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Abstract

The energy loss function of a material is a key parameter in the dielectric formalism used to describe the optical spectra and
the excitations produced by swift charges in solids. Modelling the experimental energy loss function as a sum of Mermin type
functions in the optical limit (i.e., at zero momentum transfer), we have calculated its dependence on the momentum transfer.
We compare the result with available experimental data for graphite and aluminium and with other theoretical models. We
find a reasonably good agreement of our results with these data, and better agreement than is obtained with other models.
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1. Introduction

In studies related to the transport of electrons in
solids, it is interesting to describe with sufficient accu-
racy the spectra of the transfer of both momentum and
energy to the target electrons. The dielectric treatment
to describe the response of the target to external
probes has successfully been applied in quantitative
chemical analysis [1], reflection electron energy loss
spectroscopy [2] and Monte Carlo simulations of
electron scattering in solids [3]. In all these cases
the energy loss function (ELF) plays a key role,
because it contains the response of the material to
the external perturbations. The ELF of a system may
be obtained experimentally by sending photons or
electrons to the material and analysing the corre-
sponding spectra.

* Corresponding author.

A useful scheme to describe the response of the
target electrons to external perturbations is provided
by the random phase approximation for calculating
the dielectric function of an electron gas, a procedure
that was first developed by Lindhard [4]; however, the
Lindhard dielectric function predicts an infinite life
for plasmons, whereas it is well known that in real
materials these excitations are damped. Although it
seems to be a straightforward substitution, the repla-
cement of w by w+iy in the Lindhard dielectric func-
tion, where v represents the plasmon damping, is
erroneous, as it does not conserve the local particle
number. Mermin [5] derived an expression for the
dielectric function that took into account the finite
lifetime of the plasmons and also preserved the local
particle number; however, presumably because of its
algebraic complexity, there seems to be a lack of
applications of this function. In the present paper we
use this formulation to calculate the ELF of a material,
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specifically to describe its wavenumber dependence,
which compares better than other models with avail-
able experimental data. The Appendix contains a brief
summary of the mathematical expressions needed to
handle Lindhard’s and Mermin’s dieleciric functions
e {g, w) and ep{g, w), respectively.

Various models have been proposed to describe the
response of the target electrons to excitations pro-
duced by an external probe, such as a swift electron.
One of the most widely employed models uses the
dielectric formalism, in which the main input magni-
tude is the ELF; once the ELF is known, it is relatively
easy to calculate other energy loss related quantities
(e.g., the inverse mean free path, stopping power,
energy loss straggling, etc.). However, to carry out
this procedure properly it is necessary to know the
wavenumber dependence (the wavevector for aniso-
tropic materials) of the target excitations.

In Section 2 we propose an extension of the ELF to
non-zero values of the wavenumber that is based on a
representation of the experimentally determined opti-
cal ELF as a sum of Mermin type [5] ELFs. In Section
3 we apply this procedure to graphite and aluminium,
obtaining a fairly good agreement with the known
energy loss and wavenumber dependent ELF for
both materials. Finally, in Section 4 we discuss the
quality of our results as compared with experimental
data and other models.

2. Model

The dielectric formalism for studying the inter-
action of a swift charged particle with matter was
initially introduced by Fermi [6] and successfully
developed by other authors [7-10]. It is commeonly
accepted that this formalism provides a useful
approach to the evaluation of the magnitudes related
to the transfer of energy and momentum from the
projectile to the target electrons. In this framework,
the key property used to describe the response of the
medium to an external perturbation is the dielectric
function e(g, w), where %Aw and %g are the energy and
the momentum transferred to the target electrons in an
inelastic event. When we consider a homogeneous
and isotropic system the dielectric function is a scalar
(instead of a tensor) quantity and depends only on the
magnitude of the wavevector, i.e, the wavenumber g,

but not on its direction e{g, w). From the dielectric
function it is possible to obtain the energy loss func-
tion ELF=Im[ - 1/e(g, w)], which is the basic input
quantity in all the magnitudes related to the stopping
theory. This function determines the probability that
an inelastic event with momentum transfer 7g and
energy transfer fies takes place in the target. Unfortu-
nately the ELF is provided most of the time for zero
wavenumber through optical experiments, and a large
amount of data exists for these conditions [11-14].

During the last few years several schemes to extend
the ELF, as evaluated from optical (g =0) data, to the
non-zero momentum transfer region (g # 0) have
been proposed. For instance, Tanuma et al. [15] devel-
oped an earlier model by Penn [16] using experimen-
tal optical data to describe the dependence on the
energy loss and the Lindhard dielectric function to
represent the dependence on momentum transfer.
Also, Ashiey et al. [17] introduced a model based
on fitting of the optical ELF by means of a Drude
type ELF and an analytical extension to the momen-
tum space.

In this work we suggest the use of the Mermin [5]
dielectric function ¢, to construct the ELF of a
material, because this function allows one correctly
to incorporate the electron collision time. This avoids
the mathematical problem of extending the ELF to the
g-space, as this is automatically provided by the
analytical dependence of ey(g, ). We proceed by fit-
ting the experimental ELF of a material at g=0 by a
sum of the Mermin type ELF, viz.
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where w; and +y; are related to the position and width
of each peak in the energy loss spectrum. The coeffi-
cients A; are determined under the requirement that
the sum rule
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must be satisfied. In the above Eq. (2), m and e
represent the electronic mass and charge, respec-
tively, and » represents the atomic density. This
sum rule provides the effective number of electrons
per target atom N,gr(w) which participate in the target
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Table 1
Parameters used to fit the ELF of graphite and aluminium through Eq. (1)
Graphite Aluminium

i

Ai ﬁwi/eV ﬁ’Y;/eV A,‘ ﬁwi/eV ﬁ'yl/eV
1 0.0277 0.136 1.142 1.1178 14.987 0.952
2 0.1847 6.99 1.768
3 0.1309 19.31 6.80
4 0.6187 27.88 5.44
5 0.0713 38.08 68.0

excitations up to an energy Aw. As fiw— 9, Ny
should tend to the total number of electrons per
atom, a sum rule that must be satisfied independently
of the value of the momentum transfer.

The graphite ELF at g =0 has been taken from elec-
tron energy loss experiments [18], and it shows a struc-
ture with two main peaks, one at low energy, ~7 eV, and
another at ~27 eV. The first peak is related to a plasmon
due to the = electrons, and the second peak concerns a
plasmon due to the 7 and ¢ electrons. The aluminium
ELF at g=0 was taken from Ref. [11], and it clearly
shows only a prominent peak at 15 eV. The values of
the parameters used in Eq. (1) to fit the ELF of graphite
and aluminium are given in Table 1.

The effective number of electrons as a function of
the energy transfer is depicted in Fig. 1(a) and 1(b) for
graphite and for aluminium, respectively. We can
clearly observe that, if inner shell electrons are not
considered, the effective numbers agree with the num-
ber of valence electrons: four for graphite and three
for aluminium. As g increases, the plateaux in the
curves shift to larger values of w, owing to a redis-
tribution of the oscillator strengths for g # 0. As the
experimental g=0-ELF are usually available for
hw = 50 eV, the effects of inner shells in the energy
loss spectra have been taken into account by properly
converting to ELF the available atomic scattering fac-
tors [19]. The inner shell electrons appear at
Ex =284 eV for graphite and E; =72.5 eV for alumi-
nium [20], which coincide, when g =0, with the abrupt
change in the plateaux of N depicted in Fig. 1.

Other models [2,17] for the ELF also use a fitting to
the experimental (optical) ELF, complemented with a
suitable algorithm to extend it to the non-zero
momentum  transfer region, of the form

Im[-1/e(q, w)]=Tm[ - 1/e(g=0,w(q))], providing

different expressions for w(g). In particular, we

compare our calculations with the model introduced
by Ashley et al. [17], hereafter referred to as the
extended Drude model, in which

-1 Vi

" L(q, w)} R P e ®
where w(q) = w; + fig* /2m and now the coefficients B;
should be chosen to satisfy the sum rule given by eqn
(2). It is worth noting that both models, Eq. (1) and
Eq. (3), coincide at g=0. In fact, at g=0 they corre-
spond to the ELF given by the Drude model where,
for each set of parameters (w;,y;),

-1 Vi@
1 = 4
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Then the parameters 4; in Eq. (1) and B; in Eq. (3)
represent the relative strength of each resonance in
the ELF as described by the respective model, Eq. (1)
or Eg. (3), respectively.

In spite of their coincidence at g=0, as g increases
the differences between the two models will become
more significant, as will be seen in Section 3.

3. Results

In Fig. 2 and Fig. 3 we show the behaviour of the
ELF in the available experimental range: the region of
(0-1) A transferred momentum and 0-40 eV energy
loss for graphite [21], and the region of (0-3) A7 and
0-100 eV for aluminium [22], respectively. The gra-
phite ELF was obtained [21] through electron energy
loss measurements with 60 keV electrons in = 1000 A
thick crystalline samples, providing the ELF for g
oriented perpendicularly to the optical axis in two
non-equivalent directions, but there were minor dif-
ferences in the corresponding ELFs and we have
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Fig. 1. Effective number of electrons participating in excitations
with energy transfer iw and momentum transfer Aig: (a) graphite,
{b) aluminjum.

used an average of the ELF from the two directions.
The ELF data for aluminium were obtained [22] from
intensity measurements for the inelastic scattering of
75 keV electrons through =~ 1600 A thick polycrystal-
line foils.

Both models, the one presented in this paper and the
extended Drude model [17], coincide at g =0, but they
differ in the manner in which the extension to the
g # 0 region is made. Although both models give
similar values of the ELF for small g ( # 0) and

—

— O

Im [-1/e(g,0)]

Fig, 2. Graphite energy loss function versus the energy transfer Aow,
plotted at different values of the momentum transfer #%q: experi-
mental results [21] (full line), present calculations {long dashed
line), and extended Drude model [17] (short dashed line).

both agree reasonably well with the corresponding
experimental data, we can see that for large values
of g the model using a sum of Mermin type ELFs
more closely follows the experimental data. The dif-
ferences between the two models are especially size-
able for the case of aluminium (Fig. 3). The
broadening of the ELF peaks is better reproduced
with the present treatment, as can be seen through
the evolution of the low energy peak in the case of
graphite and that of the main peak in the case of
aluminium. It is worth mentioning that the smali
peak appearing in the aluminium ELF at g=1 A"~

corresponds to the excitation of a double plasmon
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Fig. 3. Aluminium energy loss function versus the energy transfer
fiww, plotted at different values of the momentum transfer #ig:
experimental results {22] (full line), present calculations (long
dashed line), and extended Drude model [17] (short dashed line).

[22], and that for large momentum transfer the experi-
mental data contain significant statistical uncertainties
[22]; however, the general trends in the ELF curves
are reproduced better by our results than with the
extended Drude meodel [17], in which the peak
keeps its sharp shape (with minor changes) as g
increases, in contrast to the observed experimental
behaviour.

This gradual loss of the initial structure in the ELF
is well understood, as the plasmon (responsible for the
peaks in the ELF) must decay into individual excita-
tions at some critical wavenumber ¢, when the plas-
mon curve enters the individual excitations region in
the dispersion relationship; the value of ¢. is obtained
numerically and corresponds to the intersection of the
implicit curve ¢ (g, w)=0, which gives the plasmon
line corresponding to Lindhard’s dielectric function

g, w) and the explicit function
fe =1*(q” +2qqg)/2m, which limits by the left the
individual excitations region (gy is the Fermi wave-
number of the material).

For graphite there are two plasmon peaks, one
at = 7 eV and the other at =~ 27 eV; we have
calculated the correspondmg values for g, to be
~09 A" and ~ 1.6 A™ , respectively. In Fig. 2 we
can appreciate howl' the = 7 eV peak almost loses its
shape at g~ 1A °, in good agreement with our cal-
culation; unfortunately there are no available data for
g>1 A™" from which to check how the = 27 eV
peak behaves when g = 1.6 A™. For aluminium, we
find that the plasmon peak at 15 eV merges cil}tlo the
individual excitations region at g.,=13A , in
excellent agreement with the experimental value
[23].

The plasmon peaks in the ELF then lose promi-
mence as g increases, as in the limit g — < no collec-
tive behaviour should be observed. At large
wavenumber, single excitations predominate over
the collective effects, this being related to the loss
of structure in the ELF.

Let us point out here that there are also ab initio
treatments [24-26], where a detailed description of
the target (band structure, charge exchange, etc.) can
successfully be applied to only a reduced number of
systems. These serve as a check and a guide to com-
pare with the results of less sophisticated but easier to
use models, like the one discussed in this paper. The
results reported by Lee and Chang [25] for the ELF of
aluminium along a given direction in the momentum
space compare well with our calculations; however,
their peak height differs considerably from our result
and the experimental values [22].

It is worth noting that the wavenumber evolution of
the Ashley et al. ELF retains the initial structure in the
ELF even at high momentum transfer values, although
displaced to higher energies.

4, Summary and conclusions

In the interaction of radiation with matter the ELF
plays a key role, because it contains the response of
the material to external perturbations. Introducing the
g dependence of the ELF through the Mermin dielec-
tric function provides a natural extension of the
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wavenumber dependence of the ELF, giving results
that agree better with the experimental ELF than those
of other models introduced previously {17]. Further-
more, it compares fairly well with energy integrated
quantities, such as the stopping power, even at low
energies [27]. An advantage of this treatment is that it
can be applied to both conductors and insulators, the
only input data being the ELF at zero momentum
transfer, a magnitude available as optical data for
many materials [11~14].

Although several methods have been proposed to
extend the energy loss function at g=0 to the
region with g # 0, and most of them provide a
satisfactory basis for the calculation of such inte-
grated quantities as the stopping power or the
energy loss straggling, they fail to reproduce cor-
rectly the energy loss spectra. This is so because
the stopping power and the straggling (which are
integrated magnitudes) are not very sensitive to the
details of the ELF, provided that some constraints
(e.g. sum rules and plasmon peak location) are
satisfied.
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Appendix A

This appendix contains the main expressions con-
cerning Lindhard’s and Mermin’s dielectric func-
tions, e (g,w) and eylg,w) respectively. The
Mermin dielectric function ey(g, w) describes an
electron gas in the relaxation time approximation
and conserves the local number of electrons. The
analytical form of this complex dielectric function
is given by [5]

(1+iv/w)e g, w+iv)-1]

emlg, w)=1+ 1+ (fy/w)eLlg, 0 +iy)—-1]/[e(g,0) - 1]

(A

Here, v is related to the damping of the excitations in

the electron gas, which gives a finite lifetime for the
plasma oscillations and takes into account the effect
of the dissipative processes that occur in real solids.
For a degenerate free electron gas, Lindhard’s
dielectric function is given by [4]

2
eL(gw)=1+ ;?'L%F;[ﬁ(u: z)+if, (1, 2)] (A2)

Here we have followed the usual nomenclature,
writing ¢, as a function of the dimensionless variables
u=uw/(qvg) and z=gq/(2gg), where vg and gr are the
Fermi velocity and wavenumber, respectively. The
dimensionless functions f; and f, are given by

1 1
f1(u,2) = §+ S—Z[g(z—u)+g(z+u)] (A3)
and
gu, whenz+u <1
falu,z)= 8£z[1 -(z-u)’]), whenjz-u|<1<z+u
0, when |z—u] > 1
(Ad)

where

g =(1 - (a3)
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