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NOTE

Hamaker Constants of Systems Involving Water Obtained
from a Dielectric Function That Fulfills the f Sum Rule

Hamaker constants of systems involving liquid water are evalu-
ated, within the full Lifshitz theory, by means of a recently proposed
model of the dielectric function of this substance [Dingfelder et al.,
Radiat. Phys. Chem. 53,1 (1998)], which has been extended in the
present work by including terms corresponding to infrared excita-
tions and microwave relaxation. An important feature of the com-
plete model is that, besides a good fit to experimental data, it satisfies
the physical constraint provided by the f sum rule. For symmetri-
cal systems interacting across water, calculated Hamaker constants
are generally in good agreement with results obtained using the
Ninham–Parsegian representation with the Roth and Lenhoff pa-
rameters for water. C© 2000 Academic Press

Key Words: van der Waals interaction; Hamaker constant; dielec-
tric properties; sum rules.
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1 The cgs system of units is used throughout this work.
The forces between surfaces in close proximity appear at the basis of
important phenomena in a number of fields such as physics, chemistry, ma
science, and biology. One type of interaction that is always present is the va
Waals force, which arises from electrodynamic interactions between perm
or induced dipoles within the intervening media. The van der Waals free en
per unit area corresponding to two halfspaces of materials 1 and 3 intera
over medium 2 is conventionally written as (1)

E123= − A123

12πL2
, [1]

whereL is the separation distance andA123 is the so-called Hamaker consta
(2); for other geometrical configurations, the functional form of Eq. [1] is diff
ent (1). Within the framework of the full Lifshitz theory (3, 4), the (nonretard
Hamaker constant is given by

A123= −3kBT

2

∞∑
n=0

′
∫ ∞

0
x ln[1− y12y32e

−x ] dx [2]

or, in a form that is more convenient for numerical calculation,

A123= 3kBT

2

∞∑
n=0

′
∞∑

s=1

(y12y32)s

s3
, [3]

whereT is the absolute temperature andkB is Boltzmann’s constant; the prim
in the sum overn denotes the convention of dividing then = 0 term by 2. The
yab values are defined by

yab ≡ εa(iEn)− εb(iEn)

εa(iEn)+ εb(iEn)
, (a, b = 1, 2, 3;a 6= b), [4]
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where the dielectric functions with imaginary argument,ε(iE), of mediaa andb
are evaluated at the discrete set of energiesEn ≡ n2πkBT (n = 0, 1, 2, . . .); at
room temperatureE1≈ 0.16 eV. Typically about a thousand terms are necess
to attain convergence in the sum overn in Eq. (3). Thus,En samples about 20
terms in the IR and visible and several hundred terms in the UV and soft X
energy region. Detailed knowledge ofε(iE) in the latter regions is therefore
essential to obtain accurate values of the Hamaker constant.

Although the real-valued function of imaginary argumentε(iE) has no di-
rect physical meaning, it can be easily related to the complex dielectric fu
tion, ε(E) = ε′(E)+ iε′′(E), through the Kramers–Kronig relation (see, e.g
Ref. (5))1:

ε(iE) = 1+ 2

π

∫ ∞
0

x ε′′(x)

x2 + E2
dx. [5]

Then, a proper description of the complex dielectric function (in particular
its imaginary partε′′(E)) is necessary in order to obtain reliable values ofε(iE)
and, in turn, of the Hamaker constant.

The calculation ofε(iE) by means of the Kramers–Kronig relation require
knowledge of the absorption spectrumε′′(E) over the entire energy range 0≤
E <∞. Whenε′′(E) is not known for all energies, the standard procedure
to use a mathematically convenient functional form forε(iE). The most widely
used representation ofε(iE) is that of Ninham and Parsegian (6),

ε(iE) = 1+ B

1+ τE
+
∑

j

f j

E2
j + gj E + E2

, [6]

with the parametersB, τ , f j , Ej , andgj obtained by fitting the corresponding
real and imaginary parts of the complex dielectric function to experime
data. In his comprehensive work on Hamaker constants of inorganic mate
Bergström (7) adopts this representation and gives values off j andEj (B and
gj were set to zero in most cases) for 31 such materials including diam
For liquid water (denoted in what follows by the subindex “w”), Bergstr¨om
uses the parameters recommended by Roth and Lenhoff (8), which yieldA1w1

constants substantially lower than those calculated using Parsegian’s origin
of parameters (9).

The aim of this note is the calculation of the Hamaker constant of syst
involving water, a substance that is present in many situations of interest. Va
previously reported in the literature were normally obtained by resorting to
Ninham and Parsegian representation ofε(iE) (Eq. [6]) with different parameter
sets (9, 5, 8). Our purpose here is, instead, to evaluate the Hamaker co
starting from Eq. [5] with anε′′(E) function for liquid water which is based on
the model recently proposed by Dingfelderet al. (10). A relevant property of
the present model is that it satisfies thef sum rule, a constraint that any realisti
dielectric function has to fulfill (11).
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Dingfelder et al. (10) express the absorption spectrumε′′(E) of liquid
water as

ε′′(E) = E2
p

[∑
k

D∗(E, Ek)+
∑

j

∫ Ej+1 j

E j−1 j

D(E, E′)

×2(E − E′) G(E′, Ej ) dE′
]
, [7]

where the nominal (free-electron) plasma energy of the medium is give
Ep = h(4πN Ze2/m)1/2; h is the reduced Planck constant, andeandm are the
electron charge and mass, respectively.N is the number of molecules per un
volume andZ is the number of electrons per molecule. Ionizations are descr
by Drude functions

D(E, Ej ) = f j γ j E(
E2 − E2

j

)2 + γ 2
j E2

[8]

multiplied by the step function2(E − E′) and smeared out by a Gaussian

G(E, Ej ) = exp

(
− (E − Ej )2

212
j

)
, [9]

while discrete excitations are modeled as derivative Drude functions

D∗(E, Ek) = 2 fkγ 3
k E3[(

E2 − E2
k

)2 + γ 2
k E2

]2 . [10]

The parametersf j , Ej , γ j ,1 j , fk, Ek, andγk are listed in Ref. (10); they were
obtained primarily by fitting Eq. [7] to the experimental data of Helleret al.
(12).

The model of Dingfelderet al.was designed for the calculation of cross se
tions corresponding to the inelastic interactions of swift charged particles (e
trons, protons, etc.) in liquid water. Contributions to the absorption spect
ε′′(E) below a few electron volts were ignored due to their vanishing effec
the energy loss of the particle. Even though this energy range has a limited im
on the evaluation of accurate Hamaker constants, we have completed their m
by including inε′′(E) additional termsf j /(E2

j + gj E + E2) describing IR ex-
citations and a microwave relaxationB/(1+ τE), as in the Ninham–Parsegia
representation, with parameters from Ref. (9). The microwave relaxation
was set to zero above a cutoff energy of 5 eV (see discussion below). Th
troduces small discontinuities inε′ andε′′ which, however, have a negligible
effect on theε(iE) function evaluated through Eq. [5]. This function is also ve
insensitive to the actual value of the selected cutoff energy.

The dielectric (or optical) properties of any substance have to comply
certain restrictions that arise from causality and the dynamical laws of mo
In this respect, an important feature of the present model lies in the fact tha
complex dielectric function is constrained to fulfill the well-knownf sum rule
(11), ∫ ∞

0
Eε′′(E) dE = π

2
E2

p, [11]

or alternative forms in terms of the energy-loss function Im(−1/ε) = ε′′/(ε′2 +
ε′′2) or the extinction coefficientκ (11). Besides, the model completed with I
and microwave terms also satisfies the inertial sum rule and the static-limit
rule (11). The use of such constraints makes it possible to assess the q
of the experimental optical or dielectric data employed in the fitting proced
Moreover, the risk of unrealistic features of the fitted function in some ene
interval is lowered. We note in passing that the Ninham and Parsegian r
sentation, Eq. [6], cannot fulfill thef sum rule given in Eq. [11] due to the
unphysical asymptotic behavior at high energies of the microwave relaxa

termB/(1+ τE); this is the reason for setting the microwave relaxation cont
bution to zero above a given cutoff energy.
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FIG. 1. Imaginary part of the complex dielectric function,ε′′(E), of liquid
water as a function ofE. Continuous curve: present model, Eq. [7] plus cont
butions from IR excitations and microwave relaxation; dashed curve: Ninh
and Parsegian’s representation, Eq. [6], with parameters from Ref. (8). Sym
experimental data of Helleret al. (12).

Figure 1 shows the imaginary part of the dielectric function of liqu
water calculated from the model presented in this work (continuous curve)
from the Ninham–Parsegian representation with parameters given by Roth
Lenhoff (8) (dashed curve). The experimental values by Helleret al.(12) are also
displayed (symbols). We recall that the parameters in the dielectric function
Dingfelderet al. and also Roth and Lenhoff were obtained by numerical fit
these measured data (12). In the interval from about 1 to 8 eV, the Dingfe
et al. ε′′(E) curve, Eq. [7], is close to the experimental values (liquid water
transparent in the visible and near UV), due to the sophisticated modelizatio
discrete excitations by means of derivative Drude functions. On the other h
the good agreement of the Roth and Lenhoffε′′(E) with the experimental data
above 18 eV is not conclusive. In fact, recent measurements of dielectric pro
ties of liquid water using inelastic X-ray scattering spectroscopy (13, 14) re
limitations of the data from Helleret al.above about 15 eV. The new experimen
indicate that, in the soft X-ray region,ε′′(E) is somewhat larger than hitherto
assumed. It may then be advantageous to use a model that fulfills, among o
the f sum rule and thus diminishes the risk of introducing systematic error
ε′′(E) or ε(iE). Hamaker constants evaluated from such a model are expe
to be, as a consequence, more reliable.

The dielectric function described above has been employed to calculat
Hamaker constant of systems involving liquid water. Room temperature (T =
298 K) was assumed and 2000 terms were included in the sum overn in Eq. [3].
We refrain from comparing our results with experimental values since un
tainties in measured Hamaker constants are rather large for such systems
Instead, our data are compared with calculations, also carried out within the
Lifshitz theory, by other authors.
ri- For the water/vacuum/water case, we obtainAwvw = 55.0 zJ (1 zJ= 10−21 J),
whereas values of 50.0 and 38.9 zJ are obtained by using the Ninham–Parsegian
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representation with parameters from Refs. (8) and (9), respectively. Our r
is in good agreement with the Roth and Lenhoff value, while Parsegian’sAwvw

is considerably lower. On the other hand, Hough and White quoted 37.0 zJ
but they used a single oscillator in the UV with frequency and oscillator stren
determined from a Cauchy plot.

Calculated valuesA1w1 for symmetrical systems interacting across water a
presented in Table 1. We have selected substances (monoatomic and polya
semiconductors and insulators) that cover a wide range of Hamaker cons
between a few zJ and nearly 140 zJ. For materials other than water, we have
the Ninham–Parsegian representation with parameters taken from Refs. (1
(7). For comparison purposes, we also quote Hamaker constants from Re
16, 15, 7). Our values are in good agreement with those reported by Bergsom
(7), who employed the Roth and Lenhoffε(iE) function for liquid water. In
most cases, differences are of the order of 10% or smaller. As pointed
by Ackler et al. (15), the Hamaker constant of the mica/water/mica syst
evaluated by several authors show a poor agreement, with differences
a factor of 7; discrepancies are also large for SiO2/water/SiO2. On the other
hand, good accordance is obtained for the TiO2/water/TiO2 system. The largest
differences between present results and values given by Bergstr¨om occur for
the alkali halides studied here, whose Hamaker constants are less than
The Senden and Drummond data (16) are systematically larger than ours
tice, however, that these authors used Parsegian’s original parameter s
water.

Within the Lifshitz formalism, these discrepancies have their origin in
adopted dielectric functions of imaginary argument. In Fig. 2 we have p
ted theε(iE) function of liquid water as evaluated from different models. N
tice the logarithmic energy scale. The Dingfelderet al. original ε(iE) (dotted
curve) departs, below about 2 eV, from the model completed with IR excita
and microwave relaxation terms (continuous curve), which tends to the
rect static dielectric constantε(i0) = ε′(0)= 80. Theε(iE) functions given by
Eq. [6] with parameters from Refs. (8) and (9) are also displayed (dashed
dot-dashed curves, respectively). The present dielectric function of imagi
argument is in much better agreement with Roth and Lenhoff’s parameter
the Ninham–Parsegian representation than to Parsegian’s original paramet
which underestimatesε(iE).

In conclusion, in this note we have studied the convenience of using acc
dielectric properties to evaluate Hamaker constants. In particular, the full Lifs
formalism has been applied to the case of systems involving liquid water

TABLE 1
Hamaker Constant A1w1 (in zJ; 1 zJ = 10−21 J) for Symmetrical

Systems (1 = 3) Interacting across Water, Calculated at T = 298 K

A1w1 (zJ)

Present
1 results Ref. (5) Ref. (16) Ref. (15) Ref. (7

Si (amorphous) (16) 88.4 97.5
SiO2 (silica) (16, 7) 4.3 8.5 7.7 1.6 4.6
Si3N4 (amorphous) (16, 7) 45.7 60.7 45 48.5
Muscovite mica (16, 7) 11.8 20.1 2.9 13.4
C (diamond) (7) 130.2 138
CaCO3 (5, 7) 13.1 22.3 14.4
TiO2 (7) 54.2 60 53.5
MgO (7) 20.2 22.1
Al2O3 (7) 33.0 27.5 36.7
CaF2 (7) 3.9 10.4 4.9
LiF (7) 2.7 3.6
NaCl (7) 5.9 5.2
KBr (7) 7.1 5.5
CdS (7) 35.8 34.0
Note.The parameters for Eq. (6) were taken from the Refs. quoted in colum
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FIG. 2. Dielectric function of imaginary argument,ε(iE), of liquid water as
a function ofE. The continuous and dotted curves indicate functions obtain
from the Dingfelderet al. model (10) with and without the contribution o
the IR excitations and microwave relaxation terms, respectively. The das
and dot-dashed curves correspond to the Ninham–Parsegian representatio
parameters from Refs. (8) and (9), respectively.

which we have taken a dielectric function model that fits reasonably well
available experimental data and, at the same time, fulfills important phys
constraints in the form of sum rules. For symmetrical systems with an aque
interlayer, there is good agreement with other recent calculations of Ham
constants but, due to the consistency of the present method, our results s
be, in principle, more reliable. Finally, it may be pointed out that Eq. [6] wi
gj = 0 is equivalent to an oversimplified model ofε′′(E) expressed as a sum o
Dirac delta functions (except for the microwave relaxation term) (5). Therefo
the use of sum-rule-constrained dielectric functions for other materials wo
yield improved values of the Hamaker constant.
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