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Abstract

The stopping power of large (H, ), -clusters in silicon is analyzed as a function of the cluster size and the cluster velocity.
A dielectric formalism is used to describe the electronic interaction between the projectile and the target. The intramolecular
and intermolecular interference effects in the cluster energy loss are evaluated as a function of the cluster velocity. For high
velocities and large clusters the intermolecular collective effects dominate in the cluster stopping power. For each cluster
velocity we find a resonant cluster size for which the intermolecular stopping power clearly shows a maximum and it
saturates to a constant value for larger clusters. The radius of this resonant cluster and the maximum stopping power are

proportional to the cluster velocity.

The study of polyatomic ion beams interacting with
matter has increased during the last years [1]. New sources
have been developed to produce clusters of different mate-
rials and larger kinetic energies. Also, a growing effort has
been devoted to understand the basic physical properties
underlying the interaction of cluster beams with matter.
This renewed interest in cluster research is partially due to
the interesting collective effects that appear when corre-
lated particles interact with matter [2,3] and its feasible
application in different fields. For instance, the use of
cluster ion beams to drive the implosion in an inertial
confinement fusion device has been studied due to the high
density of deposited energy [4-7]. There are several theo-
retical works on cluster stopping power in solid materials
[3,7-13] and in plasmas [14-17], however only a few
experimental results in this field are available [18-20).

In this paper we discuss the stopping power of large
molecular hydrogen clusters, (H,),, moving at high veloc-
ity in a silicon target. We are interested in the evaluation
of collective effects in the energy loss due to the simulta-
neous perturbation of the medium by the correlated motion
of the cluster ions. Our main aim is to analyze the depen-
dence of the cluster stopping power with the size and the
velocity of the cluster.

The dielectric formalism is used to describe the interac-
tion between the cluster ions and the electrons of the
target. We only consider electronic energy loss since at
high cluster velocities this is the principal mechanism. The
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dynamic response of the target to an external perturbation
is provided by its dielectric function e(k, w), where k and
o represent, respectively, the momentum and energy trans-
ferred to the electrons of the solid in an inelastic event.

We do not take into account the Coulomb explosion
due to the repulsion between the ions that constitute the
cluster; this assumption is valid for swift clusters and thin
targets. We neglect non-linear effects, which may be im-
portant at low velocities, but certainly will be less signifi-
cant in the high velocity range we plan to discuss. Note
that atomic units will be used throughout this paper.

In this scheme, a general expression for the stopping
power S, of a randomly oriented cluster composed by N
particles penetrating with velocity v in a target is given by
[8,111

SC1=NZ*2[1+'sz &r gcl(r)l(r)}Sp, (1)

where Z* is the effective charge of each individual parti-
cle in the cluster and 7 is the average nuclear density of
the cluster. We assume that the equilibrium charge state is
reached for each constituent of the cluster and this mean
equilibrium charge state or effective charge Z* is equal
for atomic and cluster ions.

The pair correlation function g.(r) is related to the
probability to find two particles at a given distance » in the
cluster and satisfies the normalization condition: N=1 +
7ifd*r g4(r). In the dielectric formalism the proton stop-
ping power S, is expressed as:

=2 [P G o | — 2
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The interference — or vicinage — function I(r) measures
the collective effects that appear in the stopping power of
correlated particles. Note that /() represents an angular
average over all cluster orientations and it is given by [8]:

2 wdk sin kr .
(==

7 o dwwIm[

-1 ]
e(k, ) |’
3)

We consider large clusters of molecular hydrogen,
(H,),, then it is convenient to separate the interference
effects due to two hydrogen atoms of the same molecule
(called intra-molecular terms) from the interference effects
produced by two hydrogen atoms from different molecules
(called inter-molecular effects). Therefore the pair correla-
tion function g (r), which contains information about the
cluster structure, can be split into two contributions: g (r)
= ZinelT) + GimerL 7). The structure of the H, molecule is
described by g;,.(r) through a delta function at 1.40 a.u.,
the internuclear distance in the H, molecule [21]. The
intermolecular pair correlation function g;...(r) is mod-
eled by a random distribution of intermolecular distances
in a spherical cluster, an assumption that is appropriate for
large clusters. Due to the repulsive interaction of the
H,-molecules at close distances we consider an exclusion
volume of radius r,, around each atom; g...(r) also
incorporates the finite size of the cluster. For a more
detailed discussion we refer the interested reader to Ref.
[12]. With this model for the cluster structure the number
of atoms in the cluster, N, is related with the radius of the
cluster, R, by N=3m7 R,

Now it is possible to separately evaluate the contribu-
tions of the intramolecular and intermolecular interference
effects to the cluster energy loss. The total reduced cluster
stopping power, S,/(NZ*?), can be written as a sum of
three different quantities,

2
TV Sp

S,
NZC}‘ 2= Sp + Simra + Sin[er' (4)
The proton stopping power S, represents the independent-
particle term, S;,. and S;,. are due to the intra- and
inter-molecular interference effects, respectively. All the
calculations presented in this paper are given for an exclu-
sion radius r,, = 3.59 a.u., corresponding to half the near-
est-neighbour distance in solid hydrogen and the value of
the cluster density we have used is 7 =6.27 X 1073 a.u.
[21].

In order to evaluate the cluster stopping power using
Egs. (1)~(3) it is necessary to specify the target properties.
The response of the electrons in the solid to an external
perturbation is expressed in terms of the energy loss
function (ELF) of the medium, Im(~ 1 /e(k, »)), a magni-
tude that is directly related to the probability that an
inelastic event with momentum transfer £ and energy
transfer @ will take place in the solid. The ELF of silicon
measured ‘at zero momentum transfer {24] shows a well

0.4 T T y T J T . T

e
S

Reduced stopping power (au )

g
=3

v/vF

Fig. 1. Reduced cluster stopping power versus cluster velocity for
(H,), — Si. Solid line: proton stopping power, S,. Dotted line:
intramolecular stopping power, S;,.,. Dashed line: intermolecular
stopping power, S;;» for N =50 (- ~ =), 100 (-----) and 500
(=+ =+ --) particles in the cluster.

defined peak at ~ 17 eV. We consider the target as a
homogeneous and isotropic system and describe the dielec-
tric properties of silicon by a Memmin [22] dielectric
function €,,(w, k). This dielectric function is a generaliza-
tion of the Lindhard dielectric function [23] for a free
electron gas, but it takes into account a finite plasmon
lifetime and preserves the local particle number. The main
parameters in €,, are the plasmon energy w, and damping
v, which are related to the location and width of the peak
in the ELF. Fitting [25] the Mermin ELF at k=0 to
experimental optical data for silicon taken from Ref. [24]
we obtain w, =0.62 a.u. and y=0.156 a.u.

In Fig. 1 we show the dependence of the different terms
in the reduced cluster stopping power, Eq. (4), with the
cluster velocity v in units of the Fermi velocity, which is
v =0.9675 a.u. for silicon. The intramolecular stopping
power S;,., follows the same behaviour with S, being
Simra/Sp = 0.5 in the whole range of velocities considered.
The intermolecular energy loss S, for a cluster with
N =50, 100 and 500 particles is also depicted in Fig. 1,
and we can observe that it strongly depends on the cluster
size. As a result of the coherent interference due to a large
number of atoms a sizeable collective effect appears in
Simer at high velocities in such a way that S;,.. can exceed
in more than one order of magnitude the proton stopping
power, S,. The interference effects are bigger when the
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Fig. 2. Intermolecular stopping power ;.. as a function of the
cluster size for (H,), — Si. The number in the curves indicate the
cluster velocity relative to the silicon Fermi velocity, v, = v / vg.

plasmon wavelength is similar to the cluster size, and the
excitation of large wavelength plasmons is possible only
for swift clusters [12]. It is interesting to note that the
reduced intermolecular stopping power Sy, clearly domi-
nates the collective effects at high velocities, being stronger
for larger clusters. The behaviour of S, and S;.. as a
function of the cluster velocity for a silicon target shows
general trends similar to the results previously obtained for
a carbon target [11].

Subsequently we analyze, for a given velocity, the
dependence of the cluster stopping power with the cluster
size; S, and S, are independent of the number of atoms
in the cluster and remain constant for a fixed cluster
velocity. Also, as we discussed in Fig. 1, the main collec-
tive effects for large clusters are given by the intermolecu-
lar energy loss S, then we center our interest in the
behaviour of S; .. with the cluster size.

In Fig. 2 we present the reduced intermolecular stop-
ping power S;,.. as a function of the number of atoms in
the cluster, for the velocity range v = (1-10)vg. For v > vp
we find a resonant cluster size, characteristic of each
velocity, for which §;,,., displays a maximum, after which
the energy loss saturates to a constant value. This resonant
cluster configuration is given when all the ions in the
cluster produce constructive interference effects, then the
integration of the vicinage function I(r) over all the
cluster particles (Eq. (1)) add only positive values to the
stopping power. When the cluster size increases, destruc-

tive interference effects appear, which reduce the cluster
stopping power. A saturation in the energy loss is reached
when the interference effects produced by the particles in
the cluster remain constant, even though more atoms be-
long to the cluster. This is so because in this case the
distances between atoms in the cluster are so large that the
new interference effects are negligible.

We remark that the strong enhancement in the interfer-
ence effects in the intermolecular stopping power is for
cluster sizes with an intermediate number of particles and
not for the largest cluster, When the cluster velocity in-
creases the resonant cluster size and their corresponding
maximum stopping power increase as well as the satura-
tion value of the energy loss.

For cluster velocities of the same order as the Fermi
velocity a maximum in the intermolecular stopping power
does not appear (see Fig. 2) and a roughly constant value
of S 18 found independent of the number of atoms in
the cluster. This saturation effect is produced because there
is not enough energy to excite plasmons in the solid, which
are responsible for the interference effects [12]. Analyzing
the dispersion relation of silicon we observe that the
plasmon line decays into individual excitation at a critical
wave number k.= 0.703 a.u,, therefore the minimum ve-
locity to excite plasmons will be v, = 1.3 a.u. Only parti-
cles with velocities larger than v, can produce collective
excitations in the target, and therefore will give rise to the
interference effects in the cluster stopping power. Satura-
tion effects with the cluster size have been found experi-
mentally in the slowing down of low energy hydrogen
clusters in carbon foils [18].

The resonant cluster configuration can be characterized
by its radius, R}, and by its maximum intermolecular
stopping power, Si,.,. The dependence of these two mag-
nitudes on the cluster velocity will be analyzed in what
follows. In Fig. 3 we show the resonant cluster radius R,
for which the interference effect in the cluster energy loss
is maximum, as a function of the cluster velocity. As we
can see, the critical cluster radius Ry, increases linearly
with the velocity of the cluster, The maximum interference
effects in S, will be when the wavelengths of the
collective plasmon excitations are similar to the cluster
dimension, accordingly we get the scale rule Ry =2v/w,,
where , is the silicon plasmon energy. As we observe in
Fig. 3, this relation perfectly agrees with the theoretical
results obtained by our model for the critical cluster size.
Then for any given cluster velocity, larger electron densi-
ties in the target will correspond to smaller number of
particles in the resonant cluster.

The cluster velocity dependence of the maximum val-
ues in the intermolecular stopping power divided by the
proton stopping power, Siy../Sy, is presented in Fig. 4. It
can be seen that the calculated points closely follow the
relation Sjy.../S, = 0.87(v/w,), which shows that Si,,
goes linearly with the cluster velocity, since S, is propor-
tional to 1/v? at large velocities. Studying the energy loss
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of clusters in classical plasmas, Bringa and Arista [17]
found an identical behaviour for R, and a similar one for
Simer/Sp to those reported here.

A complete description of the cluster stopping power in
the target foil would require the inclusion of the Coulomb
explosion between the cluster constituents. However due to
the different time scale of the electronic interaction be-
tween the cluster particles and the target, and the nuclear
explosion, both processes can be evaluated separately.

We estimate the consequences of the Coulomb explo-
sion in the dependence of the intermolecular cluster stop-
ping power S, with the cluster size by decreasing the
density 7 of the cluster, which corresponds to an increase
in the distance between the cluster components. We evalu-
ate Spy, for an expanded cluster with a density 7,
ranging from 7 to 0.3%; this corresponds to a cluster with
a radius from R, to 1.44R, and we obtain, for all the
cluster velocities, a resonant cluster configuration with a

similar behaviour to that shown in Fig. 2. According to the
scaling rule for the resonant cluster radius R, and for the
maximum value of the intermolecular cluster stopping
power Si,.., we find the following relations between the
number of atoms N’ of the resonant cluster configuration
and the maximum value of the intermolecular stopping
power for the expanded cluster: N o, = (e, /)Ny and
Simer,exp = (lexp/ M) Siner» 1€SPECtively. Then, the effect of
the Coulomb explosion is to decrease the absolute value of

1] T ] i ) T ¥
/.
30 F ) -
I./
./
s

20 J N
~ '
= ’
< /
- 7
.S s

/
s
10 /'
s
/l
7,
[}
0 1 I i 1 ] 1 L]
0 2 4 6 8 10
v (au)

Fig. 3. Critical cluster radius R, as a function of the cluster
velocity for (H,), = Si. Dots represent the results obtained theo-
retically by our model. The dashed line represents the scale rule

Ry=2v/0,
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Fig. 4. Maximum reduced intermolecular stopping power divided
by the proton stopping power, Siye./S,, for the critical cluster
size as a function of the cluster velocity. Dots represent the results
obtained theoretically by our model. The dashed line represents

the relation Sjyye; /S, =08 7 (v/w,)>.

the intermolecular cluster stopping power but maintaining
the same behaviour with the cluster size, indicating the
existence of a resonant cluster configuration.

In conclusion, in this work, we have evaluated the
collective effects in the stopping power of large molecular
hydrogen clusters moving at high velocities in a silicon
target. The dependence with the cluster velocity and the
cluster size were evaluated, and we found that for swift
and large clusters the intermolecular interference effects
dominate in the cluster stopping power. It is worth to
mention that for each velocity there is a critical cluster
configuration for which the energy loss of the cluster is
maximum, and both the radius of this resonant cluster and
the maximum stopping power are directly proportional to
the cluster velocity. For cluster sizes bigger than the
critical one the intermolecular stopping power goes to a
saturation value. This kind of prediction could be applied
to experimental situations, like inertial confinement fusion
devices, where a maximum deposit of energy is desired.
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