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Abstract. The interaction of a relativistic electron beam, travelling parallel to the surface of
a semi-infinite medium, is analysed. The specific energy loss of the beam and the probability
of excitation of surface and bulk modes in the medium are calculated. Beams both external
and internal with the medium are considered, and the predictions are compared with well
known non-retarded limits. A detailed analysis of the expressions derived is provided for
electron beams interacting with specific dielectric materials. The effects of retardation are
seen to be large, particularly for beam energy losses in regions where the real part of the
dielectric constant is large. The retarded excitation probability is typically about 10-30%
larger than the non-retarded result, for electron energies greater than about 100 keV. The
image force is calculated for an external beam, and the radiative de-excitation of the medium
is also analysed.

1. Introduction

The interaction of electron beams with thin films has been studied extensively by means
of the dielectric theory (Ritchie 1957, Ritchie and Eldridge 1962, Otto 1967, Kroger
1968, 1970), including the retardation of the electromagnetic field due to the finite
velocity of light. The direction of the beam was taken to be perpendicular to the film by
Ritchie and Eldridge (1962) and an arbitrary direction was considered by Otto (1967).
In transmission experiments (von Festenberg 1969) both bulk and surface plasmons are
seen, but the thinner the film is, the more the surface modes should dominate. Electron
energy losses also occur as a result of the Cherenkov radiation generated in the dielectric
medium (Kréger 1968, 1970). For electrons impinging at grazing incidence or which
interact weakly with the medium by passing above it the excitation of surface modes
becomes important (Echenique et al 1981, Garcia-Molina et al 1985).

Only recently have experiments been performed (Marks 1982, Cowley 1982a, b,
Wheatley et al 1983), where the impact parameter of the beam (or beam-surface
distance) is maintained constant, and the beam probes the surface plasmon field of the
irradiated material apart from, possibly, the excitation modes of the bulk.

Some capabilities of the modern analytical scanning transmission electron micro-
scope (STEM) have been discussed by Pennycook (1981). This gives energy-loss spectra
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from precisely defined regions near surfaces or other known internal defects such as
precipitates or dislocations. One may thus obtain information from the loss spectra
(Pennycook 1981), or from cathodoluminescence (Pennycook et al 1980) about localised
electron states associated with the defects—such states can be in the energy gap.

It has been suggested by Cowley (1982a, b) that relativistic effects may be important
in the interpretation of recent STEM experiments, where electrons with an energy of
about 100 keV interact with small crystallites. It is our purpose here to estimate when
retardation effects are expected to contribute to the electron-energy-loss spectrum
(EELSs) of high-energy electrons.

We shall calculate the excitation probability and specific energy loss, including
retardation, of electron beams travelling parallel to, both inside and outside, the plane
surface of a semi-infinite solid. The non-retarded limit will be retrieved, in particular.
Predictions will be made for specific dielectric media characterised by a frequency-
dependent complex dielectric function.

The expression derived below for a relativistic beam external to a semi-infinite solid
is equivalent to that given by Otto (1967) without a detailed derivation. He did not
consider the case of a beam travelling through the material and parallel with its surface.

The conditions under which radiative emission from the excited medium may take
place will also be investigated.

The question of significant deflection due to image or other forces (e.g. electrostatic
charging of the target) arose in Cowley’s experiments (1982a, b). Some discussions given
by Howie (1983) and by Echenique and Pendry (1975) will be extended to study the
effect of retardation on the force experienced by the beam due to the presence of the
crystal.

2. Energy loss and excitation probability

We wish to consider the cases of a charged beam travelling parallel to the planar
surface of a semi-infinite medium, both external and internal to the condensed medium.
Although one of the semi-spaces will usually be the vacuum, it is convenient to consider
the general case of two adjacent materials separated by a planar boundary and charac-
terised by the dielectric functions &,(®) and &,(w) as shown in figure 1.

We shall make use of the (classical) dielectric approach to calculate the excitation
probability and the energy loss of the relativistic charge. We solve Maxwell’s equations
in terms of the Hertz vector II. The electromagnetic fields are given by Stratton (1941)

E = V(VIT) + (e0?/c)II (1)
= —(iwe/c)V x I (2)

where the spectral analysis used is

I(r, 1) = r g—iexp(—imr)ﬂ(r, ) 3)

and similarly for the other quantities. Here ¢ denotes the velocity of light. The wave
equation for the Hertz potential follows from Maxwell’s equations (Stratton 1941):

(W + gc—“;z)n = (4n/iwe)] 4
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Figure 1. Geometry of the interaction of a charged particle Ze, moving with velocity v, ata
distance zofrom the interface between media 1 and 2, characterised by the complex dielectric
functions £,(w) and &;(w).

where J is the current density and the laplacian operator is supposed to act on each
cartesian component of I1.
The charged beam which moves along the x axis with (constant) velocity v and at a
fixed distance z, from the surface, is defined by
J(r, 1) = Zevid(x — v)6(y)d(z — zy). )

where £ is a unit vector along the x direction.
There is translational invariance parallel to the plane surface (the xy plane) and we
introduce Fourier transforms

I(r, w) = j%exp(ik -p)(k, w, 2) (6)

where p = (x, y, 0) and k = (k,, k,, 0). Then Fourier transforming equation (5) accord-
ing to equations (3) and (6) gives:
J(k, w, z) = 2nZevid(w — k,v)d(z — z,). @)

From symmetry, one may assume that II has components only in the £ and 2
directions, IT = (I1,, 0, I1,). The equations one needs to solve, for a beam external to
the solid, are from (4) and (7),

(d2/dz? — ¥3)II; =0

d? 812 Zev
(g - 1)z = o2 8w~ K)oz ~ 7o) ®)

(d?/dz? = v3)II; =0
(d?/dz? = v} =0

where IT* represents the Hertz vector for z = 0, and
vy = (k? — g,0?/c?)?

v, = (k? — g,w%/c?)2.

)
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The solutions to equations (8) which are not divergent at infinity are:

IT; = Cexp(v,2) (10a)
I} = —(4n*Zev/iwe,v,)8(w — k,v) exp(—vy|z — z¢|) + A exp(—v,2) (10b)
I1; = D exp(v;,2) (10c)
IT} = Bexp(—v,z). (104)

Both v, and v, are understood to have a positive real part in all subsequent manipu-
lations, in order that the expressions in equations (10) be bounded for large z.

The four constants appearing in the solutions must be evaluated from the continuity
of the tangential (i.e. the x and y) components of the fields E and H at the boundary.
According to equations (1), (2), (3) and (6) the corresponding conditions for the Hertz
potential require

gI17 = &II;
ik I17 + oT1% [0z = ik, 17 + oI1; /oz -
6‘11—[: = EzH;

£,0I1} [oz = &,011; [oz

evaluated at z = 0. For our purposes only the coefficients A and B will be required, and
these are given by

A=[(vy = v)/(v: + vr)]A (12a)

B = 2ik,v\A[(e; — £1)/(v1 + v2)(v28, + v16,)] (12b)
where

A= —(4n?Zev/iwe,v,) exp(—v,z0)(w — k,v). (12¢)

The retarding force at the particle in the (—x) direction is equal to its energy loss per
unit path length. This is
dw
st a = —ZeEx(vt, 0, zg, .f)

= —(ZZTEFJM dk, rc dk, Jm dw expli(k,v — W)]E,(k, w, zg). (13)

It is also useful to consider the probability of excitation of a frequency w per unit
path and per unit frequency, d?P/dx d w, defined through (Ritchie 1957):
dw = d?P
dx o dxdw

fiw dw. (14)

We now consider the cases of external and internal beams separately.

2.1. External beam

A relativistic charged particle beam skims along, in the vacuum, (i.e. &, = 1) nexttoa
semi-infinite solid which is characterised by a dielectric function €, = £(). Incalculating
the specific energy loss, equation (13), one neglects the inhomogeneous term (the one
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containing the 8(w — k,v) in equation (10b)) in order to subtract from the total field the
part that is related with the beam moving in vacuum.
From equations (1), (10) and (13), after some algebra, one obtains

2(Ze)? s —2,
R f dky [ dow SPC220%0) f1m 2o, K} (15)
dx  mw d o vy
where the so-called retarded loss function is given by
1 2vi(e—1) > )
= = o = 1
r@.) = 5 (R - (- ) - ) 16)
and
k? = k2 + w?/v? 17)

has to be inserted into equation (9), which becomes
v =[k} + (0?/0?)(1 — ef*)]"

(18)
vo = [k} + (0?/v?)(1 - )]
and B =v/c.
The probability of excitation follows from equations (14) and (15)
d?p 2(Ze)2 exp(—2v4z¢)
P T J dk, V—OI m{A.(w, k)}. (19)

Without explicit derivation, Otto (1967) provided a slightly different, but equivalent,
form for the retarded loss function in equation (16). Otto also analysed the retarded
dispersion relation of a surface plasmon at the boundary of the bulk material, and
considered the case of a slightly damped free-electron gas.

One may check the limit ¢c— =, corresponding to a non-relativistic beam. Then
v— vo— k, and the classical excitation probability becomes

d?P  2(Ze)? -1
e iy J(tﬁ )2 Ky,(2wz,/v) Im( " 1) (20)
which agrees with the results found neglecting retardation (Howie 1983). K(z) is a
modified Bessel function (Abramowitz and Stegun 1972) of zeroth order.

One should note,that the non-retarded and the retarded loss functions are very
similar in magnitude for a wide range of values of the real and the imaginary parts of the
dielectric function, and of k, and v. (A more detailed discussion follows in § 4).

It is also of interest to evaluate the transverse force, F,, experienced by the beam
due to the presence of the surface. We neglect the contribution to the force due to the
magnetic field, since we are not interested in extremely high velocities. The electric field
in the z direction is required, and one obtains an attractive transverse force given by

2(Ze)?

* i Evg — Vv
F, = w ), dk},J; dw exp(—2vyz,) Re(w[I 5 v) (21a)

which is also found following the procedure given by Kréger (1970). The non-retarded
limit was derived by Takimoto (1966) and Howie (1983):

o2 [ s () )
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fiw (eV)

Figure 2. The complex dielectric function of MgO, from Roessler and Walker (1967). Full
curve, ' = Re g; broken curve, ¢ = Im €.

where K is a modified Bessel function of first order (Abramowitz and Stegun 1972).
Realistic numerical calculations of the effect of the attractive image force on the beam
trajectory for a given material require detailed knowledge of the dielectric function
¢(w). An analysis of the integrands in equations (21a) and (21b) indicates that the
transverse force is always larger when retardation effects are included. For instance, for
a 100 keV electron beam interacting at a distance of 5 A with a MgO surface, by using
the data in figure 2, the ratio of the transverse forces is about 1.04.

2.2. Internal beam

When the charged particle beam travels through the condensed medium, one sets g, =
&(w), €, = 1, and one has to consider both terms in equation (10b) in order to find the
specific energy loss. The result is

AW 2(Ze)?
o= (Me) f dk f do o Infi; (@, k)} 22)

where now the loss function is

1 (2p2(1 -g)

vot+t v\ evgtv

Ai(w, k) =

(1-ep)(v -

Both interface terms and bulk terms arise in the loss function. The term in equation
(23) whichis independent of z,, corresponds to the excitation of bulk modes in an infinite
medium (Landau and Lifshitz 1982) and does not appear in the case of an external beam
when spatial dispersion in the medium is neglected.

The non-retarded limit is again a useful reference. For ¢ — o, equation (22) becomes

cil'r: 2(28)2 J’ dk, J’ dw [Im(%—-%) exp(—2kzo) +Im(1/s)] 24

Vn)) exp(—2vzp) 1- eﬁz. 23)

VE VE

or, in terms of the excitation probability for a classical beam,

d’P  2(Ze)?
2P :(m 5 [[m( ~1/e)[In(k.v/®) — Kowzo/v)]

+ Im(i__i_ 1)!(0(25020/0)]. (25)
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Here k., a cut-off wavenumber, has to be introduced in order to prevent the divergence
of the integral for k,— . This cut-off must be taken such that k. > w/v, and the
excitation probability is positive-definite.

3. Radiative emission

The energy losses suffered by a relativistic particle passing through, or close to, a
dielectric medium can be partly due to electronic excitations, e.g. bulk or surface
plasmons, and partly due to radiative excitations, e.g. Cherenkov radiation, which
occurs when &' % = 1. We now briefly consider whether the radiation can be detected,
particularly in the case when the beam is outside the dielectric medium.

InMgO, forinstance, a material to be analysed in the following section, the published
dielectric data, figure 2 (Roessler and Walker 1967), indicate that the Cherenkov con-
dition holds for photon energies between 0 and 10 eV for a 100 keV electron beam and
for photon energies between 6 and 8 eV for an 80 keV electron beam. It is only in the
region below the band gap energy, E, = 7.5 eV, however where £” = 0 that we can
definitely identify all the losses given by equations (15) or (22) as radiative losses.

To be detected, the Cherenkov photons must emerge from the dielectric medium
and not be confined by total internal reflection. Reference to figure 3, depicting the
situation in a small cube, shows that photons will emerge from the lower face of the cube
provided that the semi-angle 8 = sec™! B(¢')"? does not exceed the critical angle 6, =
cosec”(&’)/2. Combining this result with the Cherenkov condition we obtain

0sée -c32v*<1. (26)

For 100 keV electrons this condition is satisfied for photon energies between4and9 eV.
For 80 keV electrons the allowed photon energies lie between 6 and 7 eV. In the case of
a small cube, the length of the side L may possibly set an upper limit A = 2L to the
wavelengths of photons which can be excited in the medium. This corresponds to alower

Photon, w

b '

ef

Figure 3. Emergence from a cubic crystal of Cherenkov radiation created by a charged beam
which passes nearby. Note that MgO crystallites of cubic shape were employed in the
experiments of Cowley (1982a, b) and Marks (1982). For more comments see text.
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limit in the photon spectrum of #iw = fizv/L. For a cube of size L = 1000 A this lower
limitis 3.4 eV in the case of 100 keV electrons and 2.9 eV in the case of 80 ke V electrons.
Using equation (15) for the case of a 100 keV electron beam aligned parallel to and 20 A
outside the face of an MgO cube of side L = 1000 A, we can then estimate that one
Cherenkov photon will emerge from the lower surface for about 250 electrons passing.
With the typical beam currents available this could correspond to a photon yield of over
10° per second.

In many cases these Cherenkov photons will be superimposed on a potentially much
higher background of radiation arising from the decay of electronic excitations. Direct
radiative decay of surface and bulk plasmonsis not forbidden in small particles but would
give photons with energies in the range E, = 7.5 eV < fiw < 24 ¢V in the case of MgO.
Plasmon decay via electron—hole pairs could however ultimately produce recombination
radiation photons with energies of E,, or even less if there are defect states in the gap.

It therefore appears that it may well be possible to detect Cherenkov photons
generated in small MgO particles by relativistic electron beams which pass near the
crystal. Indeed the problem of recombination radiation may be less serious with such
external beams than with electron beams passing through the particle. For an unam-
biguous identification of Cherenkov photons it will, however, be necessary to employ
clean defect-free material and to confirm that the signal disappears at beam energies
below the Cherenkov threshold.

4. Analysis

Detailed analysis of the expressions derived previously is only possible when the dielec-
tric function appropriate to a given condensed medium is specified. Here we shall
refer to the interaction of electron beams with MgO cubes, a system for which recent
experimental data on electron energy losses exist (Marks 1982, Cowley 1982a, b). The
complex dielectric function of MgO has been measured experimentally (Roessler and
Walker 1967), and calculated theoretically (Fong et al 1968). The experimental curves
for £'(w) and €'(w) are shown in figure 2. In the experiments by Marks (1982) and
Cowley (1982a, b), electron energies of about 100 keV were employed. The excitation
function was measured for various beam positions with respect to the surface of the
wedge, within distances up to 100 A on either side of the surface. The condensed media
consisted of small crystallites of cubic symmetry.

Figure 4 shows the ratio between the non-retarded and the retarded excitation
probabilities for 100 keV beams interacting externally to the medium and at different
impact parameters with respect to its surface. It is seen that the retarded probability is
always larger than the non-retarded prediction, except for beams close to the surface
and except in frequency ranges where ¢’ and £ are both small (<1). From figures 2 and
4 it follows that the larger the values of £'(w), the larger the retarded probability is in
comparison with the non-retarded predictions. The same result holds for large impact
parameters, obviously, since the classical expression neglects retardation effects and
these will be appreciable at large beam—surface distances. In addition, a lot of structure
appears in figure 4 below the surface plasmon energy (iw ~ 16 eV), and little structure
is seen above the bulk plasmon energy (Aw ~ 22 eV). Similar results were found when
a simple dielectric function of the Drude type is taken for the calculations. In all cases,
the effect of varying the distance z, from the beam to the target is larger than a variation
in the beam velocity.
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Figure 4. Ratio between the excitation probability for a relativistic beam, equation (20), and
a non-relativistic beam, equation (19), travelling externally to a given solid surface for a
100 keV electron beam. The distances from the beam to the surface for the various curves
were: A, 100 A; B, 40 A: C, 5 A. The dielectric material is MgO.

Figure 5 shows the retarded excitation probability for a 80 keV beam and for a
1000 keV beam interacting with MgO at a distance z, =20 A above the surface of
the cube (a typical value in the experiments reported by Marks (1982) and Cowley
(1982a, b) ). The excitation probability decreases with increasing beam velocity accord-
ing to equation (19), and the overall structure tends to smooth out.

A similar comparison between the retarded and non-retarded results for a beam
internal to the medium, equations (22) and (24), could be conducted. Since the presence
of the cut-off wavenumber k_ in equation (25) introduces an element of ambiguity and
the predictions are sensitive to the choice of k., we shall not proceed along these lines.
A detailed comparison of theoretical and experimental loss spectra is not attempted.
Most of the recent data for excitation by non-penetrating beams refers to MgO, a
material for which the dielectric constant is not too large. For this material the most
pronounced effects of retardation appear below about 10 eV, where the loss spectrum
is rather weak so that the zero of the intensity scale must be known rather accurately in
order to do proper comparisons with theory. It is worthwhile to point out, here, the basic
facts. In order to obtain an appreciable retardation effect one requires &' > ¢?/v?and &’
to be small. These conditions tend to hold in the region 0 < Aw < E,, where E, is
the average energy gap of the semiconductor or insulator. However, the following
approximate relation holds, £'(0) = 1 + (hw,/E,)?, where w, = (4zne*/m)? is the
plasma frequency and n is the valence electron density. Thus, a large value of &’ means
asmall gap and therefore the retardation effect, though large, occurs at very small losses
requiring great precision in the spectra and careful subtraction of the zero-loss peak
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Figure 5. Excitation probability for a relativistic beam travelling externally to a solid and at
a distance of 20 A, from equation (20). The energies of the beams were: broken curve,
80 keV; full curve, 1000 keV. In the experiment reported by Marks (1982) the beam energy
is 80 keV. The dielectric material is MgO.

(von Festenberg 1969). Alternatively as in MgO, the gap is relatively big but &’ is then
not so large and the whole effect is not so easy to detect. In conclusion, relativistic effects
in the interaction of charged particles at fixed impact parameter with respect to the
surface of a condensed medium, may be appreciable even for the energies of current
interest in STEM machines, about 100 keV, and use of non-relativistic expressions for the
excitation probability or specific energy loss may not be sufficient in order to understand
the experimental data.

Inparticular, we note that the strongest effects occur ininsulators and semiconductors
at energies below the band gap where Im(¢) is extremely small but Re(¢) can be large.
Therefore, in the energy-loss experiments in this region the retarded theory must be
used, otherwise data could be erroneously interpreted to suggest the presence of electron
states in the gap. Note also that the relativistic effect will give a background contribution
coming from all parts of the surrounding crystal against which the localised defect state
contribution has to be detected and analysed. On the other hand, let us stress that
although the ratios plotted in figure 4 show that the effect of retardation is a large one,
the experimental detection may be difficult for the reasons discussed in §§ 3 and 4.

The analysis developed in this paper has been applied to the data on loss spectra
generated by Wheatley er al (1983). It turns out that the relativistic theory does not
explain the large difference between internal and external beam loss spectra that was
observed (Wheatley et al 1983) in the case of Al,O,. It is now reported (Wheatley,
private communication) that the large peak at 15 eV is due to the conversion of Al,O,
into Al under the very high current density in the electron beam in the STEM.
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