hand, in low-

dimensional systems the exact mechanism of the conversion

of electronic excitation energy to nucleus kinetic energy may

differ from that of bulk solids leading possibly to longer

relaxation time of electronic excitations.22

Inelastic scattering of low-energy electrons is also

employed in the characterization and fabrication of CNT-

based Field-Effect-Transistors (CNT-FETs) (Ref. 23–25)

and stimulated field-emission devices26–29 using SEM or

EBL, as well as in the quantitative interpretation of spectro-

scopic data from surface-sensitive techniques, such as X-ray

photoelectron spectroscopy (XPS), Auger-electron spectros-

copy (AES) and reflection-electron-energy-loss spectroscopy

(REELS).30,31 Finally, inelastic scattering of low-energy

electrons is also important in understanding irradiation

effects by high-energy ion beams32–34 or from various X-ray

sources35,36 due to the role of secondary electron cascades in

the spatial distribution of energy absorption in the material.

First-principles calculations of the inelastic interaction

of charged particles with CNTs have been undertaken37–42

that highlight finite-size and collective-excitation effects

arising from the reduced dimensionality of the system. On

the other hand, more simple models for the inelastica)Electronic mail: demfietz@cc.uoi.gr.
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interaction of low-energy electrons (<30 keV) with multi-

walled carbon nanotubes (MWCNTs) have been employed

for understanding the cutting mechanism of MWCNTs in a

SEM13–16 and also to carry out Monte Carlo electron trajec-

tory simulations in MWCNT systems.28,43 One of the chal-

lenges in such efforts was to account within a simple model

for the inelastic scattering properties of MWCNTs, rather

than relying on general characteristics of electron beam–bulk

matter interactions and=or graphite excitation properties.

Inspired by the successful use of optical data — first

suggested by Powell44— to inelastic scattering calculations

for bulk solids and solid surfaces (as reviewed in Ref. 45)

and, more recently, for nanostructures,46 here we describe a

semiempirical model for the dynamic and non-local dielec-

tric response function of MWCNTs that is used to calculate

the contribution of bulk and surface excitations in the inelas-

tic interaction of low-energy electrons (<30 keV) with

MWCNTs. Recently, we have presented calculations for

electron- and proton-beam irradiation of CNTs based on an

optical-data model and the Bethe approximation.47,48 This

work is extended here in several aspects: (i) in view of new

experimental data49 specific to MWCNTs for the momen-

tum-dependence of the dielectric function, we examine dif-

ferent dispersion relations for the plasmon energy and

linewidth; (ii) we consider energy losses to both bulk and

surface excitations in a self-consistent manner within a sin-

gle model; and (iii) the variation of inelastic scattering cross

section with distance from the surface and electron direction

is examined. Atomics units (me ¼ e ¼ �h ¼ 1) are used

throughout except where otherwise stated.

II. DIELECTRIC RESPONSE FUNCTION

In the present context, the spectrum of electronic excita-

tions in MWCNTs is codified by the so-called energy-loss-

function (ELF) — not to be confused with the electron-

energy-loss-spectrum (EELS) measured in a transmission

experiment; although related the two magnitudes are not

identical.50 Within the continuum-medium approximation

which has been shown to work well even for nanostruc-

tures,51 the ELF is defined as Im �1=eðx; kÞf g where eðx; kÞ
is the dielectric response function of the system with �hx and

�hk being the energy- and momentum-transfer, respectively.

It is well known that the dielectric response of CNT is aniso-

tropic52–55 and, in principle, a tensor description of its dielec-

tric function is required, similar to the in-plane (e?) and out-

of-plane (ejj) dielectric tensors of graphite.56 However, due

to the cylindrical geometry of nanotubes, for randomly-ori-

ented electron trajectories both the parallel and perpendicular

components will co-exist and the same will also hold for

bulk samples containing non-aligned CNTs (Ref. 57). Thus,

in the present context, it is computationally convenient, as a

first approximation, to loosely associate eðx; kÞ with an

“effective” dielectric function averaged over all orientations.

Following the general procedure of the optical-data

method, the analytic description of the ELF of MWCNTs

proceeds in two steps in which one first determines the

x-dependence of ELF from optical data (i.e., at vanishing

momentum transfer, k � 0) and subsequently implements a

suitable extension algorithm to describe the ELF for arbitrary

values of momentum transfer (k 6¼ 0).

A. Optical limit (kfi0)

At vanishing k, the ELF of the outer-shell electrons (i.e.,

valence electrons) is based on the EELS measurements

of Kuzuo and co-workers58 on a relatively thick MWCNT

(44 walls and 31 nm in diameter) that cover the energy-loss

range from threshold up to 50 eV. For energy losses higher

than �100 eV we can safely neglect solid-state effects and

use the approximation50 Im �1=eðx; k ¼ 0Þf g ffi Im eðx;f
k ¼ 0Þg ¼ cl=x where c is the speed of light and l is the X-

ray attenuation coefficient of carbon atoms. The latter is here

obtained from the FFAST database of NIST (Ref. 59). Fol-

lowing Ritchie and Howie60 the EELS and X-ray data can be

conveniently parameterized using a superposition of Drude-

type ELFs as follows:

Im � 1

eðx; k � 0Þ

� �
data

¼ Im � 1

eðx; k � 0Þ

� �
EELS

þ Im eðx; k � 0Þf gX�ray �
Xm

i¼1

Ai

x2
i;0

� Im � 1

eDðx; k ¼ 0; xi;0; ci;0Þ

( )
Hðx� xth;iÞ (1)

whereas H(…) represents the Heaviside step function. The

ELF of the Drude-type dielectric function, eD, has the form:

Im � 1

eDðx; k ¼ 0; xi;0; ci;0Þ

( )
¼

x2
i;0ci;0x

½ðx2
i;0 � x2Þ2 þ ðci;0 xÞ2�

(2)

The above description essentially generalizes the plasmon-

pole approximation of the electron gas to a many-pole plas-

mon model by considering an m number of poles that corre-

spond to sub-bands each of which is associated with a

“bound” plasmon (i.e., a collective-like excitation) of

strength Ai, frequency xi;0, linewidth (or damping) ci;0, and

threshold xth;i; the subscript “0” stands for k ¼ 0. Note that

whereas one can practically assume here xth;i � 0 for the va-

lence excitations, the condition xth;i 6¼ 0 should be used for

the inner-shell (here the carbon K-shell) electrons. The 4m
parameters Ai;xi;0; ci;0;xth;i

� �
of the many-pole plasmon

model are determined empirically via Eq. (1) (Ref. 61). A

comparison between our model ELF and the experimental

data can be seen in Fig. 1. Our parametric ELF model with

m ¼ 13 seems to provide a good overall representation of the

experimental data over most of the important energy-loss

range of interest here. Material-specific solid-state effects

are evident below 50 eV where the MWCNT data with the p
and pþ r plasmon peaks at �6 and �23 eV, respectively,

begin to differ considerably from those of carbon. Well

beyond the K-shell edge at �285 eV, Eq. (1) starts overesti-

mating the data due to its wrong asymptotic behavior.48

However, this deficiency is inconsequential for inelastic

cross section calculations given that the ELF has already

decreased by almost six orders of magnitude. More accurate
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K-shell excitation functions might be needed though for

stopping power calculations.48 The internal consistency of

our model was tested using the (optical) f-sum rule and a

form of the perfect screening sum rule called the Kramers-

Kronig or KK-sum rule:62

f -sum rule: Neff xmaxð Þ ¼ 1

2p2n

ðxmax

0

xIm � 1

eðx; k ¼ 0Þ

� �
dx

(3a)

KK-sum rule: Peff xmaxð Þ ¼ 2

p

ðxmax

0

1

x
Im � 1

eðx; k ¼ 0Þ

� �
dx

þ Re
1

eðx ¼ 0; k ¼ 0Þ

� �
(3b)

where n ¼ Z NAvq=M is the electronic density of the target,

with Z, q, and M being, respectively, the atomic number,

mass density, and atomic weight (NAv is Avogadro’s

number). With respect to the calculation of the KK-sum rule

from Eq. (3b), the value Re 1=eð0; 0Þf g ¼ 1=Re e1ð0; 0Þf g
� 0:205 was deduced from the EELS data for the MWCNTs

(Ref. 58). From inspection of Eqs. [3(a) and 3(b)] we can see

that in Neff the ELF is weighted by x whereas in Peff by

x�1. It follows that the main contribution to Neff would

come from large energy losses whereas to Peff would come

from small energy losses. Therefore, to ensure a good-qual-

ity ELF, it is important that both sum rules are fulfilled. A

plot of Neff and Peff as a function of the upper limit of inte-

gration (xmax) is depicted in Fig. 2. It can be seen that both

sum rules are satisfied almost exactly (61%) by our model.

In principle the f-sum rule of Eq. (3a) should be fulfilled for

all k. The form of Eq. (2) ensures that if the f-sum rule is ful-

filled for k ¼ 0 it would then be fulfilled for all k as long as

xth;i ! 0. In our case, xth;i � 0 for the valence shells but

clearly not for the K-shell. Since the contribution of the K-

shell to the inelastic scattering cross section in the present

energy range is very small (less than a few percent) the

above inconsistency is inconsequential for the present work.

As also noted earlier, an improved model for the K-shell

would be needed when extending to much higher electron

energies (say to 100 keV and above) or for carrying out stop-

ping power calculations.

Given that MWCNTs can be produced in different sizes

(e.g., different number of walls) and chiralities, it is natural

to question the validity of our parameterized ELF (derived

from a given set of experimental data58) for other MWCNT

systems. The finite length of the MWCNT is of no concern

here as long as it is very much larger than the diameter,

which is most often the case. In contrast, the finite lateral
size of the nanotube produces most of the interesting effects

in the present context. The EELS measurements of Kuzuo

and co-workers58 pertain to MWCNTs with diameter ranging

from 13 to 34 nm (number of walls �21–44) under penetrat-

ing beam geometry. The pþr plasmon peak of the different

MWCNTs were found to range from 22.0 to 24.5 eV, in

good agreement with the mean value for the in-plane and

out-of-plane plasmon value of graphite.56,63,64 Subsequent

studies52,65,66 have confirmed that the EELS data depicted in

Fig. 1 are indeed representative of relatively thick MWCNTs

with diameter larger than �10 nm (or more than �15 walls).

It is therefore justified to associate our model ELF, described

at k � 0 by Eqs. (1) and (2), with the bulk ELF of medium-

large diameter MWCNTs and, more generally, of macro-

scopic MWCNT samples.

On the other hand, the inelastic scattering of charged

particle beams by surfaces gives rise to additional excitation

modes (most notably surface plasmons) as first predicted by

Ritchie67 and experimentally confirmed by Powell and

Swan.68 Moreover, the probability of surface plasmon exci-

tations is known to increase with decreasing target thickness

and beam energy;67 thus, making them particularly relevant

to low-energy electron beam irradiation of nanostructures. In

fact, TEM=EELS measurements in different CNT systems

have revealed that the excitation spectrum at the near surface

region exhibits a clear shift toward lower energy losses as

compared to the bulk excitation spectrum depicted in Fig. 1

(Refs. 69–72). Specifically, the pþr plasmon peak is shifted

to �15–17 eV, in very good agreement with Ritchie’s

FIG. 1. (Color online) Comparison of our model energy loss function (ELF)

at vanishing momentum transfer (i.e., optical limit, k� 0), described by Eqs.

(1) and (2), with the experimental ELF deduced from the EELS data for

MWCNTs of Ref. 58 and the X-ray atomic data for carbon of Ref. 59.

FIG. 2. (Color online) The f- and KK-sum rules of our model ELF for

MWCNTs computed from Eqs. (3a) and (3b), respectively, as a function of

the upper limit of integration in energy transfer. The contribution of the va-

lence and K-shell excitations to the f-sum is indicated.
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surface plasmon frequency (Ref. 67) xsp ¼ xvp=
ffiffiffi
2
p

where

xvp ¼ ð4p nÞ1=2
is the frequency of the volume (or bulk)

plasmon. Although it is still not clear whether the observed

shift of the plasmon energy of CNTs to lower energy losses

should be attributed to a change in the strength of screening49

or to a surface plasmon,70 for modeling purposes it is conven-

ient here to adopt the latter hypothesis. We therefore model

the surface ELF of MWCNTs at the optical limit (k � 0) by

means of the bulk dielectric function using the relation:73

Im � 1

eðx; k ¼ 0Þ

� �
surface

¼ Im � 1

eðx; k ¼ 0Þbulk þ 1

� �
(4)

The bulk dielectric function in the right-hand-side of Eq. (4)

can be obtained from the following set of equations:73

eðx; k ¼ 0Þ ¼ e1ðx; k ¼ 0Þ þ ie2ðx; k ¼ 0Þ (5a)

e1ðx; k ¼ 0Þ ¼ Re 1=eðx; k ¼ 0Þf g
Re 1=eðx; k ¼ 0Þf g2 þ Im 1=eðx; k ¼ 0Þf g2

(5b)

e2ðx; k ¼ 0Þ ¼ �Im 1=eðx; k ¼ 0Þf g
Re 1=eðx; k ¼ 0Þf g2 þ Im 1=eðx; k ¼ 0Þf g2

(5c)

The real part of 1=eðx; k ¼ 0Þ needed in Eq. (5b) and (5c)

can be obtained from its imaginary part through the

Kramers-Kronig relation:73

Re
1

eðx; k ¼ 0Þ

� �

¼ 1þ 2

p
P

ð1
0

Im
1

eðx=; k ¼ 0Þ

� �
x=

x=2 � x2
dx0 (6)

where P denotes the Cauchy principal part of the integral.

The form of Eq. (2) used to describe Im �1=eðx; k ¼ 0Þf g
has the important advantage that, via Eq. (6), the

Re 1=eðx; k ¼ 0Þf g can also be expressed analytically as

follows:

Re
1

eðx; k ¼ 0Þ

� �

¼ 1�
X

i

Aiðx2
i;0 � x2Þ

½ðx2
i;0 � x2Þ2 þ ðci;0 xÞ2�

Hðx� xth;iÞ (7)

Inserting now Eqs. (2) and (7) into Eq. (5) we can calculate

the bulk dielectric function which, in turn, determines the

surface ELF by means of Eq. (4).

B. Finite momentum transfer (k=0)

Most theoretical studies on the inelastic scattering of

charged particles in nanostructures (including thin films) use

a non-dispersive (i.e., local) dielectric response function to

simplify the numerical work. However, it is well-known that

for sub-keV electrons (especially below 200 eV) inelastic

scattering is sensitive to the k-dependence of the ELF

(Ref. 45). Moreover, in systems with strong spatial confine-

ment (such as nanotubes) the k-dependence of the dielectric

function, which reflects the spatial dispersion of the elec-

tronic excitations, is expected to play an important role.74

For MWCNTs in particular, the spatial confinement of the

electronic subsystem has been shown to lead to a dimension-

ality crossover with increasing k, due to the coupling-decou-

pling of plasmon excitations in individual wall layers.75

Although rigorous solutions of the plasmon dispersion rela-

tion in cylindrical nanostructures (wires or tubes) have been

presented recently,76–80 we here undertake the more modest

task to heuristically develop — in the spirit of the optical-

data method — a computationally simple, yet physically

motivated, analytic expressions that can be conveniently

implemented into Eq. (1) following the Ritchie-Howie pre-

scription.60 We should note that implicit in our calculations

(and the discussion that follows) is the approximation that all

excitation modes (denoted by the subscript i) considered in

Eq. (1) share the same k-dependence which will be deduced

here through considerations on the pþr plasmon dispersion.

Although both the interband and p plasmon excitations of

CNTs are known to disperse differently from the pþr plas-

mon,81 the present simplification should suffice for inelastic

scattering calculations with electron beam energies well

exceeding the valence excitations of the system (i.e., above

�50–100 eV) since the pþr plasmon peak dominates the

ELF representing the main energy-loss channel of the sys-

tem; as a matter of fact, this constitutes a standard approxi-

mation in optical-data model calculations above �50 eV

(Refs. 82 and 83).

1. Influence of plasmon dispersion

Perhaps the simplest approximation to the plasmon dis-

persion relation is to assume a quasi-two-body collision

between the beam and target electrons leading to the well-

known expression:84

xvpðkÞ ¼ xvp þ
k2

2
(8)

Equation (8) is correct at the high-k limit, where the ELF

shows a maximum along the dispersion line x � k2=2, which

is the so-called Bethe ridge. Thus, Eq. (8) is expected to work

well for single-particle excitations which are dominant at

high-k. On the other hand, for small-k the wavelength of the

perturbation commonly extends over a large number of atoms

and collective excitations are more important than single-

particle excitations. Naturally then, the k-dependence (or spa-

tial dispersion) of collective excitations would be strongly

influenced by the dimensionality of the system. The Lindhard

dielectric function of the three-dimensional electron gas

(3DEG) predicts a (volume) plasmon dispersion relation that

in the long wavelength limit (or small-k) reads:85

xð3DEGÞ
vp ðkÞ ¼ xvp þ a k2 (9)

where the dispersion coefficient is a ¼ b2=2xvp with

b ¼
ffiffiffiffiffiffiffiffi
3=5

p
tF and tF being the Fermi velocity of the 3DEG
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which is solely a function of its electronic density. Then, by

combining Eqs. (8) and (9) we obtain the familiar expres-

sion86 for infinite (i.e., unbounded) 3D media which in the

present context reads:

xð3DÞ
i ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi;0

2 þ b2k2 þ k4=4

q
(10)

Equation (10) accounts, in an approximate manner, for both

collective and single-particle excitations effective, respec-

tively, at the low- and high-k limits. Specifically, collective

excitations contribute the quadratic term whereas single-par-

ticle excitations the quartic term (note that k4=4 equals the

square of the kinetic energy of a free electron with wave vec-

tor k). An obvious shortcoming of Eq. (10) is that it does not

account for boundary effects arising from the finite lateral

size of the target. As discussed in the previous section, it is

convenient for modeling purposes to attribute these effects to

the excitation of surface plasmons. Assuming that curvature

effects are small (which is a reasonable approximation for

MWCNTs larger than �10 nm in diameter)49,57 we will heu-

ristically consider boundary corrections to Eq. (9) via two

approximations, namely, the “bulk” planar-surface (BPS)

model and the quasi-two-dimensional (Q2D) model. In the

BPS model, boundary effects are accounted for through the

surface plasmon dispersion of a semi-infinite electron gas

(SIEG) that in the long wavelength limit reads:87

xðSIEGÞ
sp ðkÞ ¼ xsp þ asQ (11)

where Q is the component of k parallel to the surface,

xsp ¼ xvp=
ffiffiffi
2
p

is the Ritchie frequency, and as ¼
ffiffiffiffiffiffiffiffiffiffiffi
3=20

p
tF.

Assuming now that the dielectric function is only weakly de-

pendent upon the momentum transfer vector normal to the

surface, i.e., eðx; kÞ � eðx;QÞ, we can combine Eqs. (10)

and (11) to arrive at the dispersion expression of the BPS

model:

xðBPSÞ
i ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi;0

2 þ ak þ b2k2 þ k4=4

q
(12)

where a ¼
ffiffiffiffiffiffiffiffiffiffi
3=10

p
xvptF. Thus, inclusion of boundary

effects in the context of the BPS model results in the addition

of a linear dispersion term (�k) to the standard 3D

expression.

On the other hand, in the Q2D model, surface excita-

tions are obtained via the plasmon dispersion relation of a

two-dimensional electron gas (2DEG) which in the long

wavelength limit reads:88

xð2DEGÞ
sp ðkÞ ¼ xð2DEGÞ

sp

ffiffiffiffi
Q

p
(13)

where xð2DEGÞ
sp ¼ ðxvp=

ffiffiffi
2
p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2D=N3D

p
, N3D � N2D=t with

N2D being an “effective” areal electronic density, and t the

inter-layer (or inter-wall in the case of MWCNTs) distance.

We here assume t¼ 0.35 nm which is a typical interlayer dis-

tance in graphite. Note that, contrary to Eq. (11), the 2DEG

(surface) plasmon has no cut-off frequency, i.e.,

xð2DEGÞ
sp ðQ ¼ 0Þ ¼ 0. Instead, in the Q2D model the experi-

mentally observed cut-off frequency value (�xvp=
ffiffiffi
2
p

) is

introduced (ad hoc) and, by expanding Eq. (13) at the small-Q

limit and combining with Eq. (10) under again the approxima-

tion eðx; kÞ � eðx;QÞ, the following expression is obtained:

xðQ2DÞ
i ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi;0

2 þ x2
vpðk tÞ1=2 þ b2k2 þ k4=4

q
(14)

Thus, inclusion of boundary effects in the context of the

Q2D model results in an additional dispersion term

proportional to the square root of momentum transfer

(�
ffiffiffi
k
p

). In general, the approximation eðx; kÞ � eðx;QÞ is

expected to be more correct near the surface than away

from it, which is of course less of a problem for nano-

structures than for standard bulk media. In order to obtain

a general dispersion relation for use in our model dielec-

tric function we will assume here that Eqs. (12) and (14)

hold at all depths in the sample. This can be partly justi-

fied by the fact that for systems (e.g., long nanotubes and

nanowires) where the electronic excitations are spatially

confined in the transverse direction but (practically) not in

the longitudinal one, the importance of the parallel com-

ponent of k is enhanced.51

In Fig. 3 we compare the plasmon line shift as predicted

by the dispersion models denoted as 3D, BPS, and Q2D, and

summarized, respectively, in Eqs. (10), (12), and (14), with

the experimental EELS data81 for the pþr plasmon disper-

sion of bulk SWCNT samples, as well as with the recent IXS

measurements49 on FWCNTs (3 6 2 walls) and MWCNTs

(14 6 5 walls). Although the comparison depicted in Fig. 3 is

not straightforward because of the different type of nano-

tubes used in the experiments, we can see that the BPS

model of Eq. (12) provides a fair representation of the data at

k 6¼ 0 even when forced to reduce at k ¼ 0 to the (experi-

mental) value used as input in our parameterized ELF model

FIG. 3. (Color online) Comparison of momentum-dependent experimental

data (symbols) with theoretical models for the (pþr) plasmon dispersion,

x(k). Circles: derived from EELS data81 for macroscopic samples of single-

walled CNT bundles; Diamonds: IXS data49 for few-walled CNTs

(3 6 walls); Boxes: IXS data49 for multi-walled CNTs (14 6 5 walls). Dotted

line: “3D” model calculations using Eq. (10); Full line: “BPS” model calcu-

lations using Eq. (12); Short dash: “Q2D” model calculations using Eq. (14).

Note that the limiting value at k! 0 denoted as “experimental value” is

taken from the experimental data of Ref. 58 which are used to parameterize

our model ELF at k¼ 0.
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[Eq. (1)]. The analytic expressions of the 3D [Eq. (10)] and

Q2D [Eq. (14)] models seem also capable of providing a rea-

sonable fit to the data but, then, their plasmon value at k ¼ 0 is

substantially larger or smaller, respectively, of the value used in

our ELF model. Thus, for the present calculations, the BPS

model provides the most consistent scheme for correcting the

dispersion relation of infinite (i.e., unbounded) media.

2. Influence of linewidth broadening

In pure 2D and 3D systems and within the random-

phase-approximation (RPA) plasmons are undamped excita-

tions, i.e., they have infinite lifetime or zero linewidth, up to

a critical wavevector (kc) where the plasmon energy enters

into the electron-hole continuum and can decay in single-

electron excitations.90 The undamped approximation results

in a sharp plasmon peak in the ELF (for k < kc) which is in

contrast to EELS and IXS experiments for a variety of differ-

ent CNT systems that point out to a strong damping mecha-

nism at all k.49,91 Although setting c! 0 might be

inconsequential for the inelastic scattering of high-energy

electrons, it can lead to sizable errors at low electron ener-

gies where only a small (or moderate) part of the ELF con-

tributes to the Born inelastic scattering integral [see Eq. (17)

below]. Thus, linewidth broadening effects in the ELF due to

plasmon decay are expected to strongly influence inelastic

scattering at low electron energies. In electron gas calcula-

tions the presence of damping is often treated in a phenome-

nological manner by introducing an empirical damping

constant as exemplified by the Mermin dielectric function.92

A formal treatment of damping in the context of electron gas

theory requires the evaluation of the dynamic (i.e., fre-

quency-dependent) many-body local-field-correction (LFC)

that accounts for (short-range) exchange and correlation

effects.93 Unfortunately, no simple analytic expression of the

dynamic LFC is available. On the other hand, damping is al-

ready included — in a phenomenological way — in our

model through the Drude coefficients ci;0 of Eq. (2) which

essentially determine the width of the ELF at k ¼ 0.

Although momentum broadening effects in the experimental

EELS and IXS spectra of, respectively, vertically-aligned

(VA) SWCNT bundles91 and MWCNTs (Ref. 49) are clearly

visible with increasing k, it is hard to extract information on

the dispersion of the plasmon linewidth from the experimen-

tal data due to overlapping features from different excitation

peaks. However, a qualitative insight with respect to the k-

dependence of the damping coefficient, cðkÞ, can be gained

by a simple phenomenological procedure whereby a single-

pole representation [i.e., m ¼ 1 in Eqs. (1) and (2)] is fitted

to the experimental data for the main energy-loss peak (pþr
plasmon). In Fig. 4, the experimentally determined trends for

the k-dependence of the plasmon linewidth for VA-SWCNT

bundles and MWCNTs are compared against two analytic

expressions, namely, the Mermin low-k limit:85

cðMerminÞ
i ðkÞ ¼ ci;0 þ bMk2 (15)

where bM ¼ ð4=15Þci;0t
2
F=x

2
vp, and the empirical formula:47

cðempÞ
i ðkÞ ¼ ci;0 þ

k

2
þ k2

2
(16)

Although the data depicted in Fig. 4 should be considered

qualitative, since the experimental spectra over the main

plasmon peak region cannot be always reproduced accu-

rately by a single-pole model, they can be helpful in guiding

us toward a reasonable choice of the functional dependence

of the damping coefficient c on momentum transfer k. We

should first point out the significant difference between VA-

SWCNTs and MWCNTs. Thus, the earlier established empiri-

cal formula [Eq. (16)] based on the VA-SWCNT data seem to

be inappropriate for MWCNTs. Evidently, the Mermin

expression described by Eq. (15) offers an improved represen-

tation of the MWCNT data over the depicted range of k.

III. INELASTIC SCATTERING

A. Asymptotic bulk limit

The plane-wave Born approximation (PWBA) provides

a convenient theoretical framework for the present study

since it is known to be reasonably valid for electrons above

�50 eV (Ref. 45). In fact, the PWBA underlines nearly all

practical calculations of inelastic electron scattering in solids

(e.g., the TPP formula45,83) leading to good agreement

between experiment and calculations. In the non-relativistic

PWBA the energy-loss differential cross section (DCS) for

electrons moving through an unbounded (infinite) medium is

given by the expression:

dK
dx
¼ 1

p E

ðkþ

k�

Im � 1

eðx; kÞ

� �
dk

k
(17)

where E is the electron kinetic energy and the limits of inte-

gration are k6 ¼
ffiffiffiffiffiffi
2E
p

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� xÞ

p
. As written, the magni-

tude of K in Eq. (17) has dimensions of reciprocal length

FIG. 4. (Color online) Comparison of experimental data (symbols) and the-

oretical calculations for the dispersion of the plasmon linewidth, c(k).

Circles: EELS data for vertically-aligned (VA) SWCNT bundles,91 Boxes:

IXS data for MWCNTs (Ref. 49). Full line: calculations using the Mermin

expression of Eq. (15); Short dash: calculations using the empirical expres-

sion of Eq. (16).
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which makes it equivalent to the inverse inelastic mean free

path; thus dK=dx may also be called the differential inverse

inelastic mean free path. In the present context, Eq. (17) rep-

resents the asymptotic bulk limit of the DCS which corre-

sponds to electron trajectories sufficiently away from the

surface inside the material where the electronic excitations

can be adequately described by the bulk ELF,

Im �1=eðx; kÞf g.
In Fig. 5 we present the asymptotic bulk limit of the

DCS (dK=dx) of MWCNTs for 1 keV electrons over the 0–

100 eV energy-loss range. This is the range where the inelas-

tic scattering probability is largest due to energy losses to va-

lence-electron excitations. The calculations are based on the

bulk ELF Im �1=eðx; kÞf g of Eqs. (1) and (2) whereby the k-

dependence is determined by different dispersion relations

for the plasmon energy and linewidth. The calculations

denoted by “3D”, “BPS”, and “Q2D” are based, respectively,

on the plasmon dispersion relations Eqs. (10), (12), and (14)

and the Mermin relation for damping, Eq. (15). The calcula-

tions denoted as “BPS-emp” and “BPS-const” use, respec-

tively, the empirical damping expression, Eq. (16), or a

constant damping, i.e., ciðkÞ ¼ ciðk ¼ 0Þ ¼ ci;0.

It is clear from Fig. 5 that the three dispersion models

for xiðkÞ, represented by Eqs. (10), (12), and (14), predict

significantly different DCSs. It is known from theory that the

stronger the dispersion of the plasmon energy the more the

DCS is shifted to higher energy losses with a smaller peak

height. Thus, the use of a boundary correction to the standard

dispersion relation of infinite (unbound) media which,

according to the present analysis, results in a stronger disper-

sion mechanism has a sizable effect on the DCS and must be

carefully considered. The dispersion of the plasmon line-

width has a much smaller effect on the DCS. It can be seen

that the Mermin relation, Eq. (15), which predicts a smaller

linewidth broadening with k than the empirical relation (see

Fig. 4), results in the DCS being slightly shifted toward

higher energy losses, as compared to using the empirical

relation. This follows from the fact that a broader ELF favors

low-energy losses (below the plasmon energy) and vice

versa. However, at these relatively high electron energies (1

keV here), the use of a constant (non-dispersive) damping

coefficient can reproduce the Mermin results quite well; the

influence of damping increases though at lower electron

energies as it will become apparent in the next figure.

In Fig. 6, we present the asymptotic bulk limit of the

total cross section (TCS) for inelastic scattering as a function

of electron energy E, which are obtained after integrating the

DCS of Eq. (17) from Bi ¼ xth; i to ðE� BiÞ=2. The setting

of the upper integration limit to ðE� BiÞ=2 instead of E� Bi

is due to the exchange effects between the incident and target

electrons. Although we present results over a broad energy

range (10 eV � E � 30 keV), those below �50 eV are pro-

vided simply to illustrate the trend of the calculations and

should be considered qualitative since the validity of Eq.

(17) below 50 eV is questionable. The neglect of relativistic

effects in Eq. (17) also restrict the upper limit of electron

energy to about 10–50 keV. The dispersion models used are

the same that in Fig. 5. It is clear from Fig. 6 that the choice

of the plasmon dispersion relation, xiðkÞ, is also very impor-

tant for the calculation of TCS. Specifically, the stronger the

plasmon dispersion the smaller the TCS due to a larger frac-

tion of ELF being outside the integration area in the x� k
plane [see Eq. (17)]. It is also evident in Fig. 6 that, by virtue

of Bethe’s theory, the effect of dispersion vanishes with

increasing electron energy because of the dominant contribu-

tion of dipole (k � 0) collisions in the inelastic scattering of

high energy projectiles. For example, the inclusion of a

boundary term (proportional to k) by means of the BPS

model, see Eq. (12), reduces the “uncorrected” (i.e., 3D

model) TCS by 25%, 10%, and 5% at 0.1, 1, and 10 keV,

respectively; the corresponding reduction resulting from the

boundary term (proportional to
ffiffiffi
k
p

) as described by the Q2D

model, see Eq. (14), is 65%, 35%, and 25%. The plasmon

FIG. 5. (Color online) The asymptotic bulk limit of the energy-loss differen-

tial cross section (DCS) for inelastic scattering, Eq. (17), of 1 keV electrons

in MWCNTs using different dispersion relations for the plasmon energy and

linewidth. The “3D” (short dash), “BPS” (full line), and “Q2D” (long dash)

calculations employ Eqs. (10), (12), and (14), respectively, for the plasmon

energy and the Mermin expression, Eq. (15), for the plasmon linewidth

(damping); in the “BPS-emp” calculations (dash-dot line) the plasmon line-

width is described by the empirical expression Eq. (16) whereas in the

“BPS-const” calculations (dotted line) a constant (non-dispersive) damping

coefficient is used.

FIG. 6. (Color online) The asymptotic bulk limit of the total cross section

(TCS) for inelastic scattering in MWCNTs as a function of electron energy,

E, using different dispersion models (for explanation of models see Fig. 5).
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linewidth has also a noticeable effect on the TCS at not too

high energies. In general, the broader the linewidth the

smaller the TCS at energies above the peak maximum due to

a larger fraction of ELF being outside the integration area in

the x� k plane [see Eq. (17)]. The opposite is true at low

energies (below the peak maximum) where a broader ELF

results in a larger TCS due to the enhancement of lower

energy losses. Thus, compared to the constant (non-dis-

persed) damping calculations, the use of the Mermin expres-

sion, Eq. (15), increases the TCS at low-electron energies

(þ27% at 50 eV) and reduces it at the region of the maxi-

mum (�5% at 150 eV); the corresponding numbers for the

empirical damping expression, Eq. (17), are much higher

(þ83% at 50 eV and �15% at 150 eV).

According to the previous discussion, in what follows

we will use the BPS [Eq. (12)] and Mermin [Eq. (15)] mod-

els for describing the dispersion of the plasmon energy and

linewidth, respectively.

B. Near surface region

As the electron moves toward the MWCNT surface,

the probability of surface excitations gradually dominates

over that of bulk excitations. Due to the coupling between

bulk and surface excitation modes that are orthogonal, the

increased contribution of surface excitations to inelastic

scattering in the near surface region results in a reduction

of the corresponding bulk contribution, which is known as

the Begrenzungs effect.67 On the other hand, as the electron

approaches the surface from outside the material, practi-

cally only surface modes can be excited and, therefore,

inelastic scattering would depend solely upon the surface

ELF. In line with the assumption that curvature effects are

small, we employ the Kwei-Wang-Tung (KWT) model94

for the spatially-varying DCS for the inelastic scattering of

normally incident and escaping electrons from plane-

bounded bulk media. According to the KWT model, energy

losses to surface excitations are described by the surface

ELF which is expressed in terms of the bulk dielectric func-

tion via Eq. (4). However, although Eq. (4) is strictly cor-

rect only for k ¼ 0, in the KWT model it is assumed to hold

for all k (the so-called step-density approximation). This is

a standard approximation95 that should not cause any seri-

ous error in view of the fact that the k-dependence of the

ELF is weak compared to the inverse dependence of the

DCS upon k. One could also note that, for not too low elec-

tron energies, the integration over k extends over a rather

broad range, so the fine details in the dispersion of the sur-

face ELF are not expected to be critical. Furthermore, it is

natural to expect that the inclusion in the present work of

boundary dispersion corrections due to surface excitations

should further minimize the error made in the above

approximation.

In the KWT model, an electron crosses (normally) the

surface boundary between the “solid” (z < 0) and the

“vacuum” (z > 0) at depth z ¼ 0 (where in our case the

“solid” is the MWCNT). The direction of the electron trajec-

tory can be either from solid to vacuum (s! v) or from vac-

uum to solid (v! s). This distinction is important due to the

different polarization forces acting on electrons moving

towards to or away from the surface (see below). Then, the

spatial variation of DCS for electrons escaping from (s! v)

or incident to (v! s) the surface can be calculated to a first

approximation from the following expressions:

dKðs�vÞ

dx
� 2

p

ðkþ

k�

k dk
t

x2þ t2k2

�
2 Im

�
�1

eðx;kÞþ 1

	
expð�kjzjÞ

�
�

2 cos



xz

t

�
� expð�kjzjÞ

	
HðzÞþ

�
2 Im

�
�1

eðx;kÞþ 1

	

� expð�2kjzjÞ þ Im

�
�1

eðx;kÞ

	
½1� expð�2kjzjÞ�

�
Hð�zÞ

�
(18a)

dKðv�sÞ

dx
� 2

p

ðkþ

k�

kdk
t

x2þ t2k2

�
2 Im

�
�1

eðx;kÞþ1

	

� expð�2kjzjÞHðzÞþ
�

2 Im

�
�1

eðx;kÞþ1

	
expð�kjzjÞ�

2cos



xz

t

�
� expð�kjzjÞ

	
þ
�

1þ expð�2kjzjÞ�2expð�kjzjÞ

� cos



xz

t

�	
Im

�
�1

eðx;kÞ

	�
Hð�zÞ

�
(18b)

where t is the electron velocity (E ¼ t2=2). The integration

limits in Eqs. (18a) and (18b) are k6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q6

2 � ðx=tÞ2
q

with

q6 ¼
ffiffiffiffiffiffi
2E
p

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE� xÞ

p
. We should note that in the deriva-

tion of Eqs. (18a) and (18b) it is assumed that

eðx; kÞ � eðx;QÞ. This approximation, already used in Eqs.

(12) and (14), has been shown to work well for the near sur-

face region and, accordingly, Eqs. (18a) and (18b) should be

more correct near the surface than away from it.95 This defi-

ciency of the model manifests itself at relatively large distan-

ces from the surface inside the material where, for example,

Eqs. (18a) and (18b) do not reduce to the asymptotic bulk

expression, Eq. (17). Obviously, this deficiency is less of a

problem for nanostructures. An improved model with the

correct asymptotic properties valid over all angular orienta-

tions of the electron trajectory is available96 but with the cost

of a substantial increase in computation.97

Although a separation of bulk and surface losses is not

strictly correct, the KWT model offers a first approximation

to the effect of surface losses upon the DCS. Specifically, the

terms including Im �1=eðx; kÞf g represent energy losses to

bulk excitations whereas those including Im �1=½eðx; kÞf
þ1�g represent energy losses to surface excitations. For elec-

trons traveling in the near surface region from inside the

solid, Eq. (18a) predicts a surface-correction to the bulk exci-

tation probability (Begrenzungs effect) that decreases expo-

nentially with distance from the surface in line with recent

findings.98 The pure surface contribution also decreases

exponentially with depth in the material while being maxi-

mum at the surface. Note that when electrons are outside the

material (z > 0), Eqs. (18a) and (18b) contain no contribu-

tion from bulk losses but a non-vanishing contribution from

surface losses.
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In Fig. 7, we present the DCS for 1 keV electrons at dif-

ferent positions relative to the MWCNT surface for both

escaping (s-v) and incident (v-s) trajectories. It can be seen

that the DCS is very sensitive to the position of the electron

in the near surface region. In particular, the DCS outside the

material or in the shallow region inside of it, exhibits impor-

tant differences — both in shape and intensity — with the

(asymptotic) bulk DCS which is well approximated by the

top curve in Fig. 7 (for further depths inside the material the

DCS remains practically unchanged). These changes in the

DCS are the result of the interplay of bulk and surface losses

and may have important consequences in theoretical models

of electron transport in MWCNT systems.28,43 For electron

trajectories in the near surface region the DCS shows an

enhancement of low energy losses due to the increased con-

tribution of surface excitations relative to bulk excitations.

The effect is of course most evident for trajectories outside

the material where only surface excitations are possible. We

can also see that the DCS depends on the electron direction

(incident or escaping) for equal distances from the surface.

This effect is due to the different polarization forces acting

on the electron from the bulk and surface induced charges. A

simple illustration of the above effect is presented in Fig. 8

where we depict the bulk and surface contribution to the

DCS for escaping (s-v) and incident (v-s) electrons at a depth

of 1 Å inside the material (i.e., z¼ –1 Å). We can see that, at

equal depths inside the material, the escaping electron (s-v)

has a smaller surface contribution (than the incident electron,

v-s) due to an accelerating force caused by the polarization

of surface charges (this force is de-accelerating in the v-s

case) but this reduction is more than compensated by a larger

bulk contribution due to the retarding force from the polar-

ization of bulk charges. However, in both cases, and in ac-

cordance to Eq. (18a) and (18b), with increasing depth inside

the material the contribution of surface losses to the DCS

rapidly diminishes whereas that from bulk losses increases

until, eventually, the total DCS approaches its asymptotic

bulk limit described by Eq. (17). This is illustrated in Fig. 9

for the case of incident electron trajectories (v-s). Clearly,

the surface contribution, which is the sole contribution to the

DCS at z ¼ 0, diminishes rapidly with depth whereas the op-

posite is true for the bulk contribution. The latter is nearly

equivalent to the asymptotic bulk DCS at 1 nm depth inside

the material (i.e., at z¼ –10 Å).

In Fig. 10, we show the depth-dependence of the TCS

for the inelastic scattering of 1 keV electron in both the inci-

dent (v-s) and escaping (s-v) geometry obtained by integra-

tion of Eqs. (18a) and (18b) over energy transfer. The bulk

and surface contributions to the total TCS is separately

depicted. We can see that for both geometries the bulk con-

tribution reaches its asymptotic value at �1–2 nm depth. The

surface contribution is seen to rise rapidly in the region very

FIG. 7. Position-dependent differential cross section (DCS) for the inelastic scattering of 1 keV electrons through MWCNTs: top curve corresponds to 1 nm

depth inside the material (z¼ –10 Å) and bottom curve to 1 nm outside the material (z¼þ10 Å). The curves from top to bottom are in steps of 1 Å. Panel (a)

pertains to escaping (s-v) electron trajectories whereas panel (b) to incident (v-s) electron trajectories.

FIG. 8. (Color online) Position-depend-

ent differential cross section (DCS) for

the inelastic scattering of 1 keV electron

at a depth of 1 Å inside (z=–1 Å) the

MWCNT with the bulk and surface con-

tribution explicitly shown. Panel (a) per-

tains to escaping (s-v) electron

trajectories whereas panel (b) to incident

(v-s) electron trajectories.
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close to the surface inside the material while decreasing

exponentially outside. On the other hand, the bulk contribu-

tion exhibits a steep drop near the surface (Begrenzungs

effect) due to the coupling of bulk and surface modes which

are orthogonal, and vanishes outside the material. Evidently,

the general notion of a spatially invariant electron inelastic

mean free path inside a solid seems to apply also to the pres-

ent case despite the fact that, as shown in Figs. 7–9, the exci-

tation mechanism for electrons in the near surface region

changes drastically.

IV. SUMMARY

We have presented a simple methodology for including

bulk and surface excitation effects in the inelastic scattering

of low-energy electrons (10 eV – 30 keV) in MWCNTs. The

contribution of bulk and surface losses along with the

Begrenzungs effect are treated in a unified manner using a

semiempirical dielectric response function model with pa-

rameters adjusted to experimental spectroscopy data for

MWCNTs. Boundary corrections to the standard dispersion

relations used to extend the energy loss function (ELF) of in-

finite media to arbitrary values of momentum transfer are

suggested using simple arguments from electron gas theory.

The influence of various dispersion approximations to the

energy-loss differential and total inelastic scattering cross

sections is quantified. The spatial variation of inelastic scat-

tering with distance from the surface is examined for both

incident and escaping electron trajectories normal to the sur-

face. The general notion of a spatially invariant inelastic

mean free path inside the material is shown to be a good

approximation for MWCNTs. However, the excitation mech-

anism is shown to be changing drastically in the near surface

region significantly modifying the shape and intensity of the

energy-loss differential inelastic scattering cross section. The

present work is expected to be useful in various applications

FIG. 9. (Color online) Position-depend-

ent differential cross section (DCS) for

the inelastic scattering of 1 keV incident

electron (v-s) at different depths inside

the MWCNT with the bulk and surface

contributions to the DCS explicitly

shown.

FIG. 10. (Color online) Position-de-

pendent total cross section (TCS) for the

inelastic scattering of 1 keV electrons

by MWCNTs with the bulk and surface

contributions explicitly shown. Panel (a)

pertains to escaping (s-v) electron tra-

jectories whereas panel (b) to incident

(v-s) electron trajectories.
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whereby low-energy electron beam irradiation effects in

MWCNTs play an important role such as, for example, in

the use of SEM and EBL for beam-assisted engineering of

nanodevices as well as in the characterization, fabrication,

and patterning of CNT-FETs. It is envisioned that by provid-

ing a computationally tractable, yet realistic scheme, of

inelastic scattering induced electronic excitations in

MWCNTs, the present work will also be useful to the devel-

opment of Monte Carlo electron transport simulation codes

specific to this system. Finally, we should point out that due

to the restrictions of the Born approximation it is not clear if

the present methodology will be adequate for too low elec-

tron energies (say below �50 eV) and, in general, it should

be more correct for large rather than small diameter

MWCNTs (say with more than 15 walls or diameter larger

than 10 nm) due to the neglect of curvature effects.
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