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NOTE

Hamaker Constants of Systems Involving Water Obtained
from a Dielectric Function That Fulfills the f Sum Rule

Hamaker constants of systems involving liquid water are evalu-
ated, within the full Lifshitz theory, by means of a recently proposed
model of the dielectric function of this substance [Dingfelder et al.,
Radiat. Phys. Chem. 53,1 (1998)], which has been extended in the
present work by including terms corresponding to infrared excita-
tions and microwave relaxation. An important feature of the com-
plete model is that, besides a good fit to experimental data, it satisfies
the physical constraint provided by the f sum rule. For symmetri-
cal systems interacting across water, calculated Hamaker constants
are generally in good agreement with results obtained using the
Ninham-Parsegian representation with the Roth and Lenhoff pa-
rameters for water.  © 2000 Academic Press
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The forces between surfaces in close proximity appear at the basis of many - .
matellfQ@WIEdge of the absorption spectruff(E) over the entire energy range<0

important phenomena in a number of fields such as physics, chemistry,

science, and biology. One type of interaction that is always present is the van - : ; . :
HQdise a mathematically convenient functional formd6E). The most widely

Waals force, which arises from electrodynamic interactions between perma

or induced dipoles within the intervening media. The van der Waals free ene

where the dielectric functions with imaginary argumefitE), of mediaa andb

are evaluated at the discrete set of enerfigs= n27kgT (n =0, 1, 2,...); at
room temperatur&; ~ 0.16 eV. Typically about a thousand terms are necessar
to attain convergence in the sum ovein Eq. (3). ThusE, samples about 20
terms in the IR and visible and several hundred terms in the UV and soft X-rz
energy region. Detailed knowledge ofi E) in the latter regions is therefore
essential to obtain accurate values of the Hamaker constant.

Although the real-valued function of imaginary argume@€) has no di-
rect physical meaning, it can be easily related to the complex dielectric fun
tion, ¢(E) = ¢/(E) + ie”(E), through the Kramers—Kronig relation (see, e.g.,
Ref. (5)}:

o0 "
x e”(x) dx

. 5
x2 + E2 5]

s(iE):1+§/0

Then, a proper description of the complex dielectric function (in particular, o
its imaginary part”(E)) is necessary in order to obtain reliable values(oE)
and, in turn, of the Hamaker constant.

The calculation ot (i E) by means of the Kramers—Kronig relation requires

Fer oo Whene”(E) is not known for all energies, the standard procedure is

@pd representation efi E) is that of Ninham and Parsegian (6),

per unit area corresponding to two halfspaces of materials 1 and 3 interacting

over medium 2 is conventionally written as (1)

A123

T 127 L2’ s

Ejo3=

B fi
e(iE)=1+ + : ,
(E) 1+7E Xj:EjZ-l-ng-i-Ez

(6]

with the parameterB, z, fj, Ej, andg; obtained by fitting the corresponding

whereL is the separation distance adys is the so-called Hamaker constant'®al and imaginary parts of the complex dielectric function to experimente
(2); for other geometrical configurations, the functional form of Eq. [1] is differdata. In his comprehensive work on Hamaker constants of inorganic materia
ent (1). Within the framework of the full Lifshitz theory (3, 4), the (nonretardedpergstom (7) adopts this representation and gives valuef endE; (B and

Hamaker constant is given by

3kg T & o0 _
Az = — Z// xIn[1 — y12y3267*] dx [2]
2 n—o Y0
or, in a form that is more convenient for numerical calculation,
3keT o, on (Y12Y32)°
A2z = ! , 3
123= — X:(j) Z; 3 [3]

whereT is the absolute temperature akglis Boltzmann'’s constant; the prime
in the sum oven denotes the convention of dividing the= 0 term by 2. The
Yab Values are defined by

_ ea(iEn) — ep(iEn)

=——"— = (a,b=1,23;a#h),
= ealiEn) + eb(iEn) ( #)

(4]
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gj were set to zero in most cases) for 31 such materials including diamon
For liquid water (denoted in what follows by the subindex “w”), Bergsir”
uses the parameters recommended by Roth and Lenhoff (8), whichAjigid
constants substantially lower than those calculated using Parsegian’s original
of parameters (9).

The aim of this note is the calculation of the Hamaker constant of systen
involving water, a substance that is present in many situations of interest. Valu
previously reported in the literature were normally obtained by resorting to th
Ninham and Parsegian representation(oE) (Eq. [6]) with different parameter
sets (9, 5, 8). Our purpose here is, instead, to evaluate the Hamaker cons
starting from Eg. [5] with ar”’(E) function for liquid water which is based on
the model recently proposed by Dingfeldstral. (10). A relevant property of
the present model is that it satisfies theum rule, a constraint that any realistic
dielectric function has to fulfill (11).

1The cgs system of units is used throughout this work.
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Dingfelder et al. (10) express the absorption spectrui(E) of liquid
water as

Ej+Aj
¢"(E) = Eg[z D*(E, Ex) + Z/E D(E, E')
k i

i—4j

x ©(E — E') G(E/, Ej)dE’j|, [7]

where the nominal (free-electron) plasma energy of the medium is given by
Ep = h(dnN'Ze2/m)¥2; his the reduced Planck constant, aahdm are the
electron charge and mass, respectivalyis the number of molecules per unit
volume andZ is the number of electrons per molecule. lonizations are described
by Drude functions

e (E)

fiviE

D(E,Ej))= —— L —
T (B2 B gy

8

multiplied by the step functio®(E — E’) and smeared out by a Gaussian

)

while discrete excitations are modeled as derivative Drude functions

(E — Ej)?

G(E,Ej) = exp( 2A12 [9]

2y ES
[(E2 - E)° + e

D*(E, Ex) = [10]

E (eV)

The parameter$;, Ej, yj, Aj, fk, Ex, andy are listed in Ref. (10); they were
obtained primarily by fitting Eq. [7] to the experimental data of Hetierl. FIG.1. Imaginary part of the complex dielectric functiari, E), of liquid
(12). water as a function oE. Continuous curve: present model, Eq. [7] plus contri-
The model of Dingfeldeet al. was designed for the calculation of cross sechytions from IR excitations and microwave relaxation; dashed curve: Ninhal
tions corresponding to the inelastic interactions of swift charged particles (elggrd parsegian’s representation, Eq. [6], with parameters from Ref. (8). Symbc
trons, protons, etc.) in liquid water. Contributions to the absorption spectriRperimental data of Hellet al. (12).
¢”(E) below a few electron volts were ignored due to their vanishing effect on
the energy loss of the particle. Even though this energy range has a limited impact
on the evaluation of accurate Hamaker constants, we have completed their modElgure 1 shows the imaginary part of the dielectric function of liquid
by including ine”(E) additional termsf; /(Ej2 +giE+ E2) describing IR ex- water calculated from the model presented in this work (continuous curve) ai
citations and a microwave relaxati@®y (1 + t E), as in the Ninham—Parsegian from the Ninham—Parsegian representation with parameters given by Roth &
representation, with parameters from Ref. (9). The microwave relaxation tetmanhoff (8) (dashed curve). The experimental values by Hetlat.(12) are also
was set to zero above a cutoff energy of 5 eV (see discussion below). Thisdisplayed (symbols). We recall that the parameters in the dielectric functions
troduces small discontinuities i ande” which, however, have a negligible Dingfelderet al. and also Roth and Lenhoff were obtained by numerical fit tc
effect on thes(i E) function evaluated through Eg. [5]. This function is also verythese measured data (12). In the interval from about 1 to 8 eV, the Dingfeld
insensitive to the actual value of the selected cutoff energy. et al. ¢”(E) curve, Eq. [7], is close to the experimental values (liquid water is
The dielectric (or optical) properties of any substance have to comply wittansparent in the visible and near UV), due to the sophisticated modelization
certain restrictions that arise from causality and the dynamical laws of motiafiscrete excitations by means of derivative Drude functions. On the other har
In this respect, an important feature of the present model lies in the fact that the good agreement of the Roth and LenhdffE) with the experimental data

complex dielectric function is constrained to fulfill the well-knovirsum rule
(A1),

ZEZ

/O Ee"(E)dE = S E), [11]

or alternative forms in terms of the energy-loss functionhiye) = ¢” /(¢'2 +

above 18 eV is not conclusive. In fact, recent measurements of dielectric prop
ties of liquid water using inelastic X-ray scattering spectroscopy (13, 14) reve
limitations of the data from Hellezt al.above about 15 eV. The new experiments
indicate that, in the soft X-ray region/(E) is somewhat larger than hitherto

assumed. It may then be advantageous to use a model that fulfills, among oth
the f sum rule and thus diminishes the risk of introducing systematic errors i
¢"(E) or ¢(iE). Hamaker constants evaluated from such a model are expect

€"2) or the extinction coefficient (11). Besides, the model completed with IRto be, as a consequence, more reliable.

and microwave terms also satisfies the inertial sum rule and the static-limit sunThe dielectric function described above has been employed to calculate 1
rule (11). The use of such constraints makes it possible to assess the quélaynaker constant of systems involving liquid water. Room temperaluee (
of the experimental optical or dielectric data employed in the fitting procedur298 K) was assumed and 2000 terms were included in the sunmavéiy. [3].

Moreover, the risk of unrealistic features of the fitted function in some energye refrain from comparing our results with experimental values since unce
interval is lowered. We note in passing that the Ninham and Parsegian repegnties in measured Hamaker constants are rather large for such systems (
sentation, Eq. [6], cannot fulfill théd sum rule given in Eqg. [11] due to the Instead, our data are compared with calculations, also carried out within the fi
unphysical asymptotic behavior at high energies of the microwave relaxatibifishitz theory, by other authors.

termB/(1 + T E); this is the reason for setting the microwave relaxation contri- For the water/vacuum/water case, we ob#ijRy = 55.0zJ (1z% 10-21)),
bution to zero above a given cutoff energy. whereas values of 50.0 and 38.9 zJ are obtained by using the Ninham—Parse:
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representation with parameters from Refs. (8) and (9), respectively. Our result 2.5 — T — T T
is in good agreement with the Roth and Lenhoff value, while Parseghgrs
is considerably lower. On the other hand, Hough and White quoted 37.0 zJ (5),
but they used a single oscillator in the UV with frequency and oscillator strength
determined from a Cauchy plot.

Calculated valued\;1 for symmetrical systems interacting across water are
presented in Table 1. We have selected substances (monoatomic and polyatomic,
semiconductors and insulators) that cover a wide range of Hamaker constants,
between a few zJ and nearly 140 zJ. For materials other than water, we have used
the Ninham—Parsegian representation with parameters taken from Refs. (16) or 2.0
(7). For comparison purposes, we also quote Hamaker constants from Refs. (5,
16, 15, 7). Our values are in good agreement with those reported by Bengstr”
(7), who employed the Roth and Lenheffi E) function for liquid water. In
most cases, differences are of the order of 10% or smaller. As pointed out .
by Ackler et al. (15), the Hamaker constant of the mica/water/mica system \gg/
evaluated by several authors show a poor agreement, with differences up to
a factor of 7; discrepancies are also large for Si@ter/SiG. On the other
hand, good accordance is obtained for thesli@ter/TiQ, system. The largest 15
differences between present results and values given by Bamgsiccur for
the alkali halides studied here, whose Hamaker constants are less than 8 zJ.
The Senden and Drummond data (16) are systematically larger than ours. No-
tice, however, that these authors used Parsegian’s original parameter set for
water.

Within the Lifshitz formalism, these discrepancies have their origin in the
adopted dielectric functions of imaginary argument. In Fig. 2 we have plot-
ted thee(iE) function of liquid water as evaluated from different models. No-

N

N
tice the logarithmic energy scale. The Dingfeldéral. original (i E) (dotted 1.0 3 ol 0 el 1 LB 2
curve) departs, below about 2 eV, from the model completed with IR excitation 10 10 10 10
and microwave relaxation terms (continuous curve), which tends to the cor- E (eV)

rect static dielectric constan(i0) = ¢'(0) = 80. Thes(i E) functions given by

Eq. [6] with parameters from Refs. (8) and (9) are also displayed (dashed angt|g 2. Dielectric function of imaginary argument( E), of liquid water as
dot-dashed curves, respectively). The present dielectric function of imagingrynction ofE. The continuous and dotted curves indicate functions obtaine
argument is in much better agreement with Roth and Lenhoff’s parameters fim the Dingfelderet al. model (10) with and without the contribution of
the Ninham—Parsegian representation than to Parsegian’s original parametef§etr excitations and microwave relaxation terms, respectively. The dash

which underestimates(iE). ) ) ) and dot-dashed curves correspond to the Ninham—Parsegian representation
In conclusion, in this note we have studied the convenience of using accurgifameters from Refs. (8) and (9), respectively.

dielectric properties to evaluate Hamaker constants. In particular, the full Lifshitz
formalism has been applied to the case of systems involving liquid water, for

which we have taken a dielectric function model that fits reasonably well th
TABLE 1 available experimental data and, at the same time, fulfills important physic
. . constraints in the form of sum rules. For symmetrical systems with an aqueo
Hamaker Constant Ay (in zJ; 123 =107% J) for Symmetrical interlayer, there is good agreement with other recent calculations of Hamak
Systems (1= 3) Interacting across Water, Calculated at T =298 K constants but, due to the consistency of the present method, our results shc
be, in principle, more reliable. Finally, it may be pointed out that Eq. [6] with
A1 (29) g; = Ois equivalent to an oversimplified model&f(E) expressed as a sum of
Dirac delta functions (except for the microwave relaxation term) (5). Therefore

Present the use of sum-rule-constrained dielectric functions for other materials woul
1 results Ref. (5) Ref.(16) Ref.(15) Ref. (7). ..
yield improved values of the Hamaker constant.

Si (amorphous) (16) 88.4 97.5
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