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Abstract

We have evaluated the energy loss of protons when moving through several oxides (Al2O3, SiO2, and ZrO2). The

calculations were done in the framework of the dielectric formalism, using a combination of Mermin-type energy-loss

functions to describe the outer electrons, together with generalized oscillator strengths to take into account electrons

from the inner shells. This method provides a realistic description of the electronic properties of each target. The

calculated stopping cross-sections compare fairly well with the available experimental data in a wide range of proton

energies. � 2002 Elsevier Science B.V. All rights reserved.
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The energy loss of ions in elements and chemi-
cal compounds is a subject of great interest for
basic research and for multiple applications in
atomic physics and materials science. In particular,
the energy deposition in oxides is a question of
special interest due to its multiple technological
applications. Previous [1] and more recent [2–4]
experiments provide precise determinations of the
stopping cross-sections of some insulators, using
foil transmission and backscattering techniques,
over a wide range of energies. These experiments

allow to study the contribution of valence elec-
trons and to analyze the influence of the chemical
bonding on the energy loss of swift protons in
various oxygen compounds.

In particular, it was shown that the influence of
the band gap in the low-energy stopping power is
much smaller than expected from previous theo-
retical estimations, showing a proportionality of
the stopping cross-section with velocity for proton
beams, down to energies of about 2 keV [3,5].
These results have renewed the interest in formu-
lating theoretical models that could describe the
characteristics of the energy loss phenomenon in
insulators on a wide range of energies, including
the low and the intermediate energy range around
the stopping power maximum.
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We propose a representation of the electronic
energy-loss spectra of real solids (or its oscillator-
strength distribution) based on Mermin-type di-
electric functions �Mðk;xÞ to describe the response
of the outer electrons of the solid to an external
perturbation [6–8]; �hk and �hx correspond, re-
spectively, to the momentum and energy trans-
ferred to the target. The inner-shell electrons are
described by an atomic model represented by the
generalized oscillator strength (GOS) in the hy-
drogenic approach [9]. The energy-loss function
(ELF) used in this model is adjusted in the optical
limit (momentum transfer �hk ¼ 0), using a set of
experimental data for each particular element, and
they are analytically extended to all values of wave
number k through the properties of the Mermin
dielectric function. This provides the complete
energy-loss function Im½�1=�ðk;xÞ�, which is
consistent with the Kramers–Kronig relations and
with the oscillator-strength sum rule for all values
of k [7]. Since this description contains all the
relevant information on the electronic transitions
and band structure effects in the optical range, and
a consistent extension to the whole (k;x) range, it
is expected that this model should provide a real-
istic description of the energy-loss spectra for
each particular material. Within this scheme, we
evaluate the electronic stopping cross-section
and the energy-loss straggling of three oxides
(Al2O3, SiO2 and ZrO2) through the whole energy
range of interest in relation with the experiments
indicated above [1–3]. The nuclear stopping can be
neglected in the range of energies we shall con-
sider.

The stopping power Sp of a material, charac-
terized by an energy loss function Im½�1=�ðk;xÞ�,
for a proton moving with velocity v through it, is
obtained using the dielectric formalism as [10]
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where Z1 is the projectile atomic number (Z1 ¼ 1 in
the present case) and e is the elementary charge.

The energy-loss straggling dX2=dx represents
the fluctuation in the energy-loss spectrum, and it
is given by [10]:
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The inelastic scattering that takes place in the

solid with the outer electrons is complicated due to
the effect of chemical bonding on the electron wave
functions and by the existence of collective exci-
tations; these interactions can be described in
terms of a dielectric response function. We model
the x and k dependence of the ELF of a material
by means of a linear combination of Mermin-type
ELF, Imð�1=�MÞ. In brief, the ELF is fitted to
experimental data obtained in the optical limit,
k ¼ 0, and the electronic excitations of the outer
shells are described by a sum of Mermin-type
ELFs [6–8]:
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The parameters Aj, xj and cj are related to the
intensity, the position and the width, respectively,
of the peaks and other structures observed in the
energy-loss spectrum.

Inner-shell electrons have relatively large bind-
ing energies giving a strong binding to the nucleus
and negligible collective effects. We describe the
inner-shell excitations using a single-atom model
through the GOS [9] in the hydrogenic approach
that provides realistic values of the inner-shell
ionization cross-sections, besides analytical ex-
pressions for K- and L-shell ionization [11].

The parameters used to fit the ELF are chosen
in such a manner that: (i) a reasonably good fitting
to the experimental ELF is obtained, and (ii) the
effective number of electrons per molecule partic-
ipating in electronic excitations up to a given
energy �hx, namely

NeffðxÞ ¼ m
2p2e2n

Z x

0
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tends to the number of electrons filling the orbitals
of the target atoms, and, of course, to the total
number of electrons of the molecule when the ex-
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citation energy goes to infinity. Here n is the mo-
lecular density of the material and m is the electron
mass.

The construction of the ELF requires the
availability of the corresponding experimental
data in a wide range of excitation energies; but for
some elements and compounds these data are not
always obtainable. For large �hx the ELF of a
compound AyBz can be constructed from the ELF
of its elementary constituents, A and B, applying
the weighted additivity of their respective ELF/n
ratios, where the ELF of each element is obtained
from the X-ray scattering factors [12]; this proce-

dure is correct for energies comparable to that of
the inner shells.

The left axes of Fig. 1(a–c) correspond to the
ELF of the three materials discussed in this paper:
Al2O3, SiO2 and ZrO2, respectively. For the lower
energies, the experimental ELF was given directly
by the existing data for each compound (repre-
sented by symbols, as indicated in the figure cap-
tion), whereas for the higher energies, where
experimental data are not available, we use the
ELF of the compound obtained applying the
weighted additivity of the ELF/n of the constitu-
ents. Our fitting is depicted as a solid line and the

Fig. 1. ELF (left axes) and effective number of electrons (right axes) of three different oxides as a function of the excitation energy. The

thick solid line represents our fitting to the experimental ELF and the experimental data are denoted by symbols: (a) Al2O3, data from

Hagemann et al. [13] ( ), (b) SiO2, data from Philipp [14] ( ) and Powell [15] ( ), and (c) ZrO2, data from Frandon et al. [16] ( ).

Table 1

Parameters used to fit, through Eq. (3), the optical ELF of Al2O3, SiO2 and ZrO2

Target j �hxj (eV) �hcj (eV) Aj

Al2O3 1 25.31 12.25 3:82 	 10�1

(q ¼ 3:97 g/cm3) 2 35.37 32.65 4:44 	 10�1

3 100.68 136.05 5:11 	 10�2

SiO2 1 24.16 15.78 5:96 	 10�1

(q ¼ 2:32 g/cm3) 2 48.98 27.21 4:63 	 10�2

3 136.05 125.17 1:6 	 10�2

ZrO2 1 13.06 2.72 8:03 	 10�2

(q ¼ 5:6 g/cm3) 2 16.87 8.16 1:69 	 10�1

3 24.49 10.07 2:35 	 10�1

4 41.36 15.97 2:16 	 10�1

5 108.84 498.78 1:28 	 10�1
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parameters used when fitting the contribution of
the external electrons to the ELF appear in Table
1. We can see that there is a good agreement be-
tween the higher-energy part of the directly avail-
able ELF and the low-energy side of the calculated
one. We notice also that the electrons of each atom
that do not participate in the chemical bonding
clearly become apparent as sharp edges in the ELF,
whereas some otherwise sharp edges correspond-
ing to atomic electrons now appear broadened due
to their participation in the chemical bonding.

The right axes of Fig. 1(a–c) correspond to the
effective number of electrons per molecule that
participate in electronic excitations at a given en-
ergy, Eq. (4). It can be seen how the inner-shell
electrons of the atomic constituents of each mol-
ecule progressively contribute to Neff as the exci-
tation energy �hx increases, and they tend to the
total number of electrons per molecule when
�hx ! 1.

An additional checking of our fitting procedure
is obtained calculating the mean excitation energy
I of each compound, that only depends on the
electronic structure of the target [17]:

ln I ¼

R1
0

dxx ln x Im �1
�ðk;xÞ

h i
R1

0
dxx Im �1

�ðk;xÞ

h i : ð5Þ

We obtain the following results: IðAl2O3Þ ¼ 145:3
eV, IðSiO2Þ ¼ 137 eV and IðZrO2Þ ¼ 312:8 eV,

which agree satisfactorily well with the avail-
able experimental mean ionization energy [18]
IexpðAl2O3Þ ¼ 145:2 eV and IexpðSiO2Þ ¼ 139:2 eV;
unfortunately there is no experimental data for
ZrO2. The application of Bragg’s rule [19] to the
mean ionization energy for these oxides gives
the following values: IBraggðAl2O3Þ ¼ 143 eV,
IBraggðSiO2Þ ¼ 141 eV and IBraggðZrO2Þ ¼ 295 eV.

Using the previous representations of the ELF
for Al2O3, SiO2 and ZrO2, we have calculated their
corresponding stopping power and energy-loss
straggling for protons by integrating their oscilla-
tor-strength distributions over the k–x plane, as
indicated by Eqs. (1) and (2), respectively. The
stopping cross-sections of Al2O3, SiO2 and ZrO2

for protons are shown as solid lines in Fig. 2;
available experimental data [1,3,20,21] are indi-
cated by symbols. The main contribution to the
stopping cross-sections are due to the excitations
of the outer electrons, although the oxygen K-shell
electrons have a contribution of �3% when the
proton energy is �600 keV, increasing until 10%
when the energy is 2500 keV. For comparison, we
have also plotted as dashed lines the semiempirical
predictions of SRIM [22]. The calculations per-
formed with the present model are found in satis-
factory agreement with the experimental results
for the whole range of proton energies. The major
deviations of our results with respect to SRIM
appear at energies around and lower than that

Fig. 2. Stopping cross-sections of (a) Al2O3, (b) SiO2, and (c) ZrO2, as a function of the proton energy. For each case, the solid line

represents our calculation, the dashed line is the prediction of SRIM [22], and the symbols refer to experimental data for protons (( )

[1], ( ) [3], ( ) [20], (full square) [21] and deuterons ( ) [20]).
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corresponding to the maximum stopping cross-
section; this is expected due to the increasing
contribution of valence electrons to the stopping
power at low energies, which is not properly taken
into account by Bragg’s rule. In particular, there
are sizeable differences at low and intermediate
energies for the case of ZrO2; the need of experi-
mental values in this case is evident, in order to
clarify this discrepancy.

In Fig. 3 we show the normalized energy-loss
straggling, ð1n dX2

dx Þ
1=2

, of Al2O3, SiO2 and ZrO2 as a
function of the proton energy. We compare our
calculations with the experimental data of SiO2

obtained by Kido [21] using nuclear resonance
reactions. Adapting Bragg’s rule to evaluate the
Bohr energy-loss straggling, dX2

B=dx, of a com-
pound AyBz as the weighted additivity of their
respective elements, i.e. their ðdX2

B=dxÞ=n ratios,
we obtain the values indicated by empty circles in
Fig. 3, which should be considered as high energy
limits. Nevertheless, our calculations derived from
a proper description of valence and inner-shell
electrons show that the adapted Bohr energy-loss
straggling underestimates our more elaborate cal-
culations in a 5–10%.

In summary, we have presented a theoretical
model to describe the interaction and energy-loss
parameters for protons penetrating three oxides.
The model is based on Mermin-type dielectric

functions and reproduces very well the energy loss
and straggling values through a wide energy range
(2 keV–3 MeV) in all the cases where experimental
data exists. No band gap effects are obtained at
low energies, down to about 2 keV, in agreement
with the reported experimental results of Ref. [3].
The parameters of the present model are tabulated
to facilitate further applications. The model could
be applied in energy-loss calculations or simula-
tion studies, as well as in electron-mean-free-path
or electron spectroscopy studies.
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